Spaces:
Build error
Build error
import datetime | |
import json | |
import logging | |
import random | |
import time | |
import uuid | |
from typing import Any, Optional | |
from flask_login import current_user | |
from sqlalchemy import func | |
from werkzeug.exceptions import NotFound | |
from configs import dify_config | |
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError | |
from core.model_manager import ModelManager | |
from core.model_runtime.entities.model_entities import ModelType | |
from core.rag.datasource.keyword.keyword_factory import Keyword | |
from core.rag.models.document import Document as RAGDocument | |
from core.rag.retrieval.retrieval_methods import RetrievalMethod | |
from events.dataset_event import dataset_was_deleted | |
from events.document_event import document_was_deleted | |
from extensions.ext_database import db | |
from extensions.ext_redis import redis_client | |
from libs import helper | |
from models.account import Account, TenantAccountRole | |
from models.dataset import ( | |
AppDatasetJoin, | |
Dataset, | |
DatasetCollectionBinding, | |
DatasetPermission, | |
DatasetPermissionEnum, | |
DatasetProcessRule, | |
DatasetQuery, | |
Document, | |
DocumentSegment, | |
ExternalKnowledgeBindings, | |
) | |
from models.model import UploadFile | |
from models.source import DataSourceOauthBinding | |
from services.errors.account import NoPermissionError | |
from services.errors.dataset import DatasetNameDuplicateError | |
from services.errors.document import DocumentIndexingError | |
from services.errors.file import FileNotExistsError | |
from services.external_knowledge_service import ExternalDatasetService | |
from services.feature_service import FeatureModel, FeatureService | |
from services.tag_service import TagService | |
from services.vector_service import VectorService | |
from tasks.clean_notion_document_task import clean_notion_document_task | |
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task | |
from tasks.delete_segment_from_index_task import delete_segment_from_index_task | |
from tasks.disable_segment_from_index_task import disable_segment_from_index_task | |
from tasks.document_indexing_task import document_indexing_task | |
from tasks.document_indexing_update_task import document_indexing_update_task | |
from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task | |
from tasks.recover_document_indexing_task import recover_document_indexing_task | |
from tasks.retry_document_indexing_task import retry_document_indexing_task | |
from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task | |
class DatasetService: | |
def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None): | |
query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc()) | |
if user: | |
# get permitted dataset ids | |
dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all() | |
permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None | |
if user.current_role == TenantAccountRole.DATASET_OPERATOR: | |
# only show datasets that the user has permission to access | |
if permitted_dataset_ids: | |
query = query.filter(Dataset.id.in_(permitted_dataset_ids)) | |
else: | |
return [], 0 | |
else: | |
# show all datasets that the user has permission to access | |
if permitted_dataset_ids: | |
query = query.filter( | |
db.or_( | |
Dataset.permission == DatasetPermissionEnum.ALL_TEAM, | |
db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id), | |
db.and_( | |
Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM, | |
Dataset.id.in_(permitted_dataset_ids), | |
), | |
) | |
) | |
else: | |
query = query.filter( | |
db.or_( | |
Dataset.permission == DatasetPermissionEnum.ALL_TEAM, | |
db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id), | |
) | |
) | |
else: | |
# if no user, only show datasets that are shared with all team members | |
query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM) | |
if search: | |
query = query.filter(Dataset.name.ilike(f"%{search}%")) | |
if tag_ids: | |
target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids) | |
if target_ids: | |
query = query.filter(Dataset.id.in_(target_ids)) | |
else: | |
return [], 0 | |
datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False) | |
return datasets.items, datasets.total | |
def get_process_rules(dataset_id): | |
# get the latest process rule | |
dataset_process_rule = ( | |
db.session.query(DatasetProcessRule) | |
.filter(DatasetProcessRule.dataset_id == dataset_id) | |
.order_by(DatasetProcessRule.created_at.desc()) | |
.limit(1) | |
.one_or_none() | |
) | |
if dataset_process_rule: | |
mode = dataset_process_rule.mode | |
rules = dataset_process_rule.rules_dict | |
else: | |
mode = DocumentService.DEFAULT_RULES["mode"] | |
rules = DocumentService.DEFAULT_RULES["rules"] | |
return {"mode": mode, "rules": rules} | |
def get_datasets_by_ids(ids, tenant_id): | |
datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate( | |
page=1, per_page=len(ids), max_per_page=len(ids), error_out=False | |
) | |
return datasets.items, datasets.total | |
def create_empty_dataset( | |
tenant_id: str, | |
name: str, | |
description: Optional[str], | |
