Severian commited on
Commit
e06d413
1 Parent(s): a8b3f00

Remove all README files

Browse files
README.md DELETED
@@ -1,179 +0,0 @@
1
- ![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
2
-
3
- <p align="center">
4
- 📌 <a href="https://dify.ai/blog/introducing-dify-workflow-file-upload-a-demo-on-ai-podcast">Introducing Dify Workflow File Upload: Recreate Google NotebookLM Podcast</a>
5
- </p>
6
-
7
- <p align="center">
8
- <a href="https://cloud.dify.ai">Dify Cloud</a> ·
9
- <a href="https://docs.dify.ai/getting-started/install-self-hosted">Self-hosting</a> ·
10
- <a href="https://docs.dify.ai">Documentation</a> ·
11
- <a href="https://udify.app/chat/22L1zSxg6yW1cWQg">Enterprise inquiry</a>
12
- </p>
13
-
14
- <p align="center">
15
- <a href="https://dify.ai" target="_blank">
16
- <img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a>
17
- <a href="https://dify.ai/pricing" target="_blank">
18
- <img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
19
- <a href="https://discord.gg/FngNHpbcY7" target="_blank">
20
- <img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
21
- alt="chat on Discord"></a>
22
- <a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
23
- <img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
24
- alt="follow on X(Twitter)"></a>
25
- <a href="https://hub.docker.com/u/langgenius" target="_blank">
26
- <img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
27
- <a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
28
- <img alt="Commits last month" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
29
- <a href="https://github.com/langgenius/dify/" target="_blank">
30
- <img alt="Issues closed" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
31
- <a href="https://github.com/langgenius/dify/discussions/" target="_blank">
32
- <img alt="Discussion posts" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
33
- </p>
34
-
35
- <p align="center">
36
- <a href="./README.md"><img alt="README in English" src="https://img.shields.io/badge/English-d9d9d9"></a>
37
- <a href="./README_CN.md"><img alt="简体中文版自述文件" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
38
- <a href="./README_JA.md"><img alt="日本語のREADME" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
39
- <a href="./README_ES.md"><img alt="README en Español" src="https://img.shields.io/badge/Español-d9d9d9"></a>
40
- <a href="./README_FR.md"><img alt="README en Français" src="https://img.shields.io/badge/Français-d9d9d9"></a>
41
- <a href="./README_KL.md"><img alt="README tlhIngan Hol" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
42
- <a href="./README_KR.md"><img alt="README in Korean" src="https://img.shields.io/badge/한국어-d9d9d9"></a>
43
- <a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
44
- <a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
45
- <a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
46
- </p>
47
-
48
-
49
- Dify is an open-source LLM app development platform. Its intuitive interface combines agentic AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production.
50
-
51
- ## Quick start
52
- > Before installing Dify, make sure your machine meets the following minimum system requirements:
53
- >
54
- >- CPU >= 2 Core
55
- >- RAM >= 4 GiB
56
-
57
- </br>
58
-
59
- The easiest way to start the Dify server is through [docker compose](docker/docker-compose.yaml). Before running Dify with the following commands, make sure that [Docker](https://docs.docker.com/get-docker/) and [Docker Compose](https://docs.docker.com/compose/install/) are installed on your machine:
60
-
61
- ```bash
62
- cd dify
63
- cd docker
64
- cp .env.example .env
65
- docker compose up -d
66
- ```
67
-
68
- After running, you can access the Dify dashboard in your browser at [http://localhost/install](http://localhost/install) and start the initialization process.
69
-
70
- #### Seeking help
71
- Please refer to our [FAQ](https://docs.dify.ai/getting-started/install-self-hosted/faqs) if you encounter problems setting up Dify. Reach out to [the community and us](#community--contact) if you are still having issues.
72
-
73
- > If you'd like to contribute to Dify or do additional development, refer to our [guide to deploying from source code](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
74
-
75
- ## Key features
76
- **1. Workflow**:
77
- Build and test powerful AI workflows on a visual canvas, leveraging all the following features and beyond.
78
-
79
-
80
- https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
81
-
82
-
83
-
84
- **2. Comprehensive model support**:
85
- Seamless integration with hundreds of proprietary / open-source LLMs from dozens of inference providers and self-hosted solutions, covering GPT, Mistral, Llama3, and any OpenAI API-compatible models. A full list of supported model providers can be found [here](https://docs.dify.ai/getting-started/readme/model-providers).
86
-
87
- ![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
88
-
89
-
90
- **3. Prompt IDE**:
91
- Intuitive interface for crafting prompts, comparing model performance, and adding additional features such as text-to-speech to a chat-based app.
92
-
93
- **4. RAG Pipeline**:
94
- Extensive RAG capabilities that cover everything from document ingestion to retrieval, with out-of-box support for text extraction from PDFs, PPTs, and other common document formats.
95
-
96
- **5. Agent capabilities**:
97
- You can define agents based on LLM Function Calling or ReAct, and add pre-built or custom tools for the agent. Dify provides 50+ built-in tools for AI agents, such as Google Search, DALL·E, Stable Diffusion and WolframAlpha.
98
-
99
- **6. LLMOps**:
100
- Monitor and analyze application logs and performance over time. You could continuously improve prompts, datasets, and models based on production data and annotations.
101
-
102
- **7. Backend-as-a-Service**:
103
- All of Dify's offerings come with corresponding APIs, so you could effortlessly integrate Dify into your own business logic.
104
-
105
-
106
- ## Using Dify
107
-
108
- - **Cloud </br>**
109
- We host a [Dify Cloud](https://dify.ai) service for anyone to try with zero setup. It provides all the capabilities of the self-deployed version, and includes 200 free GPT-4 calls in the sandbox plan.
110
-
111
- - **Self-hosting Dify Community Edition</br>**
112
- Quickly get Dify running in your environment with this [starter guide](#quick-start).
113
- Use our [documentation](https://docs.dify.ai) for further references and more in-depth instructions.
114
-
115
- - **Dify for enterprise / organizations</br>**
116
- We provide additional enterprise-centric features. [Log your questions for us through this chatbot](https://udify.app/chat/22L1zSxg6yW1cWQg) or [send us an email](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry) to discuss enterprise needs. </br>
117
- > For startups and small businesses using AWS, check out [Dify Premium on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6) and deploy it to your own AWS VPC with one-click. It's an affordable AMI offering with the option to create apps with custom logo and branding.
