WatchTower / Pinpoint /RandomForest.py
James Stevenson
initial commit
32a03a4
raw
history blame
18.4 kB
import csv
import json
import os
import pickle
from datetime import datetime
import pandas
import pandas as pd
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from Pinpoint import Logger
class random_forest():
"""
A class used for creating a random forest binary classifier.
"""
model = None
accuracy = None
precision = None
recall = None
f_measure = None
# Model variables populated on creation or reading of file
original_name = None
creation_date = None
_FRAMEWORK_VERSION = 0.2 # Used when creating a new model file
# v0.1 - versioning added.
# v0.2 - Added more LIWC scores and minkowski distance
model_version = _FRAMEWORK_VERSION # can be updated if reading and using a model file of a different version
_outputs_folder = None
_model_folder = None
# Categories of features used in the model
RADICAL_LANGUAGE_ENABLED = True # RF-IDF Scores, Word Embeddings
PSYCHOLOGICAL_SIGNALS_ENABLED = True # LIWC Dictionaries, Minkowski distance
BEHAVIOURAL_FEATURES_ENABLED = True # frequency of tweets, followers / following ratio, centrality
def __init__(self, outputs_folder="outputs", model_folder=None):
"""
Constructor
The random_forest() class can be initialised with outputs_folder() and model_folder(). The outputs folder is
where output files are stored and the model folder is where the model will be created if not overwritten.
"""
if model_folder is None:
model_folder = outputs_folder
self._outputs_folder = outputs_folder
self._model_folder = model_folder
def get_features_as_df(self, features_file, force_new_dataset=True):
"""
Reads a JSON file file and converts to a Pandas dataframe that can be used to train and test the classifier.
:param features_file: the location of the JSON features file to convert to a dataframe
:param force_new_dataset: if true a new CSV file will be created even if one already exists.
:return: a Pandas dataframe with the features.
"""
with open(features_file) as json_features_file:
csv_file = "{}.csv".format(features_file)
if force_new_dataset or not os.path.isfile(csv_file):
features = json.load(json_features_file)
# todo remove the data for the features not being used.
filtered_list_after_filters_applied = []
# If any of the filters are not true remove the features not requested
column_names = []
if self.PSYCHOLOGICAL_SIGNALS_ENABLED:
column_names = column_names + ["clout", "analytic", "tone", "authentic",
"anger", "sadness", "anxiety",
"power", "reward", "risk", "achievement", "affiliation",
"i_pronoun", "p_pronoun",
"minkowski"]
if self.BEHAVIOURAL_FEATURES_ENABLED:
column_names = column_names + ['centrality']
if self.RADICAL_LANGUAGE_ENABLED:
# Add column names
column_names = column_names + ["cap_freq", "violent_freq"]
# Add the two hundred vectors columns
for iterator in range(1, 201):
column_names.append("message_vector_{}".format(iterator))
column_names = column_names + ['is_extremist']
if not self.BEHAVIOURAL_FEATURES_ENABLED or not self.PSYCHOLOGICAL_SIGNALS_ENABLED or self.RADICAL_LANGUAGE_ENABLED:
# Loops through list of dicts (messages)
number_of_processed_messages = 0
for message in features:
number_of_processed_messages = number_of_processed_messages + 1
Logger.logger.print_message(
"Extracting information from message {} of {} in file {}".format(
number_of_processed_messages,
len(features),
features_file),
logging_level=1)
# Loops through dict keys (usernames)
for user in message.keys():
message_features = message[user]
feature_dict = {}
if self.PSYCHOLOGICAL_SIGNALS_ENABLED:
# Summary variables
feature_dict["clout"] = message_features["clout"]
feature_dict["analytic"] = message_features["analytic"]
feature_dict["tone"] = message_features["tone"]
feature_dict["authentic"] = message_features["authentic"]
# Emotional Analysis
feature_dict["anger"] = message_features["anger"]
feature_dict["sadness"] = message_features["sadness"]