indexing_technique: Optional[str], | |
account: Account, | |
permission: Optional[str] = None, | |
provider: str = "vendor", | |
external_knowledge_api_id: Optional[str] = None, | |
external_knowledge_id: Optional[str] = None, | |
): | |
# check if dataset name already exists | |
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first(): | |
raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.") | |
embedding_model = None | |
if indexing_technique == "high_quality": | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_default_model_instance( | |
tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING | |
) | |
dataset = Dataset(name=name, indexing_technique=indexing_technique) | |
# dataset = Dataset(name=name, provider=provider, config=config) | |
dataset.description = description | |
dataset.created_by = account.id | |
dataset.updated_by = account.id | |
dataset.tenant_id = tenant_id | |
dataset.embedding_model_provider = embedding_model.provider if embedding_model else None | |
dataset.embedding_model = embedding_model.model if embedding_model else None | |
dataset.permission = permission or DatasetPermissionEnum.ONLY_ME | |
dataset.provider = provider | |
db.session.add(dataset) | |
db.session.flush() | |
if provider == "external" and external_knowledge_api_id: | |
external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id) | |
if not external_knowledge_api: | |
raise ValueError("External API template not found.") | |
external_knowledge_binding = ExternalKnowledgeBindings( | |
tenant_id=tenant_id, | |
dataset_id=dataset.id, | |
external_knowledge_api_id=external_knowledge_api_id, | |
external_knowledge_id=external_knowledge_id, | |
created_by=account.id, | |
) | |
db.session.add(external_knowledge_binding) | |
db.session.commit() | |
return dataset | |
def get_dataset(dataset_id) -> Dataset: | |
return Dataset.query.filter_by(id=dataset_id).first() | |
def check_dataset_model_setting(dataset): | |
if dataset.indexing_technique == "high_quality": | |
try: | |
model_manager = ModelManager() | |
model_manager.get_model_instance( | |
tenant_id=dataset.tenant_id, | |
provider=dataset.embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=dataset.embedding_model, | |
) | |
except LLMBadRequestError: | |
raise ValueError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider." | |
) | |
except ProviderTokenNotInitError as ex: | |
raise ValueError(f"The dataset in unavailable, due to: {ex.description}") | |
def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str): | |
try: | |
model_manager = ModelManager() | |
model_manager.get_model_instance( | |
tenant_id=tenant_id, | |
provider=embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=embedding_model, | |
) | |
except LLMBadRequestError: | |
raise ValueError( | |
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider." | |
) | |
except ProviderTokenNotInitError as ex: | |
raise ValueError(f"The dataset in unavailable, due to: {ex.description}") | |
def update_dataset(dataset_id, data, user): | |
dataset = DatasetService.get_dataset(dataset_id) | |
DatasetService.check_dataset_permission(dataset, user) | |
if dataset.provider == "external": | |
dataset.retrieval_model = data.get("external_retrieval_model", None) | |
dataset.name = data.get("name", dataset.name) | |
dataset.description = data.get("description", "") | |
external_knowledge_id = data.get("external_knowledge_id", None) | |
dataset.permission = data.get("permission") | |
db.session.add(dataset) | |
if not external_knowledge_id: | |
raise ValueError("External knowledge id is required.") | |
external_knowledge_api_id = data.get("external_knowledge_api_id", None) | |
if not external_knowledge_api_id: | |
raise ValueError("External knowledge api id is required.") | |
external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(dataset_id=dataset_id).first() | |
if ( | |
external_knowledge_binding.external_knowledge_id != external_knowledge_id | |
or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id | |
): | |
external_knowledge_binding.external_knowledge_id = external_knowledge_id | |
external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id | |
db.session.add(external_knowledge_binding) | |
db.session.commit() | |
else: | |
data.pop("partial_member_list", None) | |
data.pop("external_knowledge_api_id", None) | |
data.pop("external_knowledge_id", None) | |
data.pop("external_retrieval_model", None) | |
filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"} | |
action = None | |
if dataset.indexing_technique != data["indexing_technique"]: | |
# if update indexing_technique | |
if data["indexing_technique"] == "economy": | |
action = "remove" | |
filtered_data["embedding_model"] = None | |
filtered_data["embedding_model_provider"] = None | |
filtered_data["collection_binding_id"] = None | |
elif data["indexing_technique"] == "high_quality": | |
action = "add" | |
# get embedding model setting | |
try: | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
provider=data["embedding_model_provider"], | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=data["embedding_model"], | |
) | |
