|
from contextlib import nullcontext
|
|
from functools import partial
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
import kornia
|
|
import numpy as np
|
|
import open_clip
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import rearrange, repeat
|
|
from omegaconf import ListConfig
|
|
from torch.utils.checkpoint import checkpoint
|
|
from transformers import (
|
|
ByT5Tokenizer,
|
|
CLIPTextModel,
|
|
CLIPTokenizer,
|
|
T5EncoderModel,
|
|
T5Tokenizer,
|
|
)
|
|
|
|
from ...modules.autoencoding.regularizers import DiagonalGaussianRegularizer
|
|
from ...modules.diffusionmodules.model import Encoder
|
|
from ...modules.diffusionmodules.openaimodel import Timestep
|
|
from ...modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
|
|
from ...modules.distributions.distributions import DiagonalGaussianDistribution
|
|
from ...util import (
|
|
autocast,
|
|
count_params,
|
|
default,
|
|
disabled_train,
|
|
expand_dims_like,
|
|
instantiate_from_config,
|
|
)
|
|
|
|
from CKPT_PTH import SDXL_CLIP1_PATH, SDXL_CLIP2_CKPT_PTH
|
|
|
|
class AbstractEmbModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self._is_trainable = None
|
|
self._ucg_rate = None
|
|
self._input_key = None
|
|
|
|
@property
|
|
def is_trainable(self) -> bool:
|
|
return self._is_trainable
|
|
|
|
@property
|
|
def ucg_rate(self) -> Union[float, torch.Tensor]:
|
|
return self._ucg_rate
|
|
|
|
@property
|
|
def input_key(self) -> str:
|
|
return self._input_key
|
|
|
|
@is_trainable.setter
|
|
def is_trainable(self, value: bool):
|
|
self._is_trainable = value
|
|
|
|
@ucg_rate.setter
|
|
def ucg_rate(self, value: Union[float, torch.Tensor]):
|
|
self._ucg_rate = value
|
|
|
|
@input_key.setter
|
|
def input_key(self, value: str):
|
|
self._input_key = value
|
|
|
|
@is_trainable.deleter
|
|
def is_trainable(self):
|
|
del self._is_trainable
|
|
|
|
@ucg_rate.deleter
|
|
def ucg_rate(self):
|
|
del self._ucg_rate
|
|
|
|
@input_key.deleter
|
|
def input_key(self):
|
|
del self._input_key
|
|
|
|
|
|
class GeneralConditioner(nn.Module):
|
|
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
|
|
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1, 'control_vector': 1}
|
|
|
|
def __init__(self, emb_models: Union[List, ListConfig]):
|
|
super().__init__()
|
|
embedders = []
|
|
for n, embconfig in enumerate(emb_models):
|
|
embedder = instantiate_from_config(embconfig)
|
|
assert isinstance(
|
|
embedder, AbstractEmbModel
|
|
), f"embedder model {embedder.__class__.__name__} has to inherit from AbstractEmbModel"
|
|
embedder.is_trainable = embconfig.get("is_trainable", False)
|
|
embedder.ucg_rate = embconfig.get("ucg_rate", 0.0)
|
|
if not embedder.is_trainable:
|
|
embedder.train = disabled_train
|
|
for param in embedder.parameters():
|
|
param.requires_grad = False
|
|
embedder.eval()
|
|
print(
|
|
f"Initialized embedder #{n}: {embedder.__class__.__name__} "
|
|
f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}"
|
|
)
|
|
|
|
if "input_key" in embconfig:
|
|
embedder.input_key = embconfig["input_key"]
|
|
elif "input_keys" in embconfig:
|
|
embedder.input_keys = embconfig["input_keys"]
|
|
else:
|
|
raise KeyError(
|
|
f"need either 'input_key' or 'input_keys' for embedder {embedder.__class__.__name__}"
|
|
)
|
|
|
|
embedder.legacy_ucg_val = embconfig.get("legacy_ucg_value", None)
|
|
if embedder.legacy_ucg_val is not None:
|
|
embedder.ucg_prng = np.random.RandomState()
|
|
|
|
embedders.append(embedder)
|
|
self.embedders = nn.ModuleList(embedders)
|
|
|
|
def possibly_get_ucg_val(self, embedder: AbstractEmbModel, batch: Dict) -> Dict:
|
|
