|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from torch.nn import functional as F
|
|
|
|
|
|
def find_multiple(n: int, k: int) -> int:
|
|
if n % k == 0:
|
|
return n
|
|
return n + k - (n % k)
|
|
|
|
class AdaptiveLayerNorm(nn.Module):
|
|
r"""Adaptive Layer Normalization"""
|
|
|
|
def __init__(self, d_model, norm) -> None:
|
|
super(AdaptiveLayerNorm, self).__init__()
|
|
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
|
self.norm = norm
|
|
self.d_model = d_model
|
|
self.eps = self.norm.eps
|
|
|
|
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
|
if embedding is None:
|
|
return self.norm(input)
|
|
weight, bias = torch.split(
|
|
self.project_layer(embedding),
|
|
split_size_or_sections=self.d_model,
|
|
dim=-1,
|
|
)
|
|
return weight * self.norm(input) + bias
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs:
|
|
block_size: int = 2048
|
|
vocab_size: int = 32000
|
|
n_layer: int = 32
|
|
n_head: int = 32
|
|
dim: int = 4096
|
|
intermediate_size: int = None
|
|
n_local_heads: int = -1
|
|
head_dim: int = 64
|
|
rope_base: float = 10000
|
|
norm_eps: float = 1e-5
|
|
has_cross_attention: bool = False
|
|
context_dim: int = 0
|
|
uvit_skip_connection: bool = False
|
|
|
|
def __post_init__(self):
|
|
if self.n_local_heads == -1:
|
|
self.n_local_heads = self.n_head
|
|
if self.intermediate_size is None:
|
|
hidden_dim = 4 * self.dim
|
|
n_hidden = int(2 * hidden_dim / 3)
|
|
self.intermediate_size = find_multiple(n_hidden, 256)
|
|
|
|
|
|
@classmethod
|
|
def from_name(cls, name: str):
|
|
if name in transformer_configs:
|
|
return cls(**transformer_configs[name])
|
|
|
|
config = [config for config in transformer_configs if config.lower() in str(name).lower()]
|
|
|
|
|
|
|
|
if len(config) > 1:
|
|
config.sort(key=len, reverse=True)
|
|
assert len(config[0]) != len(config[1]), name
|
|
|
|
return cls(**transformer_configs[config[0]])
|
|
|
|
|
|
transformer_configs = {
|
|
"CodeLlama-7b-Python-hf": dict(block_size=16384, vocab_size=32000, n_layer=32, dim=4096, rope_base=1000000),
|
|
"7B": dict(n_layer=32, n_head=32, dim=4096),
|
|
"13B": dict(n_layer=40, n_head=40, dim=5120),
|
|
"30B": dict(n_layer=60, n_head=52, dim=6656),
|
|
"34B": dict(n_layer=48, n_head=64, dim=8192, vocab_size=32000, n_local_heads=8, intermediate_size=22016,
|
|
rope_base=1000000),
|
|
"70B": dict(n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672),
|
|
"Mistral-7B": dict(n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=32000),
|
|
"stories15M": dict(n_layer=6, n_head=6, dim=288),
|
|
"stories110M": dict(n_layer=12, n_head=12, dim=768),
|
|
|
|
"llama-3-8b": dict(block_size=8192, n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336,
|
|
vocab_size=128256, rope_base=500000),
|
|
"llama-3-70b": dict(block_size=8192, n_layer=80, n_head=64, n_local_heads=8, dim=8192, intermediate_size=28672,
|
|
vocab_size=128256, rope_base=500000),
|
|
}
|
|
|
|
|
|
class KVCache(nn.Module):
|
|
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16):
|
|
super().__init__()
|
|
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
|
|
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
|
|
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
|
|
|
|
def update(self, input_pos, k_val, v_val):
|
|
|
|
assert input_pos.shape[0] == k_val.shape[2]
|
|
|
|
k_out = self.k_cache
|
|
v_out = self.v_cache
|
|
k_out[:, :, input_pos] = k_val
|
|
v_out[:, :, input_pos] = v_val
|
|
|
|
return k_out, v_out
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer))
|
|
self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
|
|
self.freqs_cis: Optional[Tensor] = None
|
|
self.mask_cache: Optional[Tensor] = None
|
|
self.max_batch_size = -1
|
|
self.max_seq_length = -1
|
|
|
|
def setup_caches(self, max_batch_size, max_seq_length, use_kv_cache=True):
|
|
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
|
|
return
|
|
head_dim = self.config.dim // self.config.n_head
|
|
max_seq_length = find_multiple(max_seq_length, 8)
|
|
self.max_seq_length = max_seq_length
|
|
self.max_batch_size = max_batch_size
|
|
dtype = self.norm.project_layer.weight.dtype
|
|
device = self.norm.project_layer.weight.device
|
|
|
|
if not self.training and use_kv_cache:
|
|
for b in self.layers:
|
|
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype).to(device)
|
|
|
|
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim,
|
|
self.config.rope_base, dtype).to(device)
|
|
self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).to(device)
|
|
self.use_kv_cache = use_kv_cache
|
|
self.uvit_skip_connection = self.config.uvit_skip_connection
|
|
if self.uvit_skip_connection:
|
|
self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2]
|
|
self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2]
|
|
else:
|
|
self.layers_emit_skip = []
|
|
self.layers_receive_skip = []
|
|
|
|
def forward(self,
|
|
x: Tensor,
|
|
c: Tensor,
|
|
input_pos: Optional[Tensor] = None,
|
|
mask: Optional[Tensor] = None,
|
|
context: Optional[Tensor] = None,
|
|
context_input_pos: Optional[Tensor] = None,
|
|
cross_attention_mask: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
assert self.freqs_cis is not None, "Caches must be initialized first"
|
|
if mask is None:
|
|
if not self.training and self.use_kv_cache:
|
|
mask = self.causal_mask[None, None, input_pos]
|
|
else:
|
|
mask = self.causal_mask[None, None, input_pos]
|
|
mask = mask[..., input_pos]
