HighFashion / app.py
Uthar's picture
Update app.py
86d7743 verified
raw
history blame
12.1 kB
import gradio as gr
from all_models import models
from externalmod import gr_Interface_load, save_image, randomize_seed
import asyncio
import os
from threading import RLock
from datetime import datetime
preSetPrompt = "High fashion studio foto shoot. tall slender 18+ caucasian woman. gorgeous face. high waist sexy bodysuit. photorealistic. f1.4"
negPreSetPrompt = "[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness"
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
def get_current_time():
now = datetime.now()
current_time = now.strftime("%y-%m-%d %H:%M:%S")
return current_time
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
except Exception as error:
print(error)
m = gr.Interface(lambda: None, ['text'], ['image'])
models_load.update({model: m})
load_fn(models)
num_models = 12
max_images = 12
inference_timeout = 400
default_models = models[:num_models]
MAX_SEED = 2**32-1
def extend_choices(choices):
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices[:num_models])
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
def random_choices():
import random
random.seed()
return random.choices(models, k=num_models)
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
kwargs = {}
if height > 0: kwargs["height"] = height
if width > 0: kwargs["width"] = width
if steps > 0: kwargs["num_inference_steps"] = steps
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
if seed == -1:
theSeed = randomize_seed()
else:
theSeed = seed
kwargs["seed"] = theSeed
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except asyncio.TimeoutError as e:
print(e)
print(f"infer: Task timed out: {model_str}")
if not task.done(): task.cancel()
result = None
raise Exception(f"Task timed out: {model_str}") from e
except Exception as e:
print(e)
print(f"infer: exception: {model_str}")
if not task.done(): task.cancel()
result = None
raise Exception() from e
if task.done() and result is not None and not isinstance(result, tuple):
with lock:
png_path = model_str.replace("/", "_") + " - " + get_current_time() + "_" + str(theSeed) + ".png"
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, theSeed)
return image
return None
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
height, width, steps, cfg, seed, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"gen_fn: Task aborted: {model_str}")
result = None
raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
finally:
loop.close()
return result
def add_gallery(image, model_str, gallery):
if gallery is None: gallery = []
with lock:
if image is not None: gallery.insert(0, (image, model_str))
return gallery
JS="""
<script>
/*
function simulateButtonPress_() {
const button = document.getElementById('simulate-button');
if (button) {
button.click(); // Simulate the button press
console.log('Button Pressed!');
}
}
*/
function simulateButtonPress() {
console.log('Button Pressed!');
}
// Function to observe image changes
function observeImageChanges() {
// Select all images with the 'image-monitor' class
const images = document.querySelectorAll('.svelte-1pijsyv');
// Create a MutationObserver to watch for changes in the image src
const observer = new MutationObserver((mutationsList, observer) => {
mutationsList.forEach(mutation => {
if (mutation.type === 'attributes' && mutation.attributeName === 'src') {
// If the image src changes, simulate button press
console.log('Image changed!');
simulateButtonPress();
}
});
});
// Observer options: observe changes to attributes (like src)
const config = { attributes: true };
// Start observing each image
images.forEach(image => {
observer.observe(image, config);
});
}
// Start observing
window.addEventListener('load', () => {
observeImageChanges();
console.log("Yo");
});
</script>
"""
CSS="""
<style>
.image-monitor {
border:1px solid red;
}
/*
.svelte-1pijsyv{
border:1px solid green;
}
*/
.gallery-container{
max-height: 512px;
}
.butt{
background-color:#2b4764 !important
}
.butt:hover{
background-color:#3a6c9f !important;
}
</style>
"""
# with gr.Blocks(fill_width=True, head=js) as demo:
with gr.Blocks(head=CSS + JS) as demo:
with gr.Tab(str(num_models) + ' Models'):
with gr.Column(scale=2):
with gr.Group():
txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
with gr.Accordion("Advanced", open=False, visible=True):
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
seed_rand.click(randomize_seed, None, [seed], queue=False)
with gr.Row():
gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"])
random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)
with gr.Column(scale=1):
with gr.Group():
with gr.Row():
output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"],
interactive=False, width=112, height=112, show_share_button=False, format="png",
visible=True) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
with gr.Column(scale=2):
gallery = gr.Gallery(label="Output", show_download_button=True,
interactive=False, show_share_button=False, container=True, format="png",
preview=True, object_fit="cover", columns=2, rows=2)
for m, o in zip(current_models, output):
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
concurrency_limit=None, queue=False)
o.change(add_gallery, [o, m, gallery], [gallery])
with gr.Column(scale=4):
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
random_button.click(random_choices, None, model_choice)
with gr.Tab('Single model'):
with gr.Column(scale=2):
model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0])
with gr.Group():
txt_input2 = gr.Textbox(label='Your prompt:', value = preSetPrompt, lines=3, autofocus=1)
neg_input2 = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
with gr.Accordion("Advanced", open=False, visible=True):
with gr.Row():
width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand2 = gr.Button("Randomize Seed", size="sm", variant="secondary")
seed_rand2.click(randomize_seed, None, [seed2], queue=False)
num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
with gr.Row():
gen_button2 = gr.Button('Let the machine halucinate', variant='primary', scale=2, elem_classes=["butt"])
with gr.Column(scale=1):
with gr.Group():
with gr.Row():
output2 = [gr.Image(label='', show_download_button=True,
interactive=False, width=112, height=112, visible=True, format="png",
show_share_button=False, show_label=False) for _ in range(max_images)]
with gr.Column(scale=2):
gallery2 = gr.Gallery(label="Output", show_download_button=True,
interactive=False, show_share_button=True, container=True, format="png",
preview=True, object_fit="cover", columns=2, rows=2)
for i, o in enumerate(output2):
img_i = gr.Number(i, visible=False)
num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, queue=False)
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
height2, width2, steps2, cfg2, seed2], outputs=[o],
concurrency_limit=None, queue=False)
o.change(add_gallery, [o, model_choice2, gallery2], [gallery2])
demo.launch(show_api=False, max_threads=400)