assert embedder.legacy_ucg_val is not None
|
|
p = embedder.ucg_rate
|
|
val = embedder.legacy_ucg_val
|
|
for i in range(len(batch[embedder.input_key])):
|
|
if embedder.ucg_prng.choice(2, p=[1 - p, p]):
|
|
batch[embedder.input_key][i] = val
|
|
return batch
|
|
|
|
def forward(
|
|
self, batch: Dict, force_zero_embeddings: Optional[List] = None
|
|
) -> Dict:
|
|
output = dict()
|
|
if force_zero_embeddings is None:
|
|
force_zero_embeddings = []
|
|
for embedder in self.embedders:
|
|
embedding_context = nullcontext if embedder.is_trainable else torch.no_grad
|
|
with embedding_context():
|
|
if hasattr(embedder, "input_key") and (embedder.input_key is not None):
|
|
if embedder.legacy_ucg_val is not None:
|
|
batch = self.possibly_get_ucg_val(embedder, batch)
|
|
emb_out = embedder(batch[embedder.input_key])
|
|
elif hasattr(embedder, "input_keys"):
|
|
emb_out = embedder(*[batch[k] for k in embedder.input_keys])
|
|
assert isinstance(
|
|
emb_out, (torch.Tensor, list, tuple)
|
|
), f"encoder outputs must be tensors or a sequence, but got {type(emb_out)}"
|
|
if not isinstance(emb_out, (list, tuple)):
|
|
emb_out = [emb_out]
|
|
for emb in emb_out:
|
|
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
|
|
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
|
|
emb = (
|
|
expand_dims_like(
|
|
torch.bernoulli(
|
|
(1.0 - embedder.ucg_rate)
|
|
* torch.ones(emb.shape[0], device=emb.device)
|
|
),
|
|
emb,
|
|
)
|
|
* emb
|
|
)
|
|
if (
|
|
hasattr(embedder, "input_key")
|
|
and embedder.input_key in force_zero_embeddings
|
|
):
|
|
emb = torch.zeros_like(emb)
|
|
if out_key in output:
|
|
output[out_key] = torch.cat(
|
|
(output[out_key], emb), self.KEY2CATDIM[out_key]
|
|
)
|
|
else:
|
|
output[out_key] = emb
|
|
return output
|
|
|
|
def get_unconditional_conditioning(
|
|
self, batch_c, batch_uc=None, force_uc_zero_embeddings=None
|
|
):
|
|
if force_uc_zero_embeddings is None:
|
|
force_uc_zero_embeddings = []
|
|
ucg_rates = list()
|
|
for embedder in self.embedders:
|
|
ucg_rates.append(embedder.ucg_rate)
|
|
embedder.ucg_rate = 0.0
|
|
c = self(batch_c)
|
|
uc = self(batch_c if batch_uc is None else batch_uc, force_uc_zero_embeddings)
|
|
|
|
for embedder, rate in zip(self.embedders, ucg_rates):
|
|
embedder.ucg_rate = rate
|
|
return c, uc
|
|
|
|
|
|
class GeneralConditionerWithControl(GeneralConditioner):
|
|
def forward(
|
|
self, batch: Dict, force_zero_embeddings: Optional[List] = None
|
|
) -> Dict:
|
|
output = dict()
|
|
if force_zero_embeddings is None:
|
|
force_zero_embeddings = []
|
|
for embedder in self.embedders:
|
|
embedding_context = nullcontext if embedder.is_trainable else torch.no_grad
|
|
with embedding_context():
|
|
if hasattr(embedder, "input_key") and (embedder.input_key is not None):
|
|
if embedder.legacy_ucg_val is not None:
|
|
batch = self.possibly_get_ucg_val(embedder, batch)
|
|
emb_out = embedder(batch[embedder.input_key])
|
|
elif hasattr(embedder, "input_keys"):
|
|
emb_out = embedder(*[batch[k] for k in embedder.input_keys])
|
|
assert isinstance(
|
|
emb_out, (torch.Tensor, list, tuple)
|
|
), f"encoder outputs must be tensors or a sequence, but got {type(emb_out)}"
|
|
if not isinstance(emb_out, (list, tuple)):
|
|
emb_out = [emb_out]
|
|
for emb in emb_out:
|
|
if 'control_vector' in embedder.input_key:
|
|
out_key = 'control_vector'
|
|
else:
|
|
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
|
|
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
|
|
emb = (
|
|
expand_dims_like(
|
|
torch.bernoulli(
|
|
(1.0 - embedder.ucg_rate)
|
|
* torch.ones(emb.shape[0], device=emb.device)
|
|
),