118
-
119
-
120
- ## Staying ahead
121
-
122
- Star Dify on GitHub and be instantly notified of new releases.
123
-
124
- ![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
125
-
126
-
127
- ## Advanced Setup
128
-
129
- If you need to customize the configuration, please refer to the comments in our [.env.example](docker/.env.example) file and update the corresponding values in your `.env` file. Additionally, you might need to make adjustments to the `docker-compose.yaml` file itself, such as changing image versions, port mappings, or volume mounts, based on your specific deployment environment and requirements. After making any changes, please re-run `docker-compose up -d`. You can find the full list of available environment variables [here](https://docs.dify.ai/getting-started/install-self-hosted/environments).
130
-
131
- If you'd like to configure a highly-available setup, there are community-contributed [Helm Charts](https://helm.sh/) and YAML files which allow Dify to be deployed on Kubernetes.
132
-
133
- - [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
134
- - [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
135
- - [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
136
-
137
- #### Using Terraform for Deployment
138
-
139
- Deploy Dify to Cloud Platform with a single click using [terraform](https://www.terraform.io/)
140
-
141
- ##### Azure Global
142
- - [Azure Terraform by @nikawang](https://github.com/nikawang/dify-azure-terraform)
143
-
144
- ##### Google Cloud
145
- - [Google Cloud Terraform by @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
146
-
147
- ## Contributing
148
-
149
- For those who'd like to contribute code, see our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
150
- At the same time, please consider supporting Dify by sharing it on social media and at events and conferences.
151
-
152
-
153
- > We are looking for contributors to help with translating Dify to languages other than Mandarin or English. If you are interested in helping, please see the [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) for more information, and leave us a comment in the `global-users` channel of our [Discord Community Server](https://discord.gg/8Tpq4AcN9c).
154
-
155
- ## Community & contact
156
-
157
- * [Github Discussion](https://github.com/langgenius/dify/discussions). Best for: sharing feedback and asking questions.
158
- * [GitHub Issues](https://github.com/langgenius/dify/issues). Best for: bugs you encounter using Dify.AI, and feature proposals. See our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
159
- * [Discord](https://discord.gg/FngNHpbcY7). Best for: sharing your applications and hanging out with the community.
160
- * [X(Twitter)](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.
161
-
162
- **Contributors**
163
-
164
- <a href="https://github.com/langgenius/dify/graphs/contributors">
165
- <img src="https://contrib.rocks/image?repo=langgenius/dify" />
166
- </a>
167
-
168
- ## Star history
169
-
170
- [![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
171
-
172
-
173
- ## Security disclosure
174
-
175
- To protect your privacy, please avoid posting security issues on GitHub. Instead, send your questions to security@dify.ai and we will provide you with a more detailed answer.
176
-
177
- ## License
178
-
179
- This repository is available under the [Dify Open Source License](LICENSE), which is essentially Apache 2.0 with a few additional restrictions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
api/README.md DELETED
@@ -1,88 +0,0 @@
1
- # Dify Backend API
2
-
3
- ## Usage
4
-
5
- > [!IMPORTANT]
6
- > In the v0.6.12 release, we deprecated `pip` as the package management tool for Dify API Backend service and replaced it with `poetry`.
7
-
8
- 1. Start the docker-compose stack
9
-
10
- The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using `docker-compose`.
11
-
12
- ```bash
13
- cd ../docker
14
- cp middleware.env.example middleware.env
15
- # change the profile to other vector database if you are not using weaviate
16
- docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
17
- cd ../api
18
- ```
19
-
20
- 2. Copy `.env.example` to `.env`
21
- 3. Generate a `SECRET_KEY` in the `.env` file.
22
-
23
- ```bash for Linux
24
- sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
25
- ```
26
-
27
- ```bash for Mac
28
- secret_key=$(openssl rand -base64 42)
29
- sed -i '' "/^SECRET_KEY=/c\\
30
- SECRET_KEY=${secret_key}" .env
31
- ```
32
-
33
- 4. Create environment.
34
-
35
- Dify API service uses [Poetry](https://python-poetry.org/docs/) to manage dependencies. You can execute `poetry shell` to activate the environment.
36
-
37
- 5. Install dependencies
38
-
39
- ```bash
40
- poetry env use 3.10
41
- poetry install
42
- ```
43
-
44
- In case of contributors missing to update dependencies for `pyproject.toml`, you can perform the following shell instead.
45
-
46
- ```bash
47
- poetry shell # activate current environment
48
- poetry add $(cat requirements.txt) # install dependencies of production and update pyproject.toml
49
- poetry add $(cat requirements-dev.txt) --group dev # install dependencies of development and update pyproject.toml
50
- ```
51
-
52
- 6. Run migrate
53
-
54
- Before the first launch, migrate the database to the latest version.
55
-
56
- ```bash
57
- poetry run python -m flask db upgrade
58
- ```
59
-
60
- 7. Start backend
61
-
62
- ```bash
63
- poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
64
- ```
65
-
66
- 8. Start Dify [web](../web) service.
67
- 9. Setup your application by visiting `http://localhost:3000`...
68
- 10. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
69
-
70
- ```bash
71
- poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
72
- ```
73
-
74
- ## Testing
75
-
76
- 1. Install dependencies for both the backend and the test environment
77
-
78
- ```bash
79
- poetry install -C api --with dev
80
- ```
81
-
82
- 2. Run the tests locally with mocked system environment variables in `tool.pytest_env` section in `pyproject.toml`
83
-
84
- ```bash
85
- poetry run -C api bash dev/pytest/pytest_all_tests.sh
86
- ```
87
-
88
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
api/core/app/apps/README.md DELETED
@@ -1,48 +0,0 @@
1
- ## Guidelines for Database Connection Management in App Runner and Task Pipeline
2
-
3
- Due to the presence of tasks in App Runner that require long execution times, such as LLM generation and external requests, Flask-Sqlalchemy's strategy for database connection pooling is to allocate one connection (transaction) per request. This approach keeps a connection occupied even during non-DB tasks, leading to the inability to acquire new connections during high concurrency requests due to multiple long-running tasks.
4
-
5
- Therefore, the database operations in App Runner and Task Pipeline must ensure connections are closed immediately after use, and it's better to pass IDs rather than Model objects to avoid deattach errors.
