Spaces:
Running
Running
import torch | |
import torchvision.transforms as transforms | |
import cv2 | |
import numpy as np | |
from .model import BiSeNet | |
def init_parser(pth_path): | |
n_classes = 19 | |
net = BiSeNet(n_classes=n_classes) | |
net.cuda() | |
net.load_state_dict(torch.load(pth_path)) | |
net.eval() | |
return net | |
def image_to_parsing(img, net): | |
img = cv2.resize(img, (512, 512)) | |
img = img[:,:,::-1] | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) | |
]) | |
img = transform(img.copy()) | |
img = torch.unsqueeze(img, 0) | |
with torch.no_grad(): | |
img = img.cuda() | |
out = net(img)[0] | |
parsing = out.squeeze(0).cpu().numpy().argmax(0) | |
return parsing | |
def get_mask(parsing, classes): | |
res = parsing == classes[0] | |
for val in classes[1:]: | |
res += parsing == val | |
return res | |
def swap_regions(source, target, net): | |
parsing = image_to_parsing(source, net) | |
face_classes = [1, 11, 12, 13] | |
mask = get_mask(parsing, face_classes) | |
mask = np.repeat(np.expand_dims(mask, axis=2), 3, 2) | |
result = (1 - mask) * cv2.resize(source, (512, 512)) + mask * cv2.resize(target, (512, 512)) | |
result = cv2.resize(result.astype("float32"), (source.shape[1], source.shape[0])) | |
return result | |