|
|
emb,
|
|
)
|
|
* emb
|
|
)
|
|
if (
|
|
hasattr(embedder, "input_key")
|
|
and embedder.input_key in force_zero_embeddings
|
|
):
|
|
emb = torch.zeros_like(emb)
|
|
if out_key in output:
|
|
output[out_key] = torch.cat(
|
|
(output[out_key], emb), self.KEY2CATDIM[out_key]
|
|
)
|
|
else:
|
|
output[out_key] = emb
|
|
|
|
output["control"] = batch["control"]
|
|
return output
|
|
|
|
|
|
class PreparedConditioner(nn.Module):
|
|
def __init__(self, cond_pth, un_cond_pth=None):
|
|
super().__init__()
|
|
conditions = torch.load(cond_pth)
|
|
for k, v in conditions.items():
|
|
self.register_buffer(k, v)
|
|
self.un_cond_pth = un_cond_pth
|
|
if un_cond_pth is not None:
|
|
un_conditions = torch.load(un_cond_pth)
|
|
for k, v in un_conditions.items():
|
|
self.register_buffer(k+'_uc', v)
|
|
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self, batch: Dict, return_uc=False
|
|
) -> Dict:
|
|
output = dict()
|
|
for k, v in self.state_dict().items():
|
|
if not return_uc:
|
|
if k.endswith("_uc"):
|
|
continue
|
|
else:
|
|
output[k] = v.detach().clone().repeat(batch['control'].shape[0], *[1 for _ in range(v.ndim - 1)])
|
|
else:
|
|
if k.endswith("_uc"):
|
|
output[k[:-3]] = v.detach().clone().repeat(batch['control'].shape[0], *[1 for _ in range(v.ndim - 1)])
|
|
else:
|
|
continue
|
|
output["control"] = batch["control"]
|
|
|
|
for k, v in output.items():
|
|
if isinstance(v, torch.Tensor):
|
|
assert (torch.isnan(v).any()) is not None
|
|
return output
|
|
|
|
def get_unconditional_conditioning(
|
|
self, batch_c, batch_uc=None, force_uc_zero_embeddings=None
|
|
):
|
|
c = self(batch_c)
|
|
if self.un_cond_pth is not None:
|
|
uc = self(batch_c, return_uc=True)
|
|
else:
|
|
uc = None
|
|
return c, uc
|
|
|
|
|
|
|
|
class InceptionV3(nn.Module):
|
|
"""Wrapper around the https://github.com/mseitzer/pytorch-fid inception
|
|
port with an additional squeeze at the end"""
|
|
|
|
def __init__(self, normalize_input=False, **kwargs):
|
|
super().__init__()
|
|
from pytorch_fid import inception
|
|
|
|
kwargs["resize_input"] = True
|
|
self.model = inception.InceptionV3(normalize_input=normalize_input, **kwargs)
|
|
|
|
def forward(self, inp):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
outp = self.model(inp)
|
|
|
|
if len(outp) == 1:
|
|
return outp[0].squeeze()
|
|
|
|
return outp
|
|
|
|
|
|
class IdentityEncoder(AbstractEmbModel):
|
|
def encode(self, x):
|
|
return x
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
|
|
class ClassEmbedder(AbstractEmbModel):
|
|
def __init__(self, embed_dim, n_classes=1000, add_sequence_dim=False):
|
|
super().__init__()
|
|
self.embedding = nn.Embedding(n_classes, embed_dim)
|
|
self.n_classes = n_classes
|
|
self.add_sequence_dim = add_sequence_dim
|
|
|
|
def forward(self, c):
|
|
c = self.embedding(c)
|
|
if self.add_sequence_dim:
|
|
c = c[:, None, :]
|
|
return c
|
|
|
|
def get_unconditional_conditioning(self, bs, device="cuda"):
|
|
uc_class = (
|
|
self.n_classes - 1
|
|
)
|
|
uc = torch.ones((bs,), device=device) * uc_class
|
|
uc = {self.key: uc.long()}
|
|
return uc
|
|
|
|
|
|
class ClassEmbedderForMultiCond(ClassEmbedder):
|
|
def forward(self, batch, key=None, disable_dropout=False):
|
|
out = batch
|
|
key = default(key, self.key)
|
|
islist = isinstance(batch[key], list)
|
|
if islist:
|
|
batch[key] = batch[key][0]
|
|
c_out = super().forward(batch, key, disable_dropout)
|
|
out[key] = [c_out] if islist else c_out
|
|
return out
|
|
|
|
|
|
class FrozenT5Embedder(AbstractEmbModel):
|
|
"""Uses the T5 transformer encoder for text"""
|
|
|
|
def __init__(
|
|