6
-
7
- Examples:
8
-
9
- 1. Creating a new record:
10
-
11
- ```python
12
- app = App(id=1)
13
- db.session.add(app)
14
- db.session.commit()
15
- db.session.refresh(app) # Retrieve table default values, like created_at, cached in the app object, won't affect after close
16
-
17
- # Handle non-long-running tasks or store the content of the App instance in memory (via variable assignment).
18
-
19
- db.session.close()
20
-
21
- return app.id
22
- ```
23
-
24
- 2. Fetching a record from the table:
25
-
26
- ```python
27
- app = db.session.query(App).filter(App.id == app_id).first()
28
-
29
- created_at = app.created_at
30
-
31
- db.session.close()
32
-
33
- # Handle tasks (include long-running).
34
-
35
- ```
36
-
37
- 3. Updating a table field:
38
-
39
- ```python
40
- app = db.session.query(App).filter(App.id == app_id).first()
41
-
42
- app.updated_at = time.utcnow()
43
- db.session.commit()
44
- db.session.close()
45
-
46
- return app_id
47
- ```
48
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
api/core/model_runtime/README.md DELETED
@@ -1,70 +0,0 @@
1
- # Model Runtime
2
-
3
- This module provides the interface for invoking and authenticating various models, and offers Dify a unified information and credentials form rule for model providers.
4
-
5
- - On one hand, it decouples models from upstream and downstream processes, facilitating horizontal expansion for developers,
6
- - On the other hand, it allows for direct display of providers and models in the frontend interface by simply defining them in the backend, eliminating the need to modify frontend logic.
7
-
8
- ## Features
9
-
10
- - Supports capability invocation for 5 types of models
11
-
12
- - `LLM` - LLM text completion, dialogue, pre-computed tokens capability
13
- - `Text Embedding Model` - Text Embedding, pre-computed tokens capability
14
- - `Rerank Model` - Segment Rerank capability
15
- - `Speech-to-text Model` - Speech to text capability
16
- - `Text-to-speech Model` - Text to speech capability
17
- - `Moderation` - Moderation capability
18
-
19
- - Model provider display
20
-
21
- ![image-20231210143654461](./docs/en_US/images/index/image-20231210143654461.png)
22
-
23
- Displays a list of all supported providers, including provider names, icons, supported model types list, predefined model list, configuration method, and credentials form rules, etc. For detailed rule design, see: [Schema](./docs/en_US/schema.md).
24
-
25
- - Selectable model list display
26
-
27
- ![image-20231210144229650](./docs/en_US/images/index/image-20231210144229650.png)
28
-
29
- After configuring provider/model credentials, the dropdown (application orchestration interface/default model) allows viewing of the available LLM list. Greyed out items represent predefined model lists from providers without configured credentials, facilitating user review of supported models.
30
-
31
- In addition, this list also returns configurable parameter information and rules for LLM, as shown below:
32
-
33
- ![image-20231210144814617](./docs/en_US/images/index/image-20231210144814617.png)
34
-
35
- These parameters are all defined in the backend, allowing different settings for various parameters supported by different models, as detailed in: [Schema](./docs/en_US/schema.md#ParameterRule).
36
-
37
- - Provider/model credential authentication
38
-
39
- ![image-20231210151548521](./docs/en_US/images/index/image-20231210151548521.png)
40
-
41
- ![image-20231210151628992](./docs/en_US/images/index/image-20231210151628992.png)
42
-
43
- The provider list returns configuration information for the credentials form, which can be authenticated through Runtime's interface. The first image above is a provider credential DEMO, and the second is a model credential DEMO.
44
-
45
- ## Structure
46
-
47
- ![](./docs/en_US/images/index/image-20231210165243632.png)
48
-
49
- Model Runtime is divided into three layers:
50
-
51
- - The outermost layer is the factory method
52
-
53
- It provides methods for obtaining all providers, all model lists, getting provider instances, and authenticating provider/model credentials.
54
-
55
- - The second layer is the provider layer
56
-
57
- It provides the current provider's model list, model instance obtaining, provider credential authentication, and provider configuration rule information, **allowing horizontal expansion** to support different providers.
58
-
59
- - The bottom layer is the model layer
60
-
61
- It offers direct invocation of various model types, predefined model configuration information, getting predefined/remote model lists, model credential authentication methods. Different models provide additional special methods, like LLM's pre-computed tokens method, cost information obtaining method, etc., **allowing horizontal expansion** for different models under the same provider (within supported model types).
62
-
63
-
64
-
65
- ## Next Steps
66
-
67
- - Add new provider configuration: [Link](./docs/en_US/provider_scale_out.md)
68
- - Add new models for existing providers: [Link](./docs/en_US/provider_scale_out.md#AddModel)
69
- - View YAML configuration rules: [Link](./docs/en_US/schema.md)
70
- - Implement interface methods: [Link](./docs/en_US/interfaces.md)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
api/core/tools/README.md DELETED
@@ -1,25 +0,0 @@
1
- # Tools
2
-
3
- This module implements built-in tools used in Agent Assistants and Workflows within Dify. You could define and display your own tools in this module, without modifying the frontend logic. This decoupling allows for easier horizontal scaling of Dify's capabilities.
4
-
5
- ## Feature Introduction
6
-
7
- The tools provided for Agents and Workflows are currently divided into two categories:
8
- - `Built-in Tools` are internally implemented within our product and are hardcoded for use in Agents and Workflows.
9
- - `Api-Based Tools` leverage third-party APIs for implementation. You don't need to code to integrate these -- simply provide interface definitions in formats like `OpenAPI` , `Swagger`, or the `OpenAI-plugin` on the front-end.
10
-
11
- ### Built-in Tool Providers
12
- ![Alt text](docs/images/index/image.png)
13
-
14
- ### API Tool Providers
15
- ![Alt text](docs/images/index/image-1.png)
16
-
17
- ## Tool Integration
18
-
19
- To enable developers to build flexible and powerful tools, we provide two guides:
20
-
21
- ### [Quick Integration 👈🏻](./docs/en_US/tool_scale_out.md)
22
- Quick integration aims at quickly getting you up to speed with tool integration by walking over an example Google Search tool.