|
|
freqs_cis = self.freqs_cis[input_pos]
|
|
if context is not None:
|
|
context_freqs_cis = self.freqs_cis[context_input_pos]
|
|
else:
|
|
context_freqs_cis = None
|
|
skip_in_x_list = []
|
|
for i, layer in enumerate(self.layers):
|
|
if self.uvit_skip_connection and i in self.layers_receive_skip:
|
|
skip_in_x = skip_in_x_list.pop(-1)
|
|
else:
|
|
skip_in_x = None
|
|
x = layer(x, c, input_pos, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask, skip_in_x)
|
|
if self.uvit_skip_connection and i in self.layers_emit_skip:
|
|
skip_in_x_list.append(x)
|
|
x = self.norm(x, c)
|
|
return x
|
|
|
|
@classmethod
|
|
def from_name(cls, name: str):
|
|
return cls(ModelArgs.from_name(name))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
super().__init__()
|
|
self.attention = Attention(config)
|
|
self.feed_forward = FeedForward(config)
|
|
self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
|
|
if config.has_cross_attention:
|
|
self.has_cross_attention = True
|
|
self.cross_attention = Attention(config, is_cross_attention=True)
|
|
self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
else:
|
|
self.has_cross_attention = False
|
|
|
|
if config.uvit_skip_connection:
|
|
self.skip_in_linear = nn.Linear(config.dim * 2, config.dim)
|
|
self.uvit_skip_connection = True
|
|
else:
|
|
self.uvit_skip_connection = False
|
|
|
|
def forward(self,
|
|
x: Tensor,
|
|
c: Tensor,
|
|
input_pos: Tensor,
|
|
freqs_cis: Tensor,
|
|
mask: Tensor,
|
|
context: Optional[Tensor] = None,
|
|
context_freqs_cis: Optional[Tensor] = None,
|
|
cross_attention_mask: Optional[Tensor] = None,
|
|
skip_in_x: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
if self.uvit_skip_connection and skip_in_x is not None:
|
|
x = self.skip_in_linear(torch.cat([x, skip_in_x], dim=-1))
|
|
h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask, input_pos)
|
|
if self.has_cross_attention:
|
|
h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, input_pos, context, context_freqs_cis)
|
|
out = h + self.feed_forward(self.ffn_norm(h, c))
|
|
return out
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, config: ModelArgs, is_cross_attention: bool = False):
|
|
super().__init__()
|
|
assert config.dim % config.n_head == 0
|
|
|
|
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
|
|
|
|
if is_cross_attention:
|
|
self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False)
|
|
self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False)
|
|
else:
|
|
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
|
|
self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False)
|
|
self.kv_cache = None
|
|
|
|
self.n_head = config.n_head
|
|
self.head_dim = config.head_dim
|
|
self.n_local_heads = config.n_local_heads
|
|
self.dim = config.dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self,
|
|
x: Tensor,
|
|
freqs_cis: Tensor,
|
|
mask: Tensor,
|
|
input_pos: Optional[Tensor] = None,
|
|
context: Optional[Tensor] = None,
|
|
context_freqs_cis: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
bsz, seqlen, _ = x.shape
|
|
|
|
kv_size = self.n_local_heads * self.head_dim
|
|
if context is None:
|
|
q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1)
|
|
context_seqlen = seqlen
|
|
else:
|
|
q = self.wq(x)
|
|
k, v = self.wkv(context).split([kv_size, kv_size], dim=-1)
|
|
context_seqlen = context.shape[1]
|
|
|
|
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
|
|
k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
|
|
v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
|
|
|
|
q = apply_rotary_emb(q, freqs_cis)
|
|
k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis)
|
|
|
|
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
|
|
|
if self.kv_cache is not None:
|
|
k, v = self.kv_cache.update(input_pos, k, v)
|
|
|
|
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
|
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
|
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)
|
|
|
|
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head)
|
|
|
|
y = self.wo(y)
|
|
return y
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
super().__init__()
|
|
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
|
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
|
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, dim: int, eps: float = 1e-5):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def _norm(self, x):
|
|
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
output = self._norm(x.float()).type_as(x)
|
|
return output * self.weight
|
|
|
|
|
|
def precompute_freqs_cis(
|
|
seq_len: int, n_elem: int, base: int = 10000,
|
|
dtype: torch.dtype = torch.bfloat16
|
|
) -> Tensor:
|
|
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
|
|
t = torch.arange(seq_len, device=freqs.device)
|
|
freqs = torch.outer(t, freqs)
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
|
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
|
|
return cache.to(dtype=dtype)
|
|
|
|
|
|
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
|
|
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
|
|
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
|
|
x_out2 = torch.stack(
|
|
[
|
|
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
|
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
|
],
|
|
-1,
|
|
)
|
|
|
|
x_out2 = x_out2.flatten(3)
|
|
return x_out2.type_as(x)
|
|
|