self, version="google/t5-v1_1-xxl", device="cuda", max_length=77, freeze=True
|
|
):
|
|
super().__init__()
|
|
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
|
self.transformer = T5EncoderModel.from_pretrained(version)
|
|
self.device = device
|
|
self.max_length = max_length
|
|
if freeze:
|
|
self.freeze()
|
|
|
|
def freeze(self):
|
|
self.transformer = self.transformer.eval()
|
|
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
|
|
def forward(self, text):
|
|
batch_encoding = self.tokenizer(
|
|
text,
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding="max_length",
|
|
return_tensors="pt",
|
|
)
|
|
tokens = batch_encoding["input_ids"].to(self.device)
|
|
with torch.autocast("cuda", enabled=False):
|
|
outputs = self.transformer(input_ids=tokens)
|
|
z = outputs.last_hidden_state
|
|
return z
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
|
|
class FrozenByT5Embedder(AbstractEmbModel):
|
|
"""
|
|
Uses the ByT5 transformer encoder for text. Is character-aware.
|
|
"""
|
|
|
|
def __init__(
|
|
self, version="google/byt5-base", device="cuda", max_length=77, freeze=True
|
|
):
|
|
super().__init__()
|
|
self.tokenizer = ByT5Tokenizer.from_pretrained(version)
|
|
self.transformer = T5EncoderModel.from_pretrained(version)
|
|
self.device = device
|
|
self.max_length = max_length
|
|
if freeze:
|
|
self.freeze()
|
|
|
|
def freeze(self):
|
|
self.transformer = self.transformer.eval()
|
|
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
def forward(self, text):
|
|
batch_encoding = self.tokenizer(
|
|
text,
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding="max_length",
|
|
return_tensors="pt",
|
|
)
|
|
tokens = batch_encoding["input_ids"].to(self.device)
|
|
with torch.autocast("cuda", enabled=False):
|
|
outputs = self.transformer(input_ids=tokens)
|
|
z = outputs.last_hidden_state
|
|
return z
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
|
|
class FrozenCLIPEmbedder(AbstractEmbModel):
|
|
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
|
|
|
LAYERS = ["last", "pooled", "hidden"]
|
|
|
|
def __init__(
|
|
self,
|
|
version="openai/clip-vit-large-patch14",
|
|
device="cuda",
|
|
max_length=77,
|
|
freeze=True,
|
|
layer="last",
|
|
layer_idx=None,
|
|
always_return_pooled=False,
|
|
):
|
|
super().__init__()
|
|
assert layer in self.LAYERS
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(version if SDXL_CLIP1_PATH is None else SDXL_CLIP1_PATH)
|
|
self.transformer = CLIPTextModel.from_pretrained(version if SDXL_CLIP1_PATH is None else SDXL_CLIP1_PATH)
|
|
self.device = device
|
|
self.max_length = max_length
|
|
if freeze:
|
|
self.freeze()
|
|
self.layer = layer
|
|
self.layer_idx = layer_idx
|
|
self.return_pooled = always_return_pooled
|
|
if layer == "hidden":
|
|
assert layer_idx is not None
|
|
assert 0 <= abs(layer_idx) <= 12
|
|
|
|
def freeze(self):
|
|
self.transformer = self.transformer.eval()
|
|
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
@autocast
|
|
def forward(self, text):
|
|
batch_encoding = self.tokenizer(
|
|
text,
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding="max_length",
|
|
return_tensors="pt",
|
|
)
|
|
tokens = batch_encoding["input_ids"].to(self.device)
|
|
outputs = self.transformer(
|
|
input_ids=tokens, output_hidden_states=self.layer == "hidden"
|
|
)
|
|
if self.layer == "last":
|
|
z = outputs.last_hidden_state
|
|
elif self.layer == "pooled":
|
|
z = outputs.pooler_output[:, None, :]
|
|
else:
|
|
z = outputs.hidden_states[self.layer_idx]
|
|
if self.return_pooled:
|
|
return z, outputs.pooler_output
|
|
return z
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