23
-
24
- ### [Advanced Integration 👈🏻](./docs/en_US/advanced_scale_out.md)
25
- Advanced integration will offer a deeper dive into the module interfaces, and explain how to implement more complex capabilities, such as generating images, combining multiple tools, and managing the flow of parameters, images, and files between different tools.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
docker/README.md DELETED
@@ -1,99 +0,0 @@
1
- ## README for docker Deployment
2
-
3
- Welcome to the new `docker` directory for deploying Dify using Docker Compose. This README outlines the updates, deployment instructions, and migration details for existing users.
4
-
5
- ### What's Updated
6
-
7
- - **Certbot Container**: `docker-compose.yaml` now contains `certbot` for managing SSL certificates. This container automatically renews certificates and ensures secure HTTPS connections.
8
- For more information, refer `docker/certbot/README.md`.
9
-
10
- - **Persistent Environment Variables**: Environment variables are now managed through a `.env` file, ensuring that your configurations persist across deployments.
11
-
12
- > What is `.env`? </br> </br>
13
- > The `.env` file is a crucial component in Docker and Docker Compose environments, serving as a centralized configuration file where you can define environment variables that are accessible to the containers at runtime. This file simplifies the management of environment settings across different stages of development, testing, and production, providing consistency and ease of configuration to deployments.
14
-
15
- - **Unified Vector Database Services**: All vector database services are now managed from a single Docker Compose file `docker-compose.yaml`. You can switch between different vector databases by setting the `VECTOR_STORE` environment variable in your `.env` file.
16
- - **Mandatory .env File**: A `.env` file is now required to run `docker compose up`. This file is crucial for configuring your deployment and for any custom settings to persist through upgrades.
17
- - **Legacy Support**: Previous deployment files are now located in the `docker-legacy` directory and will no longer be maintained.
18
-
19
- ### How to Deploy Dify with `docker-compose.yaml`
20
-
21
- 1. **Prerequisites**: Ensure Docker and Docker Compose are installed on your system.
22
- 2. **Environment Setup**:
23
- - Navigate to the `docker` directory.
24
- - Copy the `.env.example` file to a new file named `.env` by running `cp .env.example .env`.
25
- - Customize the `.env` file as needed. Refer to the `.env.example` file for detailed configuration options.
26
- 3. **Running the Services**:
27
- - Execute `docker compose up` from the `docker` directory to start the services.
28
- - To specify a vector database, set the `VECTOR_STORE` variable in your `.env` file to your desired vector database service, such as `milvus`, `weaviate`, or `opensearch`.
29
- 4. **SSL Certificate Setup**:
30
- - Rrefer `docker/certbot/README.md` to set up SSL certificates using Certbot.
31
-
32
- ### How to Deploy Middleware for Developing Dify
33
-
34
- 1. **Middleware Setup**:
35
- - Use the `docker-compose.middleware.yaml` for setting up essential middleware services like databases and caches.
36
- - Navigate to the `docker` directory.
37
- - Ensure the `middleware.env` file is created by running `cp middleware.env.example middleware.env` (refer to the `middleware.env.example` file).
38
- 2. **Running Middleware Services**:
39
- - Execute `docker-compose -f docker-compose.middleware.yaml up -d` to start the middleware services.
40
-
41
- ### Migration for Existing Users
42
-
43
- For users migrating from the `docker-legacy` setup:
44
-
45
- 1. **Review Changes**: Familiarize yourself with the new `.env` configuration and Docker Compose setup.
46
- 2. **Transfer Customizations**:
47
- - If you have customized configurations such as `docker-compose.yaml`, `ssrf_proxy/squid.conf`, or `nginx/conf.d/default.conf`, you will need to reflect these changes in the `.env` file you create.
48
- 3. **Data Migration**:
49
- - Ensure that data from services like databases and caches is backed up and migrated appropriately to the new structure if necessary.
50
-
51
- ### Overview of `.env`
52
-
53
- #### Key Modules and Customization
54
-
55
- - **Vector Database Services**: Depending on the type of vector database used (`VECTOR_STORE`), users can set specific endpoints, ports, and authentication details.
56
- - **Storage Services**: Depending on the storage type (`STORAGE_TYPE`), users can configure specific settings for S3, Azure Blob, Google Storage, etc.
57
- - **API and Web Services**: Users can define URLs and other settings that affect how the API and web frontends operate.
58
-
59
- #### Other notable variables
60
-
61
- The `.env.example` file provided in the Docker setup is extensive and covers a wide range of configuration options. It is structured into several sections, each pertaining to different aspects of the application and its services. Here are some of the key sections and variables:
62
-
63
- 1. **Common Variables**:
64
- - `CONSOLE_API_URL`, `SERVICE_API_URL`: URLs for different API services.
65
- - `APP_WEB_URL`: Frontend application URL.
66
- - `FILES_URL`: Base URL for file downloads and previews.
67
-
68
- 2. **Server Configuration**:
69
- - `LOG_LEVEL`, `DEBUG`, `FLASK_DEBUG`: Logging and debug settings.
70
- - `SECRET_KEY`: A key for encrypting session cookies and other sensitive data.
71
-
72
- 3. **Database Configuration**:
73
- - `DB_USERNAME`, `DB_PASSWORD`, `DB_HOST`, `DB_PORT`, `DB_DATABASE`: PostgreSQL database credentials and connection details.
74
-
75
- 4. **Redis Configuration**:
76
- - `REDIS_HOST`, `REDIS_PORT`, `REDIS_PASSWORD`: Redis server connection settings.
77
-
78
- 5. **Celery Configuration**:
79
- - `CELERY_BROKER_URL`: Configuration for Celery message broker.
80
-
81
- 6. **Storage Configuration**:
82
- - `STORAGE_TYPE`, `S3_BUCKET_NAME`, `AZURE_BLOB_ACCOUNT_NAME`: Settings for file storage options like local, S3, Azure Blob, etc.
83
-
84
- 7. **Vector Database Configuration**:
85
- - `VECTOR_STORE`: Type of vector database (e.g., `weaviate`, `milvus`).
86
- - Specific settings for each vector store like `WEAVIATE_ENDPOINT`, `MILVUS_URI`.
87
-
88
- 8. **CORS Configuration**:
89
- - `WEB_API_CORS_ALLOW_ORIGINS`, `CONSOLE_CORS_ALLOW_ORIGINS`: Settings for cross-origin resource sharing.