filtered_data["embedding_model"] = embedding_model.model | |
filtered_data["embedding_model_provider"] = embedding_model.provider | |
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
embedding_model.provider, embedding_model.model | |
) | |
filtered_data["collection_binding_id"] = dataset_collection_binding.id | |
except LLMBadRequestError: | |
raise ValueError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider." | |
) | |
except ProviderTokenNotInitError as ex: | |
raise ValueError(ex.description) | |
else: | |
if ( | |
data["embedding_model_provider"] != dataset.embedding_model_provider | |
or data["embedding_model"] != dataset.embedding_model | |
): | |
action = "update" | |
try: | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
provider=data["embedding_model_provider"], | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=data["embedding_model"], | |
) | |
filtered_data["embedding_model"] = embedding_model.model | |
filtered_data["embedding_model_provider"] = embedding_model.provider | |
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
embedding_model.provider, embedding_model.model | |
) | |
filtered_data["collection_binding_id"] = dataset_collection_binding.id | |
except LLMBadRequestError: | |
raise ValueError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider." | |
) | |
except ProviderTokenNotInitError as ex: | |
raise ValueError(ex.description) | |
filtered_data["updated_by"] = user.id | |
filtered_data["updated_at"] = datetime.datetime.now() | |
# update Retrieval model | |
filtered_data["retrieval_model"] = data["retrieval_model"] | |
dataset.query.filter_by(id=dataset_id).update(filtered_data) | |
db.session.commit() | |
if action: | |
deal_dataset_vector_index_task.delay(dataset_id, action) | |
return dataset | |
def delete_dataset(dataset_id, user): | |
dataset = DatasetService.get_dataset(dataset_id) | |
if dataset is None: | |
return False | |
DatasetService.check_dataset_permission(dataset, user) | |
dataset_was_deleted.send(dataset) | |
db.session.delete(dataset) | |
db.session.commit() | |
return True | |
def dataset_use_check(dataset_id) -> bool: | |
count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count() | |
if count > 0: | |
return True | |
return False | |
def check_dataset_permission(dataset, user): | |
if dataset.tenant_id != user.current_tenant_id: | |
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}") | |
raise NoPermissionError("You do not have permission to access this dataset.") | |
if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id: | |
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}") | |
raise NoPermissionError("You do not have permission to access this dataset.") | |
if dataset.permission == "partial_members": | |
user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first() | |
if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id: | |
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}") | |
raise NoPermissionError("You do not have permission to access this dataset.") | |
def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None): | |
if dataset.permission == DatasetPermissionEnum.ONLY_ME: | |
if dataset.created_by != user.id: | |
raise NoPermissionError("You do not have permission to access this dataset.") | |
elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM: | |
if not any( | |
dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all() | |
): | |
raise NoPermissionError("You do not have permission to access this dataset.") | |
def get_dataset_queries(dataset_id: str, page: int, per_page: int): | |
dataset_queries = ( | |
DatasetQuery.query.filter_by(dataset_id=dataset_id) | |
.order_by(db.desc(DatasetQuery.created_at)) | |
.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False) | |
) | |
return dataset_queries.items, dataset_queries.total | |
def get_related_apps(dataset_id: str): | |
return ( | |
AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) | |
.order_by(db.desc(AppDatasetJoin.created_at)) | |
.all() | |
) | |
class DocumentService: | |
DEFAULT_RULES = { | |
"mode": "custom", | |
"rules": { | |
"pre_processing_rules": [ | |
{"id": "remove_extra_spaces", "enabled": True}, | |
{"id": "remove_urls_emails", "enabled": False}, | |
], | |
"segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50}, | |
}, | |
} | |
DOCUMENT_METADATA_SCHEMA = { | |
"book": { | |
"title": str, | |
"language": str, | |
"author": str, | |
"publisher": str, | |
"publication_date": str, | |
"isbn": str, | |
"category": str, | |
}, | |
"web_page": { | |
"title": str, | |
"url": str, | |
"language": str, | |
"publish_date": str, | |
"author/publisher": str, | |
"topic/keywords": str, | |
"description": str, | |
}, | |
"paper": { | |
"title": str, | |
"language": str, | |
"author": str, | |
"publish_date": str, | |
"journal/conference_name": str, | |
"volume/issue/page_numbers": str, | |
"doi": str, | |
"topic/keywords": str, | |
"abstract": str, | |
}, | |
"social_media_post": { | |
"platform": str, | |
"author/username": str, | |
"publish_date": str, | |
"post_url": str, | |
"topic/tags": str, | |
}, | |
"wikipedia_entry": { | |
"title": str, | |
"language": str, | |
"web_page_url": str, | |