|
|
class FrozenOpenCLIPEmbedder2(AbstractEmbModel):
|
|
"""
|
|
Uses the OpenCLIP transformer encoder for text
|
|
"""
|
|
|
|
LAYERS = ["pooled", "last", "penultimate"]
|
|
|
|
def __init__(
|
|
self,
|
|
arch="ViT-H-14",
|
|
version="laion2b_s32b_b79k",
|
|
device="cuda",
|
|
max_length=77,
|
|
freeze=True,
|
|
layer="last",
|
|
always_return_pooled=False,
|
|
legacy=True,
|
|
):
|
|
super().__init__()
|
|
assert layer in self.LAYERS
|
|
model, _, _ = open_clip.create_model_and_transforms(
|
|
arch,
|
|
device=torch.device("cpu"),
|
|
pretrained=version if SDXL_CLIP2_CKPT_PTH is None else SDXL_CLIP2_CKPT_PTH,
|
|
)
|
|
del model.visual
|
|
self.model = model
|
|
|
|
self.device = device
|
|
self.max_length = max_length
|
|
self.return_pooled = always_return_pooled
|
|
if freeze:
|
|
self.freeze()
|
|
self.layer = layer
|
|
if self.layer == "last":
|
|
self.layer_idx = 0
|
|
elif self.layer == "penultimate":
|
|
self.layer_idx = 1
|
|
else:
|
|
raise NotImplementedError()
|
|
self.legacy = legacy
|
|
|
|
def freeze(self):
|
|
self.model = self.model.eval()
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
@autocast
|
|
def forward(self, text):
|
|
tokens = open_clip.tokenize(text)
|
|
z = self.encode_with_transformer(tokens.to(self.device))
|
|
if not self.return_pooled and self.legacy:
|
|
return z
|
|
if self.return_pooled:
|
|
assert not self.legacy
|
|
return z[self.layer], z["pooled"]
|
|
return z[self.layer]
|
|
|
|
def encode_with_transformer(self, text):
|
|
x = self.model.token_embedding(text)
|
|
x = x + self.model.positional_embedding
|
|
x = x.permute(1, 0, 2)
|
|
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
|
if self.legacy:
|
|
x = x[self.layer]
|
|
x = self.model.ln_final(x)
|
|
return x
|
|
else:
|
|
|
|
o = x["last"]
|
|
o = self.model.ln_final(o)
|
|
pooled = self.pool(o, text)
|
|
x["pooled"] = pooled
|
|
return x
|
|
|
|
def pool(self, x, text):
|
|
|
|
x = (
|
|
x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
|
|
@ self.model.text_projection
|
|
)
|
|
return x
|
|
|
|
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
|
|
outputs = {}
|
|
for i, r in enumerate(self.model.transformer.resblocks):
|
|
if i == len(self.model.transformer.resblocks) - 1:
|
|
outputs["penultimate"] = x.permute(1, 0, 2)
|
|
if (
|
|
self.model.transformer.grad_checkpointing
|
|
and not torch.jit.is_scripting()
|
|
):
|
|
x = checkpoint(r, x, attn_mask)
|
|
else:
|
|
x = r(x, attn_mask=attn_mask)
|
|
outputs["last"] = x.permute(1, 0, 2)
|
|
return outputs
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
|
|
class FrozenOpenCLIPEmbedder(AbstractEmbModel):
|
|
LAYERS = [
|
|
|
|
"last",
|
|
"penultimate",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
arch="ViT-H-14",
|
|
version="laion2b_s32b_b79k",
|
|
device="cuda",
|
|
max_length=77,
|
|
freeze=True,
|
|
layer="last",
|
|
):
|
|
super().__init__()
|
|
assert layer in self.LAYERS
|
|
model, _, _ = open_clip.create_model_and_transforms(
|
|
arch, device=torch.device("cpu"), pretrained=version
|
|
)
|
|
del model.visual
|
|
self.model = model
|
|
|
|
self.device = device
|
|
self.max_length = max_length
|
|
if freeze:
|
|
self.freeze()
|
|
self.layer = layer
|
|
if self.layer == "last":
|
|
self.layer_idx = 0
|
|
elif self.layer == "penultimate":
|
|
self.layer_idx = 1
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def freeze(self):
|
|
self.model = self.model.eval()
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
def forward(self, text):
|
|
tokens = open_clip.tokenize(text)
|
|
z = self.encode_with_transformer(tokens.to(self.device))
|
|