90
-
91
- 9. **Other Service-Specific Environment Variables**:
92
- - Each service like `nginx`, `redis`, `db`, and vector databases have specific environment variables that are directly referenced in the `docker-compose.yaml`.
93
-
94
- ### Additional Information
95
-
96
- - **Continuous Improvement Phase**: We are actively seeking feedback from the community to refine and enhance the deployment process. As more users adopt this new method, we will continue to make improvements based on your experiences and suggestions.
97
- - **Support**: For detailed configuration options and environment variable settings, refer to the `.env.example` file and the Docker Compose configuration files in the `docker` directory.
98
-
99
- This README aims to guide you through the deployment process using the new Docker Compose setup. For any issues or further assistance, please refer to the official documentation or contact support.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
docker/certbot/README.md DELETED
@@ -1,76 +0,0 @@
1
- # Launching new servers with SSL certificates
2
-
3
- ## Short description
4
-
5
- docker compose certbot configurations with Backward compatibility (without certbot container).
6
- Use `docker compose --profile certbot up` to use this features.
7
-
8
- ## The simplest way for launching new servers with SSL certificates
9
-
10
- 1. Get letsencrypt certs
11
- set `.env` values
12
- ```properties
13
- NGINX_SSL_CERT_FILENAME=fullchain.pem
14
- NGINX_SSL_CERT_KEY_FILENAME=privkey.pem
15
- NGINX_ENABLE_CERTBOT_CHALLENGE=true
16
- CERTBOT_DOMAIN=your_domain.com
17
- CERTBOT_EMAIL=example@your_domain.com
18
- ```
19
- execute command:
20
- ```shell
21
- docker network prune
22
- docker compose --profile certbot up --force-recreate -d
23
- ```
24
- then after the containers launched:
25
- ```shell
26
- docker compose exec -it certbot /bin/sh /update-cert.sh
27
- ```
28
- 2. Edit `.env` file and `docker compose --profile certbot up` again.
29
- set `.env` value additionally
30
- ```properties
31
- NGINX_HTTPS_ENABLED=true
32
- ```
33
- execute command:
34
- ```shell
35
- docker compose --profile certbot up -d --no-deps --force-recreate nginx
36
- ```
37
- Then you can access your serve with HTTPS.
38
- [https://your_domain.com](https://your_domain.com)
39
-
40
- ## SSL certificates renewal
41
-
42
- For SSL certificates renewal, execute commands below:
43
-
44
- ```shell
45
- docker compose exec -it certbot /bin/sh /update-cert.sh
46
- docker compose exec nginx nginx -s reload
47
- ```
48
-
49
- ## Options for certbot
50
-
51
- `CERTBOT_OPTIONS` key might be helpful for testing. i.e.,
52
-
53
- ```properties
54
- CERTBOT_OPTIONS=--dry-run
55
- ```
56
-
57
- To apply changes to `CERTBOT_OPTIONS`, regenerate the certbot container before updating the certificates.
58
-
59
- ```shell
60
- docker compose --profile certbot up -d --no-deps --force-recreate certbot
61
- docker compose exec -it certbot /bin/sh /update-cert.sh
62
- ```
63
-
64
- Then, reload the nginx container if necessary.
65
-
66
- ```shell
67
- docker compose exec nginx nginx -s reload
68
- ```
69
-
70
- ## For legacy servers
71
-
72
- To use cert files dir `nginx/ssl` as before, simply launch containers WITHOUT `--profile certbot` option.
73
-
74
- ```shell
75
- docker compose up -d
76
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sdks/README.md DELETED
@@ -1,25 +0,0 @@
1
- # SDK
2
-
3
- ## Java
4
-
5
- https://github.com/langgenius/java-client/
6
-
7
- ## Go
8
-
9
- https://github.com/langgenius/dify-sdk-go
10
-
11
- ## Ruby
12
-
13
- https://github.com/langgenius/ruby-sdk
14
-
15
- ## Python
16
-
17
- TODO move to another place
18
-
19
- ## PHP
20
-
21
- TODO move to another place
22
-
23
- ## Node.js
24
-
25
- TODO move to another place
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sdks/nodejs-client/README.md DELETED
@@ -1,63 +0,0 @@
1
- # Dify Node.js SDK
2
- This is the Node.js SDK for the Dify API, which allows you to easily integrate Dify into your Node.js applications.
3
-
4
- ## Install
5
- ```bash
6
- npm install dify-client
7
- ```
8
-
9
- ## Usage
10
- After installing the SDK, you can use it in your project like this:
11
-
12
- ```js
13
- import { DifyClient, ChatClient, CompletionClient } from 'dify-client'
14
-
15
- const API_KEY = 'your-api-key-here'
16
- const user = `random-user-id`
17
- const query = 'Please tell me a short story in 10 words or less.'
18
- const remote_url_files = [{
19
- type: 'image',
20
- transfer_method: 'remote_url',
21
- url: 'your_url_address'
22
- }]
23
-
24
- // Create a completion client
25
- const completionClient = new CompletionClient(API_KEY)
26
- // Create a completion message
27
- completionClient.createCompletionMessage({'query': query}, user)
28
- // Create a completion message with vision model
29
- completionClient.createCompletionMessage({'query': 'Describe the picture.'}, user, false, remote_url_files)
30
-
31
- // Create a chat client
32
- const chatClient = new ChatClient(API_KEY)
33
- // Create a chat message in stream mode
34
- const response = await chatClient.createChatMessage({}, query, user, true, null)
35
- const stream = response.data;
36
- stream.on('data', data => {
37
- console.log(data);
38
- });
39
- stream.on('end', () => {
40
- console.log('stream done');
41
- });
42
- // Create a chat message with vision model
43
- chatClient.createChatMessage({}, 'Describe the picture.', user, false, null, remote_url_files)
44
- // Fetch conversations
45
- chatClient.getConversations(user)
46
- // Fetch conversation messages
47
- chatClient.getConversationMessages(conversationId, user)
48
- // Rename conversation
49
- chatClient.renameConversation(conversationId, name, user)
50
-
51
-
52
- const client = new DifyClient(API_KEY)
53
- // Fetch application parameters
54
- client.getApplicationParameters(user)
55
- // Provide feedback for a message
56
- client.messageFeedback(messageId, rating, user)
57
-
58
- ```
59
-
60
- Replace 'your-api-key-here' with your actual Dify API key.Replace 'your-app-id-here' with your actual Dify APP ID.