feature_dict["anxiety"] = message_features["anxiety"]
# Personal Drives
feature_dict["power"] = message_features["power"]
feature_dict["reward"] = message_features["reward"]
feature_dict["risk"] = message_features["risk"]
feature_dict["achievement"] = message_features["achievement"]
feature_dict["affiliation"] = message_features["affiliation"]
# Personal Pronouns
feature_dict["i_pronoun"] = message_features["i_pronoun"]
feature_dict["p_pronoun"] = message_features["p_pronoun"]
# Minkowski distance
feature_dict["minkowski"] = message_features["minkowski"]
if self.BEHAVIOURAL_FEATURES_ENABLED:
#feature_dict['post_freq'] = message_features['post_freq']
#feature_dict['follower_freq'] = message_features['follower_freq']
feature_dict['centrality'] = message_features['centrality']
if self.RADICAL_LANGUAGE_ENABLED:
feature_dict["message_vector"] = message_features["message_vector"]
feature_dict["violent_freq"] = message_features["violent_freq"]
feature_dict["cap_freq"] = message_features["cap_freq"]
feature_dict['is_extremist'] = message_features['is_extremist']
user = {user: feature_dict}
filtered_list_after_filters_applied.append(user)
number_of_features = len(filtered_list_after_filters_applied)
# Creates the columns for the data frame
df = pd.DataFrame(
columns=column_names)
completed_features = 0
iterator = 0
error_count = 0
for message in features:
# should only be one user per entry
for user_id in message:
feature_data = message[user_id]
# ID is not included as it's hexidecimal and not float
row = []
if self.PSYCHOLOGICAL_SIGNALS_ENABLED:
clout = feature_data['clout']
analytic = feature_data['analytic']
tone = feature_data['tone']
authentic = feature_data['authentic']
anger = feature_data["anger"]
sadness = feature_data["sadness"]
anxiety = feature_data["anxiety"]
power = feature_data["power"]
reward = feature_data["reward"]
risk = feature_data["risk"]
achievement = feature_data["achievement"]
affiliation = feature_data["affiliation"]
i_pronoun = feature_data["i_pronoun"]
p_pronoun = feature_data["p_pronoun"]
minkowski = feature_data["minkowski"]
row = row + [clout, analytic, tone, authentic, anger, sadness, anxiety, power,
reward, risk, achievement, affiliation, i_pronoun, p_pronoun, minkowski]
if self.BEHAVIOURAL_FEATURES_ENABLED:
#post_freq = feature_data['post_freq']
#follower_freq = feature_data['follower_freq']
centrality = feature_data['centrality']
row = row + [#post_freq, follower_freq,
centrality]
if self.RADICAL_LANGUAGE_ENABLED:
cap_freq = feature_data['cap_freq']
violent_freq = feature_data['violent_freq']
message_vector = feature_data['message_vector']
row = row + [cap_freq, violent_freq] + message_vector
is_extremist = feature_data['is_extremist']
row = row + [is_extremist]
try:
df.loc[iterator] = row
except ValueError as e:
print(e)
error_count = error_count + 1
pass # if error with value probably column mismatch which is down to taking a mesage with no data
iterator = iterator + 1
completed_features = completed_features + 1
user_name = list(message.keys())[0]
Logger.logger.print_message(
"Added a message from user {} to data frame - {} messages of {} completed".format(user_name,
completed_features,
number_of_features),
logging_level=1)
Logger.logger.print_message("Total errors when creating data frame: {}".format(error_count),
logging_level=1)
# Replace boolean with float
df.replace({False: 0, True: 1}, inplace=True)
# Sets ID field
df.index.name = "ID"
df.to_csv("{}.csv".format(features_file))
else:
df = pandas.read_csv(csv_file)
return df
def create_model_info_output_file(self, location_of_output_file = None, training_data_csv_location = None):
"""
If the model has been loaded or trained this function will create a summary text file with information relating to
the model.
:param location_of_output_file: The location to save the output file to.
:param training_data_csv_location: The location of the training data csv. This is used to retrieve the name of the
feature columns.