"last_edit_date": str, | |
"editor/contributor": str, | |
"summary/introduction": str, | |
}, | |
"personal_document": { | |
"title": str, | |
"author": str, | |
"creation_date": str, | |
"last_modified_date": str, | |
"document_type": str, | |
"tags/category": str, | |
}, | |
"business_document": { | |
"title": str, | |
"author": str, | |
"creation_date": str, | |
"last_modified_date": str, | |
"document_type": str, | |
"department/team": str, | |
}, | |
"im_chat_log": { | |
"chat_platform": str, | |
"chat_participants/group_name": str, | |
"start_date": str, | |
"end_date": str, | |
"summary": str, | |
}, | |
"synced_from_notion": { | |
"title": str, | |
"language": str, | |
"author/creator": str, | |
"creation_date": str, | |
"last_modified_date": str, | |
"notion_page_link": str, | |
"category/tags": str, | |
"description": str, | |
}, | |
"synced_from_github": { | |
"repository_name": str, | |
"repository_description": str, | |
"repository_owner/organization": str, | |
"code_filename": str, | |
"code_file_path": str, | |
"programming_language": str, | |
"github_link": str, | |
"open_source_license": str, | |
"commit_date": str, | |
"commit_author": str, | |
}, | |
"others": dict, | |
} | |
def get_document(dataset_id: str, document_id: str) -> Optional[Document]: | |
document = ( | |
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first() | |
) | |
return document | |
def get_document_by_id(document_id: str) -> Optional[Document]: | |
document = db.session.query(Document).filter(Document.id == document_id).first() | |
return document | |
def get_document_by_dataset_id(dataset_id: str) -> list[Document]: | |
documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all() | |
return documents | |
def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]: | |
documents = ( | |
db.session.query(Document) | |
.filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"])) | |
.all() | |
) | |
return documents | |
def get_batch_documents(dataset_id: str, batch: str) -> list[Document]: | |
documents = ( | |
db.session.query(Document) | |
.filter( | |
Document.batch == batch, | |
Document.dataset_id == dataset_id, | |
Document.tenant_id == current_user.current_tenant_id, | |
) | |
.all() | |
) | |
return documents | |
def get_document_file_detail(file_id: str): | |
file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none() | |
return file_detail | |
def check_archived(document): | |
if document.archived: | |
return True | |
else: | |
return False | |
def delete_document(document): | |
# trigger document_was_deleted signal | |
file_id = None | |
if document.data_source_type == "upload_file": | |
if document.data_source_info: | |
data_source_info = document.data_source_info_dict | |
if data_source_info and "upload_file_id" in data_source_info: | |
file_id = data_source_info["upload_file_id"] | |
document_was_deleted.send( | |
document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id | |
) | |
db.session.delete(document) | |
db.session.commit() | |
def rename_document(dataset_id: str, document_id: str, name: str) -> Document: | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise ValueError("Dataset not found.") | |
document = DocumentService.get_document(dataset_id, document_id) | |
if not document: | |
raise ValueError("Document not found.") | |
if document.tenant_id != current_user.current_tenant_id: | |
raise ValueError("No permission.") | |
document.name = name | |
db.session.add(document) | |
db.session.commit() | |
return document | |
def pause_document(document): | |
if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}: | |
raise DocumentIndexingError() | |
# update document to be paused | |
document.is_paused = True | |
document.paused_by = current_user.id | |
document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
db.session.add(document) | |
db.session.commit() | |
# set document paused flag | |
indexing_cache_key = "document_{}_is_paused".format(document.id) | |
redis_client.setnx(indexing_cache_key, "True") | |
def recover_document(document): | |
if not document.is_paused: | |
raise DocumentIndexingError() | |
# update document to be recover | |
document.is_paused = False | |
document.paused_by = None | |
document.paused_at = None | |
db.session.add(document) | |
db.session.commit() | |
# delete paused flag | |
indexing_cache_key = "document_{}_is_paused".format(document.id) | |
redis_client.delete(indexing_cache_key) | |
# trigger async task | |
recover_document_indexing_task.delay(document.dataset_id, document.id) | |
def retry_document(dataset_id: str, documents: list[Document]): | |
for document in documents: | |
# add retry flag | |
retry_indexing_cache_key = "document_{}_is_retried".format(document.id) | |
cache_result = redis_client.get(retry_indexing_cache_key) | |
if cache_result is not None: | |
raise ValueError("Document is being retried, please try again later") | |
# retry document indexing | |
document.indexing_status = "waiting" | |
db.session.add(document) | |
db.session.commit() | |
redis_client.setex(retry_indexing_cache_key, 600, 1) | |
# trigger async task | |
document_ids = [document.id for document in documents] | |