61
-
62
- ## License
63
- This SDK is released under the MIT License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sdks/php-client/README.md DELETED
@@ -1,84 +0,0 @@
1
- # Dify PHP SDK
2
-
3
- This is the PHP SDK for the Dify API, which allows you to easily integrate Dify into your PHP applications.
4
-
5
- ## Requirements
6
-
7
- - PHP 7.2 or later
8
- - Guzzle HTTP client library
9
-
10
- ## Usage
11
-
12
- After installing the SDK, you can use it in your project like this:
13
-
14
- ```php
15
- <?php
16
-
17
- require 'vendor/autoload.php';
18
-
19
- use YourVendorName\DifyPHP\DifyClient;
20
- use YourVendorName\DifyPHP\CompletionClient;
21
- use YourVendorName\DifyPHP\ChatClient;
22
-
23
- $apiKey = 'your-api-key-here';
24
-
25
- $difyClient = new DifyClient($apiKey);
26
-
27
- // Create a completion client
28
- $completionClient = new CompletionClient($apiKey);
29
- $response = $completionClient->create_completion_message(array("query" => "Who are you?"), "blocking", "user_id");
30
-
31
- // Create a chat client
32
- $chatClient = new ChatClient($apiKey);
33
- $response = $chatClient->create_chat_message(array(), "Who are you?", "user_id", "blocking", $conversation_id);
34
-
35
- $fileForVision = [
36
- [
37
- "type" => "image",
38
- "transfer_method" => "remote_url",
39
- "url" => "your_image_url"
40
- ]
41
- ];
42
-
43
- // $fileForVision = [
44
- // [
45
- // "type" => "image",
46
- // "transfer_method" => "local_file",
47
- // "url" => "your_file_id"
48
- // ]
49
- // ];
50
-
51
- // Create a completion client with vision model like gpt-4-vision
52
- $response = $completionClient->create_completion_message(array("query" => "Describe this image."), "blocking", "user_id", $fileForVision);
53
-
54
- // Create a chat client with vision model like gpt-4-vision
55
- $response = $chatClient->create_chat_message(array(), "Describe this image.", "user_id", "blocking", $conversation_id, $fileForVision);
56
-
57
- // File Upload
58
- $fileForUpload = [
59
- [
60
- 'tmp_name' => '/path/to/file/filename.jpg',
61
- 'name' => 'filename.jpg'
62
- ]
63
- ];
64
- $response = $difyClient->file_upload("user_id", $fileForUpload);
65
- $result = json_decode($response->getBody(), true);
66
- echo 'upload_file_id: ' . $result['id'];
67
-
68
- // Fetch application parameters
69
- $response = $difyClient->get_application_parameters("user_id");
70
-
71
- // Provide feedback for a message
72
- $response = $difyClient->message_feedback($message_id, $rating, "user_id");
73
-
74
- // Other available methods:
75
- // - get_conversation_messages()
76
- // - get_conversations()
77
- // - rename_conversation()
78
- ```
79
-
80
- Replace 'your-api-key-here' with your actual Dify API key.
81
-
82
- ## License
83
-
84
- This SDK is released under the MIT License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sdks/python-client/README.md DELETED
@@ -1,185 +0,0 @@
1
- # dify-client
2
-
3
- A Dify App Service-API Client, using for build a webapp by request Service-API
4
-
5
- ## Usage
6
-
7
- First, install `dify-client` python sdk package:
8
-
9
- ```
10
- pip install dify-client
11
- ```
12
-
13
- Write your code with sdk:
14
-
15
- - completion generate with `blocking` response_mode
16
-
17
- ```python
18
- from dify_client import CompletionClient
19
-
20
- api_key = "your_api_key"
21
-
22
- # Initialize CompletionClient
23
- completion_client = CompletionClient(api_key)
24
-
25
- # Create Completion Message using CompletionClient
26
- completion_response = completion_client.create_completion_message(inputs={"query": "What's the weather like today?"},
27
- response_mode="blocking", user="user_id")
28
- completion_response.raise_for_status()
29
-
30
- result = completion_response.json()
31
-
32
- print(result.get('answer'))
33
- ```
34
-
35
- - completion using vision model, like gpt-4-vision
36
-
37
- ```python
38
- from dify_client import CompletionClient
39
-
40
- api_key = "your_api_key"
41
-
42
- # Initialize CompletionClient
43
- completion_client = CompletionClient(api_key)
44
-
45
- files = [{
46
- "type": "image",
47
- "transfer_method": "remote_url",
48
- "url": "your_image_url"
49
- }]
50
-
51
- # files = [{
52
- # "type": "image",
53
- # "transfer_method": "local_file",
54
- # "upload_file_id": "your_file_id"
55
- # }]
56
-
57
- # Create Completion Message using CompletionClient
58
- completion_response = completion_client.create_completion_message(inputs={"query": "Describe the picture."},
59
- response_mode="blocking", user="user_id", files=files)
60
- completion_response.raise_for_status()
61
-
62
- result = completion_response.json()
63
-
64
- print(result.get('answer'))
65
- ```
66
-
67
- - chat generate with `streaming` response_mode
68
-
69
- ```python
70
- import json
71
- from dify_client import ChatClient
72
-
73
- api_key = "your_api_key"
74
-
75
- # Initialize ChatClient
76
- chat_client = ChatClient(api_key)
77
-
78
- # Create Chat Message using ChatClient
79
- chat_response = chat_client.create_chat_message(inputs={}, query="Hello", user="user_id", response_mode="streaming")
80
- chat_response.raise_for_status()
81
-
82
- for line in chat_response.iter_lines(decode_unicode=True):
83
- line = line.split('data:', 1)[-1]
84
- if line.strip():
85
- line = json.loads(line.strip())
86
- print(line.get('answer'))
87
- ```
88
-
89
- - chat using vision model, like gpt-4-vision
90
-
91
- ```python
92
- from dify_client import ChatClient
93
-
94
- api_key = "your_api_key"
95
-
96
- # Initialize ChatClient
97
- chat_client = ChatClient(api_key)
98
-
99
- files = [{
100
- "type": "image",
101
- "transfer_method": "remote_url",
102
- "url": "your_image_url"
103
- }]
104
-
105
- # files = [{
106
- # "type": "image",
107
- # "transfer_method": "local_file",
108
- # "upload_file_id": "your_file_id"
