James Stevenson
added lib
246df79
raw
history blame
4.24 kB
import os.path
from nltk import *
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
from Pinpoint_Internal.Logger import *
# If NLTK data doesn't exist, downloads it
try:
tagged = pos_tag(["test"])
except LookupError:
download()
# nltk.download() #todo how to get this to run once?
class sanitization():
"""
This class is used to sanitize a given corpus of data. In turn removing stop words, stemming words, removing small
words, removing no alphabet words, and setting words to lower case. To save on repeat runs a local copy of the
serialised corpus is saved that is used unless this feature is overwritten.
"""
def sanitize(self, text, output_folder, force_new_data_and_dont_persisit=False):
"""
Entry function for sanitizing text
:param text:
:param force_new_data_and_dont_persisit:
:return: sanitized text
"""
sanitize_file_name = os.path.join(output_folder, "sanitized_text.txt")
final_text = ""
# If a file exists don't sanitize given text
if os.path.isfile(sanitize_file_name) and not force_new_data_and_dont_persisit:
logger.print_message("Sanitized file exists. Using data")
with open(sanitize_file_name, 'r', encoding="utf8") as file_to_write:
final_text = file_to_write.read()
else:
total_words = len(text.split(" "))
number = 0
logger.print_message("Starting sanitization... {} words to go".format(total_words))
for word in text.split(" "):
number = number + 1
word = self.remove_non_alpha(word)
word = self.lower(word)
word = self.stemmer(word)
word = self.remove_stop_words(word)
word = self.remove_small_words(word)
if word is None:
continue
final_text = final_text + word + " "
logger.print_message("Completed {} of {} sanitized words".format(number, total_words))
final_text = final_text.replace(" ", " ")
if not force_new_data_and_dont_persisit:
with open(sanitize_file_name, 'w', encoding="utf8") as file_to_write:
file_to_write.write(final_text)
final_text = final_text.strip()
return final_text
def stemmer(self, word):
"""
Get stemms of words
:param word:
:return: the stemmed word using port stemmer
"""
porter = PorterStemmer()
# todo anouther stemmer be assessed?
# lancaster = LancasterStemmer()
# stemmed_word = lancaster.stem(word)
stemmed_word = porter.stem(word)
return stemmed_word
def lower(self, word):
"""
get the lower case representation of words
:param word:
:return: the lowercase representation of the word
"""
return word.lower()
def remove_stop_words(self, text):
"""
Remove stop words
:param text:
:return: the word without stop words
"""
text_without_stopwords = [word for word in text.split() if word not in ENGLISH_STOP_WORDS]
final_string = ""
for word in text_without_stopwords:
final_string = final_string + word + " "
return final_string
def remove_non_alpha(self, word):
"""
Removes non alphabet characters (Excluding spaces)
:param word:
:return: the word with non-alpha characters removed
"""
word = word.replace("\n", " ").replace("\t", " ").replace(" ", " ")
regex = re.compile('[^a-zA-Z ]')
return regex.sub('', word)
def remove_small_words(self, word, length_to_remove_if_not_equal=4):
"""
Removes words that are too small, defaults to words words length 3 characters or below which are removed.
:param word:
:param length_to_remove_if_not_equal:
:return: "" if word below 3 characters or the word if above
"""
new_word = ""
if len(word) >= length_to_remove_if_not_equal:
new_word = word
return new_word