Spaces:
Running
Running
import gradio as gr | |
from all_models import models | |
from externalmod import gr_Interface_load, save_image, randomize_seed | |
import asyncio | |
import os | |
from threading import RLock | |
from datetime import datetime | |
preSetPrompt = "High fashion studio foto shoot. tall slender 18+ caucasian woman. gorgeous face. high waist sexy bodysuit. photorealistic. f1.4" | |
negPreSetPrompt = "[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness" | |
lock = RLock() | |
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. | |
def get_current_time(): | |
now = datetime.now() | |
current_time = now.strftime("%y-%m-%d %H:%M:%S") | |
return current_time | |
def load_fn(models): | |
global models_load | |
models_load = {} | |
for model in models: | |
if model not in models_load.keys(): | |
try: | |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) | |
except Exception as error: | |
print(error) | |
m = gr.Interface(lambda: None, ['text'], ['image']) | |
models_load.update({model: m}) | |
load_fn(models) | |
num_models = 12 | |
max_images = 12 | |
inference_timeout = 400 | |
default_models = models[:num_models] | |
MAX_SEED = 2**32-1 | |
def extend_choices(choices): | |
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA'] | |
def update_imgbox(choices): | |
choices_plus = extend_choices(choices[:num_models]) | |
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus] | |
def random_choices(): | |
import random | |
random.seed() | |
return random.choices(models, k=num_models) | |
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout): | |
kwargs = {} | |
if height > 0: kwargs["height"] = height | |
if width > 0: kwargs["width"] = width | |
if steps > 0: kwargs["num_inference_steps"] = steps | |
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg | |
if seed == -1: | |
theSeed = randomize_seed() | |
else: | |
theSeed = seed | |
kwargs["seed"] = theSeed | |
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) | |
await asyncio.sleep(0) | |
try: | |
result = await asyncio.wait_for(task, timeout=timeout) | |
except asyncio.TimeoutError as e: | |
print(e) | |
print(f"infer: Task timed out: {model_str}") | |
if not task.done(): task.cancel() | |
result = None | |
raise Exception(f"Task timed out: {model_str}") from e | |
except Exception as e: | |
print(e) | |
print(f"infer: exception: {model_str}") | |
if not task.done(): task.cancel() | |
result = None | |
raise Exception() from e | |
if task.done() and result is not None and not isinstance(result, tuple): | |
with lock: | |
png_path = model_str.replace("/", "_") + " - " + get_current_time() + "_" + str(theSeed) + ".png" | |
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, theSeed) | |
return image | |
return None | |
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1): | |
try: | |
loop = asyncio.new_event_loop() | |
result = loop.run_until_complete(infer(model_str, prompt, nprompt, | |
height, width, steps, cfg, seed, inference_timeout)) | |
except (Exception, asyncio.CancelledError) as e: | |
print(e) | |
print(f"gen_fn: Task aborted: {model_str}") | |
result = None | |
raise gr.Error(f"Task aborted: {model_str}, Error: {e}") | |
finally: | |
loop.close() | |
return result | |
def add_gallery(image, model_str, gallery): | |
if gallery is None: gallery = [] | |
with lock: | |
if image is not None: gallery.insert(0, (image, model_str)) | |
return gallery | |
JS=""" | |
<script> | |
/* | |
function simulateButtonPress_() { | |
const button = document.getElementById('simulate-button'); | |
if (button) { | |
button.click(); // Simulate the button press | |
console.log('Button Pressed!'); | |
} | |
} | |
*/ | |
function simulateButtonPress() { | |
console.log('Button Pressed!'); | |
} | |
// Function to observe image changes | |
function observeImageChanges() { | |
// Select all images with the 'image-monitor' class | |
const images = document.querySelectorAll('.svelte-1pijsyv'); | |
// Create a MutationObserver to watch for changes in the image src | |
const observer = new MutationObserver((mutationsList, observer) => { | |
mutationsList.forEach(mutation => { | |
if (mutation.type === 'attributes' && mutation.attributeName === 'src') { | |
// If the image src changes, simulate button press | |
console.log('Image changed!'); | |
simulateButtonPress(); | |
} | |
}); | |
}); | |
// Observer options: observe changes to attributes (like src) | |
const config = { attributes: true }; | |
// Start observing each image | |
images.forEach(image => { | |
observer.observe(image, config); | |
}); | |
} | |
// Start observing | |
window.addEventListener('load', () => { | |
observeImageChanges(); | |
