Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,69 +2,70 @@ import gradio as gr
|
|
| 2 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
| 5 |
-
import os
|
| 6 |
|
| 7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def load_model():
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
# Load model once at startup
|
| 18 |
processor, model = load_model()
|
| 19 |
|
| 20 |
def extract_text_from_image(image):
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
try:
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
image = image.convert('RGB')
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
|
|
|
| 31 |
|
|
|
|
| 32 |
with torch.no_grad():
|
| 33 |
-
|
| 34 |
**inputs,
|
| 35 |
-
max_new_tokens=
|
| 36 |
do_sample=False,
|
|
|
|
| 37 |
)
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
generated_ids,
|
| 42 |
-
skip_special_tokens=True
|
| 43 |
-
)[0]
|
| 44 |
-
|
| 45 |
-
return generated_text
|
| 46 |
|
| 47 |
except Exception as e:
|
| 48 |
-
return f"Error
|
| 49 |
|
| 50 |
-
# Create Gradio interface
|
| 51 |
demo = gr.Interface(
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
title="OLM OCR
|
| 56 |
-
description="Extract text from images using allenai/olmOCR-2-7B-1025-FP8 model",
|
| 57 |
-
examples=[
|
| 58 |
-
["example1.jpg"], # You can add example images
|
| 59 |
-
["example2.jpg"],
|
| 60 |
-
],
|
| 61 |
-
allow_flagging="never"
|
| 62 |
)
|
| 63 |
|
| 64 |
-
# For Hugging Face Spaces
|
| 65 |
if __name__ == "__main__":
|
| 66 |
-
demo.launch(
|
| 67 |
-
server_name="0.0.0.0",
|
| 68 |
-
server_port=7860,
|
| 69 |
-
share=False
|
| 70 |
-
)
|
|
|
|
| 2 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
|
|
|
| 5 |
|
| 6 |
+
# Check if we have enough memory, otherwise use CPU
|
| 7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
| 9 |
+
|
| 10 |
+
@gr.cache_resource
|
| 11 |
def load_model():
|
| 12 |
+
try:
|
| 13 |
+
print("Loading OLM OCR model...")
|
| 14 |
+
|
| 15 |
+
# Load with optimizations for limited resources
|
| 16 |
+
processor = AutoProcessor.from_pretrained("allenai/olmOCR-2-7B-1025-FP8")
|
| 17 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 18 |
+
"allenai/olmOCR-2-7B-1025-FP8",
|
| 19 |
+
torch_dtype=torch_dtype,
|
| 20 |
+
device_map="auto" if device == "cuda" else None,
|
| 21 |
+
low_cpu_mem_usage=True
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
if device == "cpu":
|
| 25 |
+
model = model.to(device)
|
| 26 |
+
|
| 27 |
+
print("Model loaded successfully!")
|
| 28 |
+
return processor, model
|
| 29 |
+
|
| 30 |
+
except Exception as e:
|
| 31 |
+
print(f"Error loading model: {e}")
|
| 32 |
+
return None, None
|
| 33 |
|
|
|
|
| 34 |
processor, model = load_model()
|
| 35 |
|
| 36 |
def extract_text_from_image(image):
|
| 37 |
+
if processor is None or model is None:
|
| 38 |
+
return "Model failed to load. The model might be too large for this environment."
|
| 39 |
+
|
| 40 |
try:
|
| 41 |
+
if image is None:
|
| 42 |
+
return "Please upload an image first."
|
|
|
|
| 43 |
|
| 44 |
+
# Convert and process image
|
| 45 |
+
image = image.convert('RGB')
|
| 46 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 47 |
|
| 48 |
+
# Generate with optimizations
|
| 49 |
with torch.no_grad():
|
| 50 |
+
outputs = model.generate(
|
| 51 |
**inputs,
|
| 52 |
+
max_new_tokens=256, # Reduced for faster processing
|
| 53 |
do_sample=False,
|
| 54 |
+
num_beams=1 # Faster but less accurate
|
| 55 |
)
|
| 56 |
|
| 57 |
+
text = processor.decode(outputs[0], skip_special_tokens=True)
|
| 58 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
except Exception as e:
|
| 61 |
+
return f"Error: {str(e)}"
|
| 62 |
|
|
|
|
| 63 |
demo = gr.Interface(
|
| 64 |
+
extract_text_from_image,
|
| 65 |
+
gr.Image(type="pil"),
|
| 66 |
+
gr.Textbox(lines=5),
|
| 67 |
+
title="OLM OCR"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
|
|
|
|
| 70 |
if __name__ == "__main__":
|
| 71 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|