Upto12forenglish's picture
Update main.py
333f97c verified
raw
history blame
3.04 kB
from fastapi import FastAPI, Request
from pydantic import BaseModel
from fastapi.responses import RedirectResponse, HTMLResponse
import urllib.parse
import requests
from gramformer import Gramformer
import torch
import spacy
import os
import concurrent.futures
app = FastAPI()
class Message(BaseModel):
message: str
# Load the spaCy English model
nlp = spacy.load("en_core_web_sm")
def set_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(1212)
gf = Gramformer(models=1, use_gpu=False) # 1=corrector, 2=detector
@app.get("/", response_class=HTMLResponse)
async def read_root():
return """Hello Grammar Bot!"""
@app.post("/checkgrammar")
async def receive_updates(request: Request):
data = await request.json()
print("Received Update:")
print(data)
user_message = data.get('message', {}).get('text', '')
message_id = data.get('message', {}).get('message_id', '')
user_id = data.get('message', {}).get('from', {}).get('id', '')
chat_id = data.get('message', {}).get('chat', {}).get('id', '')
print(f"User Message: {user_message}")
print(f"Original Message ID: {message_id}")
print(f"User ID: {user_id}")
print(f"Chat ID: {chat_id}")
influent_paragraph = user_message
corrected_paragraph = influent_paragraph # Initialize with the input text
mistakes_count = 0
mistakes = []
while True:
if mistakes_count == 5:
break
mistakes_count += 1
influent_sentences = list(nlp(corrected_paragraph).sents)
influent_sentences = [sentence.text for sentence in influent_sentences]
print("[Influent sentences]", influent_sentences)
corrected_paragraph = list(gf.correct(corrected_paragraph, max_candidates=1))[0]
print("[Corrected paragraph]", corrected_paragraph)
new_mistakes = []
for influent_sentence in influent_sentences:
corrected_sentences = gf.correct(influent_sentence, max_candidates=1)
print("[Input]", influent_sentence)
for corrected_sentence in corrected_sentences:
print("[Correction]", corrected_sentence)
new_mistakes += gf.get_edits(influent_sentence, corrected_sentence)
print("[Edits]", new_mistakes)
# If no new mistakes are found, exit the loop
if not new_mistakes:
break
# Add the new mistakes to the list
mistakes += new_mistakes
full_output = "Corrected Paragraph:\n" + corrected_paragraph + "\n\nMistakes:\n"
for index, (tag, mistake, start, end, correction, corr_start, corr_end) in enumerate(mistakes, start=1):
full_output += f"{index}. Tag: {tag}\n"
full_output += f" Mistake: {mistake} (Position: {start}-{end})\n"
full_output += f" Correction: {correction} (Position: {corr_start}-{corr_end})\n"
full_output += "\n"
print(full_output)
return {"message": "Message received successfully"}