Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,131 @@
|
|
| 1 |
-
|
| 2 |
-
from
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
model
|
| 12 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
"""
|
| 16 |
-
|
| 17 |
-
Returns: recognized text string
|
| 18 |
"""
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 2 |
+
from PIL import Image
|
| 3 |
import torch
|
| 4 |
+
import io
|
| 5 |
+
import base64
|
| 6 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 7 |
+
from fastapi.responses import JSONResponse
|
| 8 |
+
import uvicorn
|
| 9 |
|
| 10 |
+
# Initialize FastAPI app
|
| 11 |
+
app = FastAPI(title="OLM OCR API", description="OCR using allenai/olmOCR-2-7B-1025-FP8")
|
| 12 |
|
| 13 |
+
# Global variables for model and processor
|
| 14 |
+
processor = None
|
| 15 |
+
model = None
|
| 16 |
+
device = None
|
| 17 |
|
| 18 |
+
def load_model():
|
| 19 |
+
"""Load the model and processor"""
|
| 20 |
+
global processor, model, device
|
| 21 |
+
|
| 22 |
+
print("Loading processor...")
|
| 23 |
+
processor = AutoProcessor.from_pretrained("allenai/olmOCR-2-7B-1025-FP8")
|
| 24 |
+
|
| 25 |
+
print("Loading model...")
|
| 26 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 27 |
+
"allenai/olmOCR-2-7B-1025-FP8",
|
| 28 |
+
torch_dtype=torch.float16,
|
| 29 |
+
device_map="auto"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
+
print(f"Model loaded on device: {device}")
|
| 34 |
|
| 35 |
+
@app.on_event("startup")
|
| 36 |
+
async def startup_event():
|
| 37 |
+
"""Load model on startup"""
|
| 38 |
+
load_model()
|
| 39 |
+
|
| 40 |
+
@app.get("/")
|
| 41 |
+
async def root():
|
| 42 |
+
return {"message": "OLM OCR API is running!", "model": "allenai/olmOCR-2-7B-1025-FP8"}
|
| 43 |
+
|
| 44 |
+
@app.get("/health")
|
| 45 |
+
async def health_check():
|
| 46 |
+
return {"status": "healthy", "model_loaded": model is not None}
|
| 47 |
+
|
| 48 |
+
@app.post("/ocr")
|
| 49 |
+
async def extract_text_from_image(file: UploadFile = File(...)):
|
| 50 |
"""
|
| 51 |
+
Extract text from uploaded image
|
|
|
|
| 52 |
"""
|
| 53 |
+
try:
|
| 54 |
+
# Check if file is an image
|
| 55 |
+
if not file.content_type.startswith('image/'):
|
| 56 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
| 57 |
+
|
| 58 |
+
# Read image file
|
| 59 |
+
contents = await file.read()
|
| 60 |
+
image = Image.open(io.BytesIO(contents)).convert('RGB')
|
| 61 |
+
|
| 62 |
+
# Process image and generate text
|
| 63 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 64 |
+
|
| 65 |
+
with torch.no_grad():
|
| 66 |
+
generated_ids = model.generate(
|
| 67 |
+
**inputs,
|
| 68 |
+
max_new_tokens=1024,
|
| 69 |
+
do_sample=False,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Decode the generated text
|
| 73 |
+
generated_text = processor.batch_decode(
|
| 74 |
+
generated_ids,
|
| 75 |
+
skip_special_tokens=True
|
| 76 |
+
)[0]
|
| 77 |
+
|
| 78 |
+
return JSONResponse({
|
| 79 |
+
"success": True,
|
| 80 |
+
"extracted_text": generated_text,
|
| 81 |
+
"filename": file.filename,
|
| 82 |
+
"file_size": len(contents)
|
| 83 |
+
})
|
| 84 |
+
|
| 85 |
+
except Exception as e:
|
| 86 |
+
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
| 87 |
+
|
| 88 |
+
@app.post("/ocr/base64")
|
| 89 |
+
async def extract_text_from_base64(data: dict):
|
| 90 |
+
"""
|
| 91 |
+
Extract text from base64 encoded image
|
| 92 |
+
"""
|
| 93 |
+
try:
|
| 94 |
+
if 'image' not in data:
|
| 95 |
+
raise HTTPException(status_code=400, detail="Missing 'image' field in request")
|
| 96 |
+
|
| 97 |
+
# Decode base64 image
|
| 98 |
+
image_data = base64.b64decode(data['image'])
|
| 99 |
+
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
| 100 |
+
|
| 101 |
+
# Process image and generate text
|
| 102 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 103 |
+
|
| 104 |
+
with torch.no_grad():
|
| 105 |
+
generated_ids = model.generate(
|
| 106 |
+
**inputs,
|
| 107 |
+
max_new_tokens=1024,
|
| 108 |
+
do_sample=False,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Decode the generated text
|
| 112 |
+
generated_text = processor.batch_decode(
|
| 113 |
+
generated_ids,
|
| 114 |
+
skip_special_tokens=True
|
| 115 |
+
)[0]
|
| 116 |
+
|
| 117 |
+
return JSONResponse({
|
| 118 |
+
"success": True,
|
| 119 |
+
"extracted_text": generated_text
|
| 120 |
+
})
|
| 121 |
+
|
| 122 |
+
except Exception as e:
|
| 123 |
+
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
| 124 |
+
|
| 125 |
+
if __name__ == "__main__":
|
| 126 |
+
uvicorn.run(
|
| 127 |
+
"app:app",
|
| 128 |
+
host="0.0.0.0",
|
| 129 |
+
port=8000,
|
| 130 |
+
reload=True
|
| 131 |
+
)
|