muzairkhattak
first commit for the demo
37b3db0
""" huggingface model adapter
Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
"""
import re
import torch
import torch.nn as nn
from torch import TensorType
try:
import transformers
from transformers import AutoModel, AutoTokenizer, AutoConfig, PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
BaseModelOutputWithPoolingAndCrossAttentions
except ImportError as e:
transformers = None
class BaseModelOutput:
pass
class PretrainedConfig:
pass
from .hf_configs import arch_dict
# utils
def _camel2snake(s):
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
# TODO: ?last - for gpt-like models
_POOLERS = {}
def register_pooler(cls):
"""Decorator registering pooler class"""
_POOLERS[_camel2snake(cls.__name__)] = cls
return cls
@register_pooler
class MeanPooler(nn.Module):
"""Mean pooling"""
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
@register_pooler
class MaxPooler(nn.Module):
"""Max pooling"""
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
return masked_output.max(1).values
@register_pooler
class ClsPooler(nn.Module):
"""CLS token pooling"""
def __init__(self, use_pooler_output=True):
super().__init__()
self.cls_token_position = 0
self.use_pooler_output = use_pooler_output
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
if (self.use_pooler_output and
isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
(x.pooler_output is not None)
):
return x.pooler_output
return x.last_hidden_state[:, self.cls_token_position, :]
@register_pooler
class ClsLastHiddenStatePooler(nn.Module):
"""CLS token pooling
NOTE: this is equivalent to ClsPooler above with use_pooler_output=False
"""
def __init__(self):
super().__init__()
self.cls_token_position = 0
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
return x.last_hidden_state[:, self.cls_token_position, :]
class HFTextEncoder(nn.Module):
"""HuggingFace model adapter"""
output_tokens: torch.jit.Final[bool]
def __init__(
self,
model_name_or_path: str,
output_dim: int,
config: PretrainedConfig = None,
pooler_type: str = None,
proj_type: str = None,
pretrained: bool = True,
output_tokens: bool = False,
):
super().__init__()
self.output_tokens = output_tokens
self.output_dim = output_dim
# TODO: find better way to get this information
uses_transformer_pooler = (pooler_type == "cls_pooler")
if transformers is None:
raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
if config is None:
self.config = AutoConfig.from_pretrained(model_name_or_path)
create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
AutoModel.from_config, self.config)
# TODO: do all model configs have this attribute? PretrainedConfig does so yes??
if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
self.transformer = create_func(model_args)
self.transformer = self.transformer.encoder
else:
self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
else:
self.config = config
self.transformer = AutoModel.from_config(config)
if pooler_type is None: # get default arch pooler
pooler_type = (arch_dict[self.config.model_type]["pooler"])
# FIXME downstream users of OpenCLIP models use these attr, need to verify valid across all models
self.vocab_size = getattr(self.config, 'vocab_size', 0)
self.context_length = getattr(self.config, 'max_position_embeddings', 0)
self.pooler = _POOLERS[pooler_type]()
d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
if (d_model == output_dim) and (proj_type is None): # do we always need a proj?
self.proj = nn.Identity()
elif proj_type == 'linear':
self.proj = nn.Linear(d_model, output_dim, bias=False)
elif proj_type == 'mlp':
hidden_size = (d_model + output_dim) // 2
self.proj = nn.Sequential(
nn.Linear(d_model, hidden_size, bias=False),
nn.GELU(),
nn.Linear(hidden_size, output_dim, bias=False),
)
def forward(self, x: TensorType):
attn_mask = (x != self.config.pad_token_id).long()
out = self.transformer(input_ids=x, attention_mask=attn_mask)
pooled_out = self.pooler(out, attn_mask)
projected = self.proj(pooled_out)
seq_len = out.last_hidden_state.shape[1]
tokens = (
out.last_hidden_state[:, torch.arange(seq_len) != self.pooler.cls_token_position, :]
if type(self.pooler) == ClsPooler
else out.last_hidden_state
)
if self.output_tokens:
return projected, tokens
return projected
def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
if not unlocked_layers: # full freezing
for n, p in self.transformer.named_parameters():
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
return
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
embeddings = getattr(
self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
modules = [embeddings, *layer_list][:-unlocked_layers]
# freeze layers
for module in modules:
for n, p in module.named_parameters():
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.gradient_checkpointing_enable()
def init_parameters(self):
pass