muzairkhattak
first commit for the demo
37b3db0
raw
history blame
9.24 kB
# Copyright (c) Meta Platforms, Inc. and affiliates
import argparse
def get_default_params(model_name):
# Params from paper (https://arxiv.org/pdf/2103.00020.pdf)
model_name = model_name.lower()
if "vit" in model_name:
return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.98, "eps": 1.0e-6}
else:
return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.999, "eps": 1.0e-8}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--train-data",
type=str,
default=None,
help="Path to csv filewith training data",
)
parser.add_argument(
"--val-data",
type=str,
default=None,
help="Path to csv file with validation data",
)
parser.add_argument(
"--train-num-samples",
type=int,
default=None,
help="Number of samples in dataset. Required for webdataset if not available in info file.",
)
parser.add_argument(
"--val-num-samples",
type=int,
default=None,
help="Number of samples in dataset. Useful for webdataset if not available in info file.",
)
parser.add_argument(
"--dataset-type",
choices=["webdataset", "csv", "auto"],
default="auto",
help="Which type of dataset to process."
)
parser.add_argument(
"--dataset-resampled",
default=False,
action="store_true",
help="Whether to use sampling with replacement for webdataset shard selection."
)
parser.add_argument(
"--csv-separator",
type=str,
default="\t",
help="For csv-like datasets, which separator to use."
)
parser.add_argument(
"--csv-img-key",
type=str,
default="filepath",
help="For csv-like datasets, the name of the key for the image paths."
)
parser.add_argument(
"--csv-caption-key",
type=str,
default="title",
help="For csv-like datasets, the name of the key for the captions."
)
parser.add_argument(
"--imagenet-val",
type=str,
default=None,
help="Path to imagenet val set for conducting zero shot evaluation.",
)
parser.add_argument(
"--imagenet-v2",
type=str,
default=None,
help="Path to imagenet v2 for conducting zero shot evaluation.",
)
parser.add_argument(
"--logs",
type=str,
default="./logs/",
help="Where to store tensorboard logs. Use None to avoid storing logs.",
)
parser.add_argument(
"--log-local",
action="store_true",
default=False,
help="log files on local master, otherwise global master only.",
)
parser.add_argument(
"--name",
type=str,
default=None,
help="Optional identifier for the experiment when storing logs. Otherwise use current time.",
)
parser.add_argument(
"--workers", type=int, default=1, help="Number of dataloader workers per GPU."
)
parser.add_argument(
"--batch-size", type=int, default=64, help="Batch size per GPU."
)
parser.add_argument(
"--epochs", type=int, default=32, help="Number of epochs to train for."
)
parser.add_argument("--lr", type=float, default=None, help="Learning rate.")
parser.add_argument("--beta1", type=float, default=None, help="Adam beta 1.")
parser.add_argument("--beta2", type=float, default=None, help="Adam beta 2.")
parser.add_argument("--eps", type=float, default=None, help="Adam epsilon.")
parser.add_argument("--wd", type=float, default=0.2, help="Weight decay.")
parser.add_argument(
"--warmup", type=int, default=10000, help="Number of steps to warmup for."
)
parser.add_argument(
"--use-bn-sync",
default=False,
action="store_true",
help="Whether to use batch norm sync.")
parser.add_argument(
"--skip-scheduler",
action="store_true",
default=False,
help="Use this flag to skip the learning rate decay.",
)
parser.add_argument(
"--save-frequency", type=int, default=1, help="How often to save checkpoints."
)
parser.add_argument(
"--save-most-recent",
action="store_true",
default=False,
help="Always save the most recent model trained to epoch_latest.pt.",
)
parser.add_argument(
"--zeroshot-frequency", type=int, default=2, help="How often to run zero shot."
)
parser.add_argument(
"--val-frequency", type=int, default=1, help="How often to run evaluation with val data."
)
parser.add_argument(
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: none)",
)
parser.add_argument(
"--precision",
choices=["amp", "fp16", "fp32"],
default="amp",
help="Floating point precision."
)
parser.add_argument(
"--model",
type=str,
default="RN50",
help="Name of the vision backbone to use.",
)
parser.add_argument(
"--pretrained",
default='',
type=str,
help="Use a pretrained CLIP model weights with the specified tag or file path.",
)
parser.add_argument(
"--pretrained-image",
default=False,
action='store_true',
help="Load imagenet pretrained weights for image tower backbone if available.",
)
parser.add_argument(
"--lock-image",
default=False,
action='store_true',
help="Lock full image tower by disabling gradients.",
)
parser.add_argument(
"--lock-image-unlocked-groups",
type=int,
default=0,
help="Leave last n image tower layer groups unlocked.",
)
parser.add_argument(
"--lock-image-freeze-bn-stats",
default=False,
action='store_true',
help="Freeze BatchNorm running stats in image tower for any locked layers.",
)
parser.add_argument(
"--grad-checkpointing",
default=False,
action='store_true',
help="Enable gradient checkpointing.",
)
parser.add_argument(
"--local-loss",
default=False,
action="store_true",
help="calculate loss w/ local features @ global (instead of realizing full global @ global matrix)"
)
parser.add_argument(
"--gather-with-grad",
default=False,
action="store_true",
help="enable full distributed gradient for feature gather"
)
parser.add_argument(
"--force-quick-gelu",
default=False,
action='store_true',
help="Force use of QuickGELU activation for non-OpenAI transformer models.",
)
parser.add_argument(
"--torchscript",
default=False,
action='store_true',
help="torch.jit.script the model, also uses jit version of OpenAI models if pretrained=='openai'",
)
parser.add_argument(
"--trace",
default=False,
action='store_true',
help="torch.jit.trace the model for inference / eval only",
)
# arguments for distributed training
parser.add_argument(
"--dist-url",
default="env://",
type=str,
help="url used to set up distributed training",
)
parser.add_argument(
"--dist-backend", default="nccl", type=str, help="distributed backend"
)
parser.add_argument(
"--report-to",
default='',
type=str,
help="Options are ['wandb', 'tensorboard', 'wandb,tensorboard']"
)
parser.add_argument(
"--wandb-notes",
default='',
type=str,
help="Notes if logging with wandb"
)
parser.add_argument(
"--debug",
default=False,
action="store_true",
help="If true, more information is logged."
)
parser.add_argument(
"--copy-codebase",
default=False,
action="store_true",
help="If true, we copy the entire base on the log diretory, and execute from there."
)
parser.add_argument(
"--horovod",
default=False,
action="store_true",
help="Use horovod for distributed training."
)
parser.add_argument(
"--ddp-static-graph",
default=False,
action='store_true',
help="Enable static graph optimization for DDP in PyTorch >= 1.11.",
)
parser.add_argument(
"--no-set-device-rank",
default=False,
action="store_true",
help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc)."
)
parser.add_argument(
"--seed", type=int, default=0, help="Default random seed."
)
parser.add_argument(
"--norm_gradient_clip", type=float, default=None, help="Gradient clip."
)
args = parser.parse_args()
# If some params are not passed, we use the default values based on model name.
default_params = get_default_params(args.model)
for name, val in default_params.items():
if getattr(args, name) is None:
setattr(args, name, val)
return args