return z
|
|
|
|
def encode_with_transformer(self, text):
|
|
x = self.model.token_embedding(text)
|
|
x = x + self.model.positional_embedding
|
|
x = x.permute(1, 0, 2)
|
|
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
|
x = x.permute(1, 0, 2)
|
|
x = self.model.ln_final(x)
|
|
return x
|
|
|
|
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
|
|
for i, r in enumerate(self.model.transformer.resblocks):
|
|
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
|
break
|
|
if (
|
|
self.model.transformer.grad_checkpointing
|
|
and not torch.jit.is_scripting()
|
|
):
|
|
x = checkpoint(r, x, attn_mask)
|
|
else:
|
|
x = r(x, attn_mask=attn_mask)
|
|
return x
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
|
|
class FrozenOpenCLIPImageEmbedder(AbstractEmbModel):
|
|
"""
|
|
Uses the OpenCLIP vision transformer encoder for images
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
arch="ViT-H-14",
|
|
version="laion2b_s32b_b79k",
|
|
device="cuda",
|
|
max_length=77,
|
|
freeze=True,
|
|
antialias=True,
|
|
ucg_rate=0.0,
|
|
unsqueeze_dim=False,
|
|
repeat_to_max_len=False,
|
|
num_image_crops=0,
|
|
output_tokens=False,
|
|
):
|
|
super().__init__()
|
|
model, _, _ = open_clip.create_model_and_transforms(
|
|
arch,
|
|
device=torch.device("cpu"),
|
|
pretrained=version,
|
|
)
|
|
del model.transformer
|
|
self.model = model
|
|
self.max_crops = num_image_crops
|
|
self.pad_to_max_len = self.max_crops > 0
|
|
self.repeat_to_max_len = repeat_to_max_len and (not self.pad_to_max_len)
|
|
self.device = device
|
|
self.max_length = max_length
|
|
if freeze:
|
|
self.freeze()
|
|
|
|
self.antialias = antialias
|
|
|
|
self.register_buffer(
|
|
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False
|
|
)
|
|
self.register_buffer(
|
|
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False
|
|
)
|
|
self.ucg_rate = ucg_rate
|
|
self.unsqueeze_dim = unsqueeze_dim
|
|
self.stored_batch = None
|
|
self.model.visual.output_tokens = output_tokens
|
|
self.output_tokens = output_tokens
|
|
|
|
def preprocess(self, x):
|
|
|
|
x = kornia.geometry.resize(
|
|
x,
|
|
(224, 224),
|
|
interpolation="bicubic",
|
|
align_corners=True,
|
|
antialias=self.antialias,
|
|
)
|
|
x = (x + 1.0) / 2.0
|
|
|
|
x = kornia.enhance.normalize(x, self.mean, self.std)
|
|
return x
|
|
|
|
def freeze(self):
|
|
self.model = self.model.eval()
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
@autocast
|
|
def forward(self, image, no_dropout=False):
|
|
z = self.encode_with_vision_transformer(image)
|
|
tokens = None
|
|
if self.output_tokens:
|
|
z, tokens = z[0], z[1]
|
|
z = z.to(image.dtype)
|
|
if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0):
|
|
z = (
|
|
torch.bernoulli(
|
|
(1.0 - self.ucg_rate) * torch.ones(z.shape[0], device=z.device)
|
|
)[:, None]
|
|
* z
|
|
)
|
|
if tokens is not None:
|
|
tokens = (
|
|
expand_dims_like(
|
|
torch.bernoulli(
|
|
(1.0 - self.ucg_rate)
|
|
* torch.ones(tokens.shape[0], device=tokens.device)
|
|
),
|
|
tokens,
|
|
)
|
|
* tokens
|
|
)
|
|
if self.unsqueeze_dim:
|
|
z = z[:, None, :]
|
|
if self.output_tokens:
|
|
assert not self.repeat_to_max_len
|
|
assert not self.pad_to_max_len
|
|
return tokens, z
|
|
if self.repeat_to_max_len:
|
|
if z.dim() == 2:
|
|
z_ = z[:, None, :]
|
|
else:
|
|
z_ = z
|
|
return repeat(z_, "b 1 d -> b n d", n=self.max_length), z
|
|
elif self.pad_to_max_len:
|
|
assert z.dim() == 3
|
|
z_pad = torch.cat(
|
|
(
|
|
z,
|
|
torch.zeros(
|
|
z.shape[0],
|
|
self.max_length - z.shape[1],
|
|
z.shape[2],
|
|
device=z.device,
|
|
),
|
|
),
|
|
1,
|
|
)
|
|
return z_pad, z_pad[:, 0, ...]