console.log("Yo"); | |
}); | |
</script> | |
""" | |
CSS=""" | |
<style> | |
.image-monitor { | |
border:1px solid red; | |
} | |
/* | |
.svelte-1pijsyv{ | |
border:1px solid green; | |
} | |
*/ | |
.gallery-container{ | |
max-height: 512px; | |
} | |
.butt{ | |
background-color:#2b4764 !important | |
} | |
.butt:hover{ | |
background-color:#3a6c9f !important; | |
} | |
</style> | |
""" | |
# with gr.Blocks(fill_width=True, head=js) as demo: | |
with gr.Blocks(head=CSS + JS) as demo: | |
with gr.Tab(str(num_models) + ' Models'): | |
with gr.Column(scale=2): | |
with gr.Group(): | |
txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1) | |
neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1) | |
with gr.Accordion("Advanced", open=False, visible=True): | |
with gr.Row(): | |
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) | |
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) | |
with gr.Row(): | |
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0) | |
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) | |
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) | |
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary") | |
seed_rand.click(randomize_seed, None, [seed], queue=False) | |
with gr.Row(): | |
gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"]) | |
random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1) | |
with gr.Column(scale=1): | |
with gr.Group(): | |
with gr.Row(): | |
output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"], | |
interactive=False, width=112, height=112, show_share_button=False, format="png", | |
visible=True) for m in default_models] | |
current_models = [gr.Textbox(m, visible=False) for m in default_models] | |
with gr.Column(scale=2): | |
gallery = gr.Gallery(label="Output", show_download_button=True, | |
interactive=False, show_share_button=False, container=True, format="png", | |
preview=True, object_fit="cover", columns=2, rows=2) | |
for m, o in zip(current_models, output): | |
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn, | |
inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o], | |
concurrency_limit=None, queue=False) | |
o.change(add_gallery, [o, m, gallery], [gallery]) | |
with gr.Column(scale=4): | |
with gr.Accordion('Model selection'): | |
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True) | |
model_choice.change(update_imgbox, model_choice, output) | |
model_choice.change(extend_choices, model_choice, current_models) | |
random_button.click(random_choices, None, model_choice) | |
with gr.Tab('Single model'): | |
with gr.Column(scale=2): | |
model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0]) | |
with gr.Group(): | |
txt_input2 = gr.Textbox(label='Your prompt:', value = preSetPrompt, lines=3, autofocus=1) | |
neg_input2 = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1) | |
with gr.Accordion("Advanced", open=False, visible=True): | |
with gr.Row(): | |
width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) | |
height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) | |
with gr.Row(): | |
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0) | |
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) | |
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) | |
seed_rand2 = gr.Button("Randomize Seed", size="sm", variant="secondary") | |
seed_rand2.click(randomize_seed, None, [seed2], queue=False) | |
num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images') | |
with gr.Row(): | |
gen_button2 = gr.Button('Let the machine halucinate', variant='primary', scale=2, elem_classes=["butt"]) | |
with gr.Column(scale=1): | |
with gr.Group(): | |
with gr.Row(): | |
output2 = [gr.Image(label='', show_download_button=True, | |
interactive=False, width=112, height=112, visible=True, format="png", | |
show_share_button=False, show_label=False) for _ in range(max_images)] | |
with gr.Column(scale=2): | |
gallery2 = gr.Gallery(label="Output", show_download_button=True, | |
interactive=False, show_share_button=True, container=True, format="png", | |
preview=True, object_fit="cover", columns=2, rows=2) | |
for i, o in enumerate(output2): | |
img_i = gr.Number(i, visible=False) | |
num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, queue=False) | |
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit], | |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None, | |
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2, | |
height2, width2, steps2, cfg2, seed2], outputs=[o], | |
concurrency_limit=None, queue=False) | |
o.change(add_gallery, [o, model_choice2, gallery2], [gallery2]) | |
demo.launch(show_api=False, max_threads=400) | |