Workflow-Engine / api /services /agent_service.py
Severian's picture
initial commit
a8b3f00
import pytz
from flask_login import current_user
from core.app.app_config.easy_ui_based_app.agent.manager import AgentConfigManager
from core.tools.tool_manager import ToolManager
from extensions.ext_database import db
from models.account import Account
from models.model import App, Conversation, EndUser, Message, MessageAgentThought
class AgentService:
@classmethod
def get_agent_logs(cls, app_model: App, conversation_id: str, message_id: str) -> dict:
"""
Service to get agent logs
"""
conversation: Conversation = (
db.session.query(Conversation)
.filter(
Conversation.id == conversation_id,
Conversation.app_id == app_model.id,
)
.first()
)
if not conversation:
raise ValueError(f"Conversation not found: {conversation_id}")
message: Message = (
db.session.query(Message)
.filter(
Message.id == message_id,
Message.conversation_id == conversation_id,
)
.first()
)
if not message:
raise ValueError(f"Message not found: {message_id}")
agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
if conversation.from_end_user_id:
# only select name field
executor = (
db.session.query(EndUser, EndUser.name).filter(EndUser.id == conversation.from_end_user_id).first()
)
else:
executor = (
db.session.query(Account, Account.name).filter(Account.id == conversation.from_account_id).first()
)
if executor:
executor = executor.name
else:
executor = "Unknown"
timezone = pytz.timezone(current_user.timezone)
result = {
"meta": {
"status": "success",
"executor": executor,
"start_time": message.created_at.astimezone(timezone).isoformat(),
"elapsed_time": message.provider_response_latency,
"total_tokens": message.answer_tokens + message.message_tokens,
"agent_mode": app_model.app_model_config.agent_mode_dict.get("strategy", "react"),
"iterations": len(agent_thoughts),
},
"iterations": [],
"files": message.message_files,
}
agent_config = AgentConfigManager.convert(app_model.app_model_config.to_dict())
agent_tools = agent_config.tools
def find_agent_tool(tool_name: str):
for agent_tool in agent_tools:
if agent_tool.tool_name == tool_name:
return agent_tool
for agent_thought in agent_thoughts:
tools = agent_thought.tools
tool_labels = agent_thought.tool_labels
tool_meta = agent_thought.tool_meta
tool_inputs = agent_thought.tool_inputs_dict
tool_outputs = agent_thought.tool_outputs_dict
tool_calls = []
for tool in tools:
tool_name = tool
tool_label = tool_labels.get(tool_name, tool_name)
tool_input = tool_inputs.get(tool_name, {})
tool_output = tool_outputs.get(tool_name, {})
tool_meta_data = tool_meta.get(tool_name, {})
tool_config = tool_meta_data.get("tool_config", {})
if tool_config.get("tool_provider_type", "") != "dataset-retrieval":
tool_icon = ToolManager.get_tool_icon(
tenant_id=app_model.tenant_id,
provider_type=tool_config.get("tool_provider_type", ""),
provider_id=tool_config.get("tool_provider", ""),
)
if not tool_icon:
tool_entity = find_agent_tool(tool_name)
if tool_entity:
tool_icon = ToolManager.get_tool_icon(
tenant_id=app_model.tenant_id,
provider_type=tool_entity.provider_type,
provider_id=tool_entity.provider_id,
)
else:
tool_icon = ""
tool_calls.append(
{
"status": "success" if not tool_meta_data.get("error") else "error",
"error": tool_meta_data.get("error"),
"time_cost": tool_meta_data.get("time_cost", 0),
"tool_name": tool_name,
"tool_label": tool_label,
"tool_input": tool_input,
"tool_output": tool_output,
"tool_parameters": tool_meta_data.get("tool_parameters", {}),
"tool_icon": tool_icon,
}
)
result["iterations"].append(
{
"tokens": agent_thought.tokens,
"tool_calls": tool_calls,
"tool_raw": {
"inputs": agent_thought.tool_input,
"outputs": agent_thought.observation,
},
"thought": agent_thought.thought,
"created_at": agent_thought.created_at.isoformat(),
"files": agent_thought.files,
}
)
return result