|
|
return z
|
|
|
|
def encode_with_vision_transformer(self, img):
|
|
|
|
|
|
if img.dim() == 5:
|
|
assert self.max_crops == img.shape[1]
|
|
img = rearrange(img, "b n c h w -> (b n) c h w")
|
|
img = self.preprocess(img)
|
|
if not self.output_tokens:
|
|
assert not self.model.visual.output_tokens
|
|
x = self.model.visual(img)
|
|
tokens = None
|
|
else:
|
|
assert self.model.visual.output_tokens
|
|
x, tokens = self.model.visual(img)
|
|
if self.max_crops > 0:
|
|
x = rearrange(x, "(b n) d -> b n d", n=self.max_crops)
|
|
|
|
x = (
|
|
torch.bernoulli(
|
|
(1.0 - self.ucg_rate)
|
|
* torch.ones(x.shape[0], x.shape[1], 1, device=x.device)
|
|
)
|
|
* x
|
|
)
|
|
if tokens is not None:
|
|
tokens = rearrange(tokens, "(b n) t d -> b t (n d)", n=self.max_crops)
|
|
print(
|
|
f"You are running very experimental token-concat in {self.__class__.__name__}. "
|
|
f"Check what you are doing, and then remove this message."
|
|
)
|
|
if self.output_tokens:
|
|
return x, tokens
|
|
return x
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
|
|
class FrozenCLIPT5Encoder(AbstractEmbModel):
|
|
def __init__(
|
|
self,
|
|
clip_version="openai/clip-vit-large-patch14",
|
|
t5_version="google/t5-v1_1-xl",
|
|
device="cuda",
|
|
clip_max_length=77,
|
|
t5_max_length=77,
|
|
):
|
|
super().__init__()
|
|
self.clip_encoder = FrozenCLIPEmbedder(
|
|
clip_version, device, max_length=clip_max_length
|
|
)
|
|
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
|
|
print(
|
|
f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
|
|
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params."
|
|
)
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
def forward(self, text):
|
|
clip_z = self.clip_encoder.encode(text)
|
|
t5_z = self.t5_encoder.encode(text)
|
|
return [clip_z, t5_z]
|
|
|
|
|
|
class SpatialRescaler(nn.Module):
|
|
def __init__(
|
|
self,
|
|
n_stages=1,
|
|
method="bilinear",
|
|
multiplier=0.5,
|
|
in_channels=3,
|
|
out_channels=None,
|
|
bias=False,
|
|
wrap_video=False,
|
|
kernel_size=1,
|
|
remap_output=False,
|
|
):
|
|
super().__init__()
|
|
self.n_stages = n_stages
|
|
assert self.n_stages >= 0
|
|
assert method in [
|
|
"nearest",
|
|
"linear",
|
|
"bilinear",
|
|
"trilinear",
|
|
"bicubic",
|
|
"area",
|
|
]
|
|
self.multiplier = multiplier
|
|
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
|
self.remap_output = out_channels is not None or remap_output
|
|
if self.remap_output:
|
|
print(
|
|
f"Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing."