109
- # }]
110
-
111
- # Create Chat Message using ChatClient
112
- chat_response = chat_client.create_chat_message(inputs={}, query="Describe the picture.", user="user_id",
113
- response_mode="blocking", files=files)
114
- chat_response.raise_for_status()
115
-
116
- result = chat_response.json()
117
-
118
- print(result.get("answer"))
119
- ```
120
-
121
- - upload file when using vision model
122
-
123
- ```python
124
- from dify_client import DifyClient
125
-
126
- api_key = "your_api_key"
127
-
128
- # Initialize Client
129
- dify_client = DifyClient(api_key)
130
-
131
- file_path = "your_image_file_path"
132
- file_name = "panda.jpeg"
133
- mime_type = "image/jpeg"
134
-
135
- with open(file_path, "rb") as file:
136
- files = {
137
- "file": (file_name, file, mime_type)
138
- }
139
- response = dify_client.file_upload("user_id", files)
140
-
141
- result = response.json()
142
- print(f'upload_file_id: {result.get("id")}')
143
- ```
144
-
145
-
146
-
147
- - Others
148
-
149
- ```python
150
- from dify_client import ChatClient
151
-
152
- api_key = "your_api_key"
153
-
154
- # Initialize Client
155
- client = ChatClient(api_key)
156
-
157
- # Get App parameters
158
- parameters = client.get_application_parameters(user="user_id")
159
- parameters.raise_for_status()
160
-
161
- print('[parameters]')
162
- print(parameters.json())
163
-
164
- # Get Conversation List (only for chat)
165
- conversations = client.get_conversations(user="user_id")
166
- conversations.raise_for_status()
167
-
168
- print('[conversations]')
169
- print(conversations.json())
170
-
171
- # Get Message List (only for chat)
172
- messages = client.get_conversation_messages(user="user_id", conversation_id="conversation_id")
173
- messages.raise_for_status()
174
-
175
- print('[messages]')
176
- print(messages.json())
177
-
178
- # Rename Conversation (only for chat)
179
- rename_conversation_response = client.rename_conversation(conversation_id="conversation_id",
180
- name="new_name", user="user_id")
181
- rename_conversation_response.raise_for_status()
182
-
183
- print('[rename result]')
184
- print(rename_conversation_response.json())
185
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
web/README.md DELETED
@@ -1,118 +0,0 @@
1
- # Dify Frontend
2
-
3
- This is a [Next.js](https://nextjs.org/) project bootstrapped with [`create-next-app`](https://github.com/vercel/next.js/tree/canary/packages/create-next-app).
4
-
5
- ## Getting Started
6
-
7
- ### Run by source code
8
-
9
- To start the web frontend service, you will need [Node.js v18.x (LTS)](https://nodejs.org/en) and [NPM version 8.x.x](https://www.npmjs.com/) or [Yarn](https://yarnpkg.com/).
10
-
11
- First, install the dependencies:
12
-
13
- ```bash
14
- npm install
15
- # or
16
- yarn install --frozen-lockfile
17
- ```
18
-
19
- Then, configure the environment variables. Create a file named `.env.local` in the current directory and copy the contents from `.env.example`. Modify the values of these environment variables according to your requirements:
20
-
21
- ```bash
22
- cp .env.example .env.local
23
- ```
24
-
25
- ```
26
- # For production release, change this to PRODUCTION
27
- NEXT_PUBLIC_DEPLOY_ENV=DEVELOPMENT
28
- # The deployment edition, SELF_HOSTED
29
- NEXT_PUBLIC_EDITION=SELF_HOSTED
30
- # The base URL of console application, refers to the Console base URL of WEB service if console domain is
31
- # different from api or web app domain.
32
- # example: http://cloud.dify.ai/console/api
33
- NEXT_PUBLIC_API_PREFIX=http://localhost:5001/console/api
34
- # The URL for Web APP, refers to the Web App base URL of WEB service if web app domain is different from
35
- # console or api domain.
36
- # example: http://udify.app/api
37
- NEXT_PUBLIC_PUBLIC_API_PREFIX=http://localhost:5001/api
38
-
39
- # SENTRY
40
- NEXT_PUBLIC_SENTRY_DSN=
41
- ```
42
-
43
- Finally, run the development server:
44
-
45
- ```bash
46
- npm run dev
47
- # or
48
- yarn dev
49
- ```
50
-
51
- Open [http://localhost:3000](http://localhost:3000) with your browser to see the result.
52
-
53
- You can start editing the file under folder `app`. The page auto-updates as you edit the file.
54
-
55
- ## Deploy
56
-
57
- ### Deploy on server
58
-
59
- First, build the app for production:
60
-
61
- ```bash
62
- npm run build
63
- ```
64
-
65
- Then, start the server:
66
-
67
- ```bash
68
- npm run start
69
- ```
70
-
71
- If you want to customize the host and port:
72
-
73
- ```bash
74
- npm run start --port=3001 --host=0.0.0.0
75
- ```
76
-
77
- ## Storybook
78
-
79
- This project uses [Storybook](https://storybook.js.org/) for UI component development.
80
-
81
- To start the storybook server, run:
82
-
83
- ```bash
84
- yarn storybook
85
- ```
86
-
87
- Open [http://localhost:6006](http://localhost:6006) with your browser to see the result.
88
-
89
- ## Lint Code
90
-
91
- If your IDE is VSCode, rename `web/.vscode/settings.example.json` to `web/.vscode/settings.json` for lint code setting.
92
-
93
- ## Test
94
-
95
- We start to use [Jest](https://jestjs.io/) and [React Testing Library](https://testing-library.com/docs/react-testing-library/intro/) for Unit Testing.
96
-
97
- You can create a test file with a suffix of `.spec` beside the file that to be tested. For example, if you want to test a file named `util.ts`. The test file name should be `util.spec.ts`.
98
-
99
- Run test:
100
-
101
- ```bash
102
- npm run test
103
- ```
104
-
105
- If you are not familiar with writing tests, here is some code to refer to:
106
- * [classnames.spec.ts](./utils/classnames.spec.ts)
107
- * [index.spec.tsx](./app/components/base/button/index.spec.tsx)
108
-
109
-
110
-
111
-
112
- ## Documentation
113
-
114
- Visit <https://docs.dify.ai/getting-started/readme> to view the full documentation.
