Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
import matplotlib.pyplot as plt | |
import plotly.graph_objs as go | |
from wordcloud import WordCloud | |
from transformers import pipeline | |
# Load the pre-trained sentiment analysis model | |
sentiment_model = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") | |
# Define the Streamlit app's user interface | |
# Set page title and favicon | |
st.set_page_config(page_title="Hotel Reviews Sentiment", page_icon=":hotel:",layout='wide') | |
# Add image and heading | |
st.image("Header.png", use_column_width=True) | |
file = st.file_uploader(" ",type=["csv"]) | |
# Define the app's functionality | |
if file is not None: | |
# Read the CSV file into a Pandas DataFrame | |
df = pd.read_csv(file) | |
st.markdown(f"<h5 style='margin-top:40px'>Total reviews: {len(df)-1} </h5>", unsafe_allow_html=True) | |
# Write the total number of records | |
st.markdown( | |
f'<div style="background-color: #4AA6DD; color: #ffffff; padding: 6px; font-size: 20px; font-weight: bold; text-align: center; border-radius: 1rem;margin-top: 10px"> Distribution of Reviews </div>', | |
unsafe_allow_html=True | |
) | |
# Apply the sentiment analysis model to each review and store the results in a new column | |
df["Sentiment"] = df["Review"].apply(lambda x: sentiment_model(x)[0]["label"]) | |
# Generate pie chart | |
# Define custom colors | |
colors = ['#30C3C4', '#D1DDDE'] | |
# Generate pie chart | |
sentiment_counts = df["Sentiment"].value_counts() | |
fig = px.pie(sentiment_counts, values=sentiment_counts.values, names=sentiment_counts.index, | |
color_discrete_sequence=colors) | |
st.plotly_chart(fig, use_container_width=True) | |
# Create word clouds for positive and negative reviews | |
positive_reviews = " ".join(df[df["Sentiment"] == "POSITIVE"]["Review"].tolist()) | |
negative_reviews = " ".join(df[df["Sentiment"] == "NEGATIVE"]["Review"].tolist()) | |
# Center-align the word clouds | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown( | |
f'<div style="background-color: #4AA6DD; color: #ffffff; padding: 6px; font-size: 20px; font-weight: bold; text-align: center; margin-bottom: 40px; border-radius: 1rem">Positive Reviews</div>', | |
unsafe_allow_html=True | |
) | |
wc_pos = WordCloud(width=800, height=600, background_color="white", colormap="winter").generate(positive_reviews) | |
st.image(wc_pos.to_array(),use_column_width=True) | |
with col2: | |
st.markdown( | |
f'<div style="background-color: #4AA6DD; color: #ffffff; padding: 6px; font-size: 20px; font-weight: bold; text-align: center; margin-bottom: 40px;border-radius: 1rem">Negative Reviews</div>', | |
unsafe_allow_html=True | |
) | |
wc_neg = WordCloud(width=800, height=600, background_color="white", colormap="winter").generate(negative_reviews) | |
st.image(wc_neg.to_array(),use_column_width=True) | |
# Display the sentiment of each review as cards | |
st.markdown( | |
f'<div style="background-color: #4AA6DD; color: #ffffff; padding: 6px; font-size: 20px; font-weight: bold; text-align: center; margin-top: 60px; border-radius: 1rem"> Reviews in depth </div>', | |
unsafe_allow_html=True | |
) | |
# Add the selectbox to filter sentiments | |
filter_sentiment = st.selectbox("", ["ALL", "POSITIVE", "NEGATIVE"]) | |
# Filter the dataframe based on the selected sentiment | |
if filter_sentiment != "ALL": | |
df = df[df['Sentiment'] == filter_sentiment] | |
# Set the max number of rows to display at a time | |
max_rows = 15 | |
# Create HTML table with no border and centered text | |
table_html = (df.style | |
.set_properties(**{'text-align': 'left'}) | |
.set_table_styles([{'selector': 'th', 'props': [('border', '0px')]}, | |
{'selector': 'td', 'props': [('border', '0px')]}]) | |
.set_table_attributes('style="position: sticky; top: 0;"') | |
.to_html(index=False, escape=False)) | |
# Wrap the table inside a div with a fixed height and scrollable content | |
st.write(f'<div style="height: {max_rows*30}px; overflow-y: scroll;">{table_html}</div>', unsafe_allow_html=True,header=True,sticky_header=True) | |
def convert_df(df): | |
# IMPORTANT: Cache the conversion to prevent computation on every rerun | |
return df.to_csv().encode('utf-8') | |
csv = convert_df(df) | |
# Add some space between the download button and the table | |
st.write("<br><br>", unsafe_allow_html=True) | |
st.download_button( | |
label="Download data as CSV", | |
data=csv, | |
file_name='Review Sentiments.csv' | |
) | |
st.write("<br>", unsafe_allow_html=True) | |
st.caption('<div style="text-align:center; background-color:#CFEDFF;padding: 6px">crafted with ❤️</div>', unsafe_allow_html=True) |