|
|
)
|
|
self.channel_mapper = nn.Conv2d(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=kernel_size,
|
|
bias=bias,
|
|
padding=kernel_size // 2,
|
|
)
|
|
self.wrap_video = wrap_video
|
|
|
|
def forward(self, x):
|
|
if self.wrap_video and x.ndim == 5:
|
|
B, C, T, H, W = x.shape
|
|
x = rearrange(x, "b c t h w -> b t c h w")
|
|
x = rearrange(x, "b t c h w -> (b t) c h w")
|
|
|
|
for stage in range(self.n_stages):
|
|
x = self.interpolator(x, scale_factor=self.multiplier)
|
|
|
|
if self.wrap_video:
|
|
x = rearrange(x, "(b t) c h w -> b t c h w", b=B, t=T, c=C)
|
|
x = rearrange(x, "b t c h w -> b c t h w")
|
|
if self.remap_output:
|
|
x = self.channel_mapper(x)
|
|
return x
|
|
|
|
def encode(self, x):
|
|
return self(x)
|
|
|
|
|
|
class LowScaleEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
model_config,
|
|
linear_start,
|
|
linear_end,
|
|
timesteps=1000,
|
|
max_noise_level=250,
|
|
output_size=64,
|
|
scale_factor=1.0,
|
|
):
|
|
super().__init__()
|
|
self.max_noise_level = max_noise_level
|
|
self.model = instantiate_from_config(model_config)
|
|
self.augmentation_schedule = self.register_schedule(
|
|
timesteps=timesteps, linear_start=linear_start, linear_end=linear_end
|
|
)
|
|
self.out_size = output_size
|
|
self.scale_factor = scale_factor
|
|
|
|
def register_schedule(
|
|
self,
|
|
beta_schedule="linear",
|
|
timesteps=1000,
|
|
linear_start=1e-4,
|
|
linear_end=2e-2,
|
|
cosine_s=8e-3,
|
|
):
|
|
betas = make_beta_schedule(
|
|
beta_schedule,
|
|
timesteps,
|
|
linear_start=linear_start,
|
|
linear_end=linear_end,
|
|
cosine_s=cosine_s,
|
|
)
|
|
alphas = 1.0 - betas
|
|
alphas_cumprod = np.cumprod(alphas, axis=0)
|
|
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
|
|
|
|
(timesteps,) = betas.shape
|
|
self.num_timesteps = int(timesteps)
|
|
self.linear_start = linear_start
|
|
self.linear_end = linear_end
|
|
assert (
|
|
alphas_cumprod.shape[0] == self.num_timesteps
|
|
), "alphas have to be defined for each timestep"
|
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32)
|
|
|
|
self.register_buffer("betas", to_torch(betas))
|
|
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
|
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
|
|
|
|
|
|
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
|
|
self.register_buffer(
|
|
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
|
|
)
|
|
self.register_buffer(
|
|
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
|
|
)
|
|
self.register_buffer(
|
|
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
|
|
)
|
|
self.register_buffer(
|
|
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
|
|
)
|
|
|
|
def q_sample(self, x_start, t, noise=None):
|
|
noise = default(noise, lambda: torch.randn_like(x_start))
|
|
return (
|
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
|
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
|
* noise
|
|
)
|
|
|
|
def forward(self, x):
|
|
z = self.model.encode(x)
|
|
if isinstance(z, DiagonalGaussianDistribution):
|
|
z = z.sample()
|
|
z = z * self.scale_factor
|
|
noise_level = torch.randint(
|
|
0, self.max_noise_level, (x.shape[0],), device=x.device
|
|
).long()
|
|
z = self.q_sample(z, noise_level)
|
|
if self.out_size is not None:
|
|
z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest")
|
|
|
|
return z, noise_level
|
|
|
|
def decode(self, z):
|
|
z = z / self.scale_factor
|
|
return self.model.decode(z)
|
|
|
|
|
|
class ConcatTimestepEmbedderND(AbstractEmbModel):
|
|
"""embeds each dimension independently and concatenates them"""
|
|
|
|
def __init__(self, outdim):
|
|
super().__init__()
|
|
self.timestep = Timestep(outdim)
|
|
self.outdim = outdim
|
|
|
|
def forward(self, x):
|
|
if x.ndim == 1:
|
|
x = x[:, None]
|
|
assert len(x.shape) == 2
|
|
b, dims = x.shape[0], x.shape[1]
|
|
x = rearrange(x, "b d -> (b d)")
|
|
emb = self.timestep(x)
|
|
emb = rearrange(emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
|
|
return emb
|
|
|
|
|
|
class GaussianEncoder(Encoder, AbstractEmbModel):
|
|
def __init__(
|
|
self, weight: float = 1.0, flatten_output: bool = True, *args, **kwargs
|
|
):
|
|
super().__init__(*args, **kwargs)
|
|
self.posterior = DiagonalGaussianRegularizer()
|
|
self.weight = weight
|
|
self.flatten_output = flatten_output
|
|
|
|
def forward(self, x) -> Tuple[Dict, torch.Tensor]:
|
|
z = super().forward(x)
|
|
z, log = self.posterior(z)
|
|
log["loss"] = log["kl_loss"]
|
|
log["weight"] = self.weight
|
|
if self.flatten_output:
|
|
z = rearrange(z, "b c h w -> b (h w ) c")
|
|
return log, z
|
|
|