115
-
116
- ## Community
117
-
118
- The Dify community can be found on [Discord community](https://discord.gg/5AEfbxcd9k), where you can ask questions, voice ideas, and share your projects.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
web/i18n/README.md DELETED
@@ -1,175 +0,0 @@
1
- # Internationalization (i18n)
2
-
3
- ## Introduction
4
-
5
- This directory contains the internationalization (i18n) files for this project.
6
-
7
- ## File Structure
8
-
9
- ```
10
- ├── [ 24] README.md
11
- ├── [ 0] README_CN.md
12
- ├── [ 704] en-US
13
- │   ├── [2.4K] app-annotation.ts
14
- │   ├── [5.2K] app-api.ts
15
- │   ├── [ 16K] app-debug.ts
16
- │   ├── [2.1K] app-log.ts
17
- │   ├── [5.3K] app-overview.ts
18
- │   ├── [1.9K] app.ts
19
- │   ├── [4.1K] billing.ts
20
- │   ├── [ 17K] common.ts
21
- │   ├── [ 859] custom.ts
22
- │   ├── [5.7K] dataset-creation.ts
23
- │   ├── [ 10K] dataset-documents.ts
24
- │   ├── [ 761] dataset-hit-testing.ts
25
- │   ├── [1.7K] dataset-settings.ts
26
- │   ├── [2.0K] dataset.ts
27
- │   ├── [ 941] explore.ts
28
- │   ├── [ 52] layout.ts
29
- │   ├── [2.3K] login.ts
30
- │   ├── [ 52] register.ts
31
- │   ├── [2.5K] share-app.ts
32
- │   └── [2.8K] tools.ts
33
- ├── [1.6K] i18next-config.ts
34
- ├── [ 634] index.ts
35
- ├── [4.4K] language.ts
36
- ```
37
-
38
- We use English as the default language. The i18n files are organized by language and then by module. For example, the English translation for the `app` module is in `en-US/app.ts`.
39
-
40
- If you want to add a new language or modify an existing translation, you can create a new file for the language or modify the existing file. The file name should be the language code (e.g., `zh-CN` for Chinese) and the file extension should be `.ts`.
41
-
42
- For example, if you want to add french translation, you can create a new folder `fr-FR` and add the translation files in it.
43
-
44
- By default we will use `LanguagesSupported` to determine which languages are supported. For example, in login page and settings page, we will use `LanguagesSupported` to determine which languages are supported and display them in the language selection dropdown.
45
-
46
- ## Example
47
-
48
- 1. Create a new folder for the new language.
49
-
50
- ```
51
- cp -r en-US fr-FR
52
- ```
53
-
54
- 2. Modify the translation files in the new folder.
55
-
56
- 3. Add type to new language in the `language.ts` file.
57
-
58
- ```typescript
59
- export type I18nText = {
60
- 'en-US': string
61
- 'zh-Hans': string
62
- 'pt-BR': string
63
- 'es-ES': string
64
- 'fr-FR': string
65
- 'de-DE': string
66
- 'ja-JP': string
67
- 'ko-KR': string
68
- 'ru-RU': string
69
- 'it-IT': string
70
- 'uk-UA': string
71
- 'YOUR_LANGUAGE_CODE': string
72
- }
73
- ```
74
-
75
- 4. Add the new language to the `language.ts` file.
76
-
77
- ```typescript
78
-
79
- export const languages = [
80
- {
81
- value: 'en-US',
82
- name: 'English(United States)',
83
- example: 'Hello, Dify!',
84
- supported: true,
85
- },
86
- {
87
- value: 'zh-Hans',
88
- name: '简体中文',
89
- example: '你好,Dify!',
90
- supported: true,
91
- },
92
- {
93
- value: 'pt-BR',
94
- name: 'Português(Brasil)',
95
- example: 'Olá, Dify!',
96
- supported: true,
97
- },
98
- {
99
- value: 'es-ES',
100
- name: 'Español(España)',
101
- example: 'Saluton, Dify!',
102
- supported: false,
103
- },
104
- {
105
- value: 'fr-FR',
106
- name: 'Français(France)',
107
- example: 'Bonjour, Dify!',
108
- supported: false,
109
- },
110
- {
111
- value: 'de-DE',
112
- name: 'Deutsch(Deutschland)',
113
- example: 'Hallo, Dify!',
114
- supported: false,
115
- },
116
- {
117
- value: 'ja-JP',
118
- name: '日本語(日本)',
119
- example: 'こんにちは、Dify!',
120
- supported: false,
121
- },
122
- {
123
- value: 'ko-KR',
124
- name: '한국어(대한민국)',
125
- example: '안녕, Dify!',
126
- supported: true,
127
- },
128
- {
129
- value: 'ru-RU',
130
- name: 'Русский(Россия)',
131
- example: ' Привет, Dify!',
132
- supported: false,
133
- },
134
- {
135
- value: 'it-IT',
136
- name: 'Italiano(Italia)',
137
- example: 'Ciao, Dify!',
138
- supported: false,
139
- },
140
- {
141
- value: 'th-TH',
142
- name: 'ไทย(ประเทศไทย)',
143
- example: 'สวัสดี Dify!',
144
- supported: false,
145
- },
146
- {
147
- value: 'id-ID',
148
- name: 'Bahasa Indonesia',
149
- example: 'Saluto, Dify!',
150
- supported: false,
151
- },
152
- {
153
- value: 'uk-UA',
154
- name: 'Українська(Україна)',
155
- example: 'Привет, Dify!',
156
- supported: true,
157
- },
158
- // Add your language here 👇
159
- ...
160
- // Add your language here 👆
161
- ]
162
- ```
163
-
164
- 5. Don't forget to mark the supported field as `true` if the language is supported.
165
-
166
- 6. Sometime you might need to do some changes in the server side. Please change this file as well. 👇
167
- https://github.com/langgenius/dify/blob/61e4bbabaf2758354db4073cbea09fdd21a5bec1/api/constants/languages.py#L5
168
-
169
-
170
-
171
- ## Clean Up
172
-
173
- That's it! You have successfully added a new language to the project. If you want to remove a language, you can simply delete the folder and remove the language from the `language.ts` file.
174
-
175
- We have a list of languages that we support in the `language.ts` file. But some of them are not supported yet. So, they are marked as `false`. If you want to support a language, you can follow the steps above and mark the supported field as `true`.