UtkarshShivhare commited on
Commit
d8a701a
1 Parent(s): b44e896

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -85
app.py DELETED
@@ -1,85 +0,0 @@
1
- import streamlit as st
2
- import tensorflow as tf
3
- from PIL import Image
4
- import numpy as np
5
- from tensorflow.keras.applications.vgg16 import VGG16,preprocess_input
6
- from tensorflow.keras.preprocessing.image import load_img,img_to_array
7
- from tensorflow.keras.preprocessing.text import Tokenizer
8
- from tensorflow.keras.preprocessing.sequence import pad_sequences
9
- from tensorflow.keras.models import Model
10
- from tensorflow.keras.utils import to_categorical,plot_model
11
- from tensorflow.keras.layers import Input,Dense,LSTM,Embedding, Dropout, add
12
- from keras.models import load_model
13
-
14
- # Load the .h5 model
15
- model = load_model('image_caption.h5')
16
- tokenizer = Tokenizer()
17
- max_length=35
18
- # Load pre-trained model
19
- vgg_model = VGG16()
20
- vgg_model = Model(inputs=vgg_model.inputs, outputs=vgg_model.layers[-2].output)
21
-
22
- # Set Streamlit configurations
23
- st.set_page_config(page_title="Image Classifier App", layout="wide")
24
-
25
-
26
- # Function to preprocess the input image
27
- def preprocess_image(image):
28
- image = image.resize((224, 224))
29
- image = img_to_array(image)
30
- image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
31
- image = preprocess_input(image)
32
- return image
33
-
34
- # Function to make predictions on the input image
35
- def predict(image):
36
- image = preprocess_image(image)
37
- feature = vgg_model.predict(image, verbose=0)
38
- preds = predict_caption(model, feature, tokenizer, max_length)
39
- preds=preds[8:-7]
40
- return preds
41
-
42
- def idx_word(integer,tok):
43
- for word,index in tok.word_index.items():
44
- if index== integer:
45
- return word
46
- return None
47
-
48
- def predict_caption(model,image,tok,max_len):
49
- in_text="startseq"
50
- for i in range(max_len):
51
- seq=tok.texts_to_sequences([in_text])[0]
52
- seq=pad_sequences([seq],max_len)
53
- yhat = model.predict([image, seq], verbose=0)
54
- yhat = np.argmax(yhat)
55
- word = idx_word(yhat, tok)
56
- if word is None:
57
- break
58
- in_text += " " + word
59
- if word == 'endseq':
60
- break
61
- return in_text
62
-
63
- # Streamlit app
64
- def main():
65
- st.title("Image Classifier App")
66
- st.write("Upload an image and the app will predict its class.")
67
-
68
- uploaded_image = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
69
-
70
- if uploaded_image is not None:
71
- image = Image.open(uploaded_image)
72
- st.image(image, caption='Uploaded Image', use_column_width=True,width=500)
73
- st.write("")
74
-
75
- if st.button("Predict"):
76
- with st.spinner("Predicting..."):
77
- predictions = predict(image)
78
-
79
- st.write("Top predictions:")
80
- for _, label, confidence in predictions:
81
- st.write(f"{label}: {round(confidence * 100, 2)}%")
82
-
83
- # Run the app
84
- if __name__ == "__main__":
85
- main()