Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline | |
| # Load the sentiment analysis pipeline | |
| sentiment_pipeline = pipeline("sentiment-analysis") | |
| # Function to analyze sentiment | |
| def sentiment_analysis(message, history): | |
| result = sentiment_pipeline(message)[0] | |
| label = result["label"] | |
| score = result["score"] | |
| response = f"Sentiment: {label}, Confidence: {score:.2f}" | |
| return response | |
| # Function to record feedback | |
| feedback_store = [] # A list to store feedback | |
| def record_feedback(response, feedback): | |
| feedback_store.append({"response": response, "feedback": feedback}) | |
| return f"Thank you for your feedback! ({len(feedback_store)} recorded)" | |
| # Gradio Interface | |
| with gr.Blocks() as demo: | |
| chat = gr.ChatInterface(fn=sentiment_analysis, type="messages") | |
| # Additional components for feedback | |
| with gr.Row(): | |
| feedback_input = gr.Textbox(placeholder="Enter your feedback here", label="Feedback") | |
| record_button = gr.Button("Submit Feedback") | |
| # Feedback submission functionality | |
| feedback_status = gr.Textbox(interactive=False, label="Feedback Status") | |
| record_button.click( | |
| fn=record_feedback, | |
| inputs=[chat.output_component, feedback_input], | |
| outputs=feedback_status, | |
| ) | |
| demo.launch() | |