"""
# Check if model has been created
if not self.creation_date:
Logger.logger.print_message("Model has not been trained, created, or loaded. Cannot output model data in this state.",logging_level=1)
else:
Logger.logger.print_message("Creating model info text file")
output_text = ""
# Add summary information
output_text += "Model {}, version {}, created at {} \n".format(self.original_name, self.model_version, self.creation_date)
output_text += "\nAccuracy: {}\nRecall: {} \nPrecision: {}\nF-Measure: {}\n".format(self.accuracy, self.recall,
self.precision, self.f_measure)
# Retrieve the header names if available
if training_data_csv_location:
with open(training_data_csv_location, "r") as csv_file:
reader = csv.reader(csv_file)
headers = next(reader)
# Loop through all feature importance scores
for iterator in range(len(self.model.feature_importances_)):
if training_data_csv_location:
# Plus one to ignore ID field
output_text += "\n{}: {}".format(headers[iterator+1], self.model.feature_importances_[iterator])
else:
output_text += "\nFeature {}: {}".format(iterator,self.model.feature_importances_[iterator])
# If no name has been set write to outputs folder
if location_of_output_file:
file_name = location_of_output_file
else:
file_name = os.path.join(self._outputs_folder,"model-output-{}.txt".format(datetime.today().strftime('%Y-%m-%d-%H%M%S')))
# Write to file
with open(file_name, "w") as output_file:
output_file.write(output_text)
def train_model(self, features_file, force_new_dataset=True, model_location=None):
"""
Trains the model of the proveded data unless the model file already exists or if the force new dataset flag is True.
:param features_file: the location of the feature file to be used to train the model
:param force_new_dataset: If True a new dataset will be created and new model created even if a model already exists.
:param model_location: the location to save the model file to
"""
# Sets model location based on default folder location and placeholder name if none was given
if model_location is None:
model_location = os.path.join(self._model_folder, "predictor.model")
# if told to force the creation of a new dataset to train off or the model location does not exist then make a new model
if force_new_dataset or not os.path.isfile(model_location):
# Import train_test_split function
feature_data = self.get_features_as_df(features_file, force_new_dataset)
# Removes index column
if "ID" in feature_data.keys():
feature_data.drop(feature_data.columns[0], axis=1, inplace=True)
feature_data.reset_index(drop=True, inplace=True)
y = feature_data[['is_extremist']] # Labels
X = feature_data.drop(axis=1, labels=['is_extremist']) # Features
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 80% training and 20% test
# Create a Gaussian Classifier
random_forest = RandomForestClassifier(n_estimators=100, max_depth=50, oob_score=True
) # class_weight={0:1,1:5} # A higher weight for the minority class (is_extreamist)
# Train the model using the training sets y_pred=random_forest.predict(X_test)
random_forest.fit(X_train, y_train.values.ravel())
y_pred = random_forest.predict(X_test)
# Model Accuracy, how often is the classifier correct?
self.accuracy = metrics.accuracy_score(y_test, y_pred)
self.recall = metrics.recall_score(y_test, y_pred)
self.precision = metrics.precision_score(y_test, y_pred)
self.f_measure = metrics.f1_score(y_test, y_pred)
Logger.logger.print_message("Accuracy: {}".format(self.accuracy), logging_level=1)
Logger.logger.print_message("Recall: {}".format(self.recall), logging_level=1)
Logger.logger.print_message("Precision: {}".format(self.precision), logging_level=1)
Logger.logger.print_message("F-Measure: {}".format(self.f_measure), logging_level=1)
self.model = random_forest
self.original_name = model_location
self.creation_date = datetime.today().strftime('%Y-%m-%d')
# write model and accuracy to file to file
model_data = {"model": self.model,
"original_name": self.original_name,
"creation_date": self.creation_date,
"accuracy": self.accuracy,
"recall": self.recall,
"precision": self.precision,
"f1": self.f_measure,
"version": self._FRAMEWORK_VERSION
}
pickle.dump(model_data, open(model_location, "wb"))
else:
# Read model and accuracy from file
saved_file = pickle.load(open(model_location, "rb"))
self.accuracy = saved_file["accuracy"]
self.recall = saved_file["recall"]
self.precision = saved_file["precision"]
self.f_measure = saved_file["f1"]
self.model = saved_file["model"]
self.model_version = saved_file["version"]
self.original_name = saved_file["original_name"]
self.creation_date = saved_file["creation_date"]
# A check to identify if the loaded model is of the same version as the tooling
if self.model_version is not self._FRAMEWORK_VERSION:
Logger.logger.print_message("Model provided is of version {}, tooling is of "
"version {}. Using the model may not work as expected."
.format(self.model_version, self._FRAMEWORK_VERSION))