retry_document_indexing_task.delay(dataset_id, document_ids) | |
def sync_website_document(dataset_id: str, document: Document): | |
# add sync flag | |
sync_indexing_cache_key = "document_{}_is_sync".format(document.id) | |
cache_result = redis_client.get(sync_indexing_cache_key) | |
if cache_result is not None: | |
raise ValueError("Document is being synced, please try again later") | |
# sync document indexing | |
document.indexing_status = "waiting" | |
data_source_info = document.data_source_info_dict | |
data_source_info["mode"] = "scrape" | |
document.data_source_info = json.dumps(data_source_info, ensure_ascii=False) | |
db.session.add(document) | |
db.session.commit() | |
redis_client.setex(sync_indexing_cache_key, 600, 1) | |
sync_website_document_indexing_task.delay(dataset_id, document.id) | |
def get_documents_position(dataset_id): | |
document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first() | |
if document: | |
return document.position + 1 | |
else: | |
return 1 | |
def save_document_with_dataset_id( | |
dataset: Dataset, | |
document_data: dict, | |
account: Account | Any, | |
dataset_process_rule: Optional[DatasetProcessRule] = None, | |
created_from: str = "web", | |
): | |
# check document limit | |
features = FeatureService.get_features(current_user.current_tenant_id) | |
if features.billing.enabled: | |
if "original_document_id" not in document_data or not document_data["original_document_id"]: | |
count = 0 | |
if document_data["data_source"]["type"] == "upload_file": | |
upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] | |
count = len(upload_file_list) | |
elif document_data["data_source"]["type"] == "notion_import": | |
notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] | |
for notion_info in notion_info_list: | |
count = count + len(notion_info["pages"]) | |
elif document_data["data_source"]["type"] == "website_crawl": | |
website_info = document_data["data_source"]["info_list"]["website_info_list"] | |
count = len(website_info["urls"]) | |
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT) | |
if count > batch_upload_limit: | |
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") | |
DocumentService.check_documents_upload_quota(count, features) | |
# if dataset is empty, update dataset data_source_type | |
if not dataset.data_source_type: | |
dataset.data_source_type = document_data["data_source"]["type"] | |
if not dataset.indexing_technique: | |
if ( | |
"indexing_technique" not in document_data | |
or document_data["indexing_technique"] not in Dataset.INDEXING_TECHNIQUE_LIST | |
): | |
raise ValueError("Indexing technique is required") | |
dataset.indexing_technique = document_data["indexing_technique"] | |
if document_data["indexing_technique"] == "high_quality": | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_default_model_instance( | |
tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING | |
) | |
dataset.embedding_model = embedding_model.model | |
dataset.embedding_model_provider = embedding_model.provider | |
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
embedding_model.provider, embedding_model.model | |
) | |
dataset.collection_binding_id = dataset_collection_binding.id | |
if not dataset.retrieval_model: | |
default_retrieval_model = { | |
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value, | |
"reranking_enable": False, | |
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""}, | |
"top_k": 2, | |
"score_threshold_enabled": False, | |
} | |
dataset.retrieval_model = document_data.get("retrieval_model") or default_retrieval_model | |
documents = [] | |
if document_data.get("original_document_id"): | |
document = DocumentService.update_document_with_dataset_id(dataset, document_data, account) | |
documents.append(document) | |
batch = document.batch | |
else: | |
batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999)) | |
# save process rule | |
if not dataset_process_rule: | |
process_rule = document_data["process_rule"] | |
if process_rule["mode"] == "custom": | |
dataset_process_rule = DatasetProcessRule( | |
dataset_id=dataset.id, | |
mode=process_rule["mode"], | |
rules=json.dumps(process_rule["rules"]), | |
created_by=account.id, | |
) | |
elif process_rule["mode"] == "automatic": | |
dataset_process_rule = DatasetProcessRule( | |
dataset_id=dataset.id, | |
mode=process_rule["mode"], | |
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES), | |
created_by=account.id, | |
) | |
db.session.add(dataset_process_rule) | |
db.session.commit() | |
lock_name = "add_document_lock_dataset_id_{}".format(dataset.id) | |
with redis_client.lock(lock_name, timeout=600): | |
position = DocumentService.get_documents_position(dataset.id) | |
document_ids = [] | |
duplicate_document_ids = [] | |
if document_data["data_source"]["type"] == "upload_file": | |
upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] | |
for file_id in upload_file_list: | |
file = ( | |
db.session.query(UploadFile) | |
.filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id) | |
.first() | |
) | |
# raise error if file not found | |
if not file: | |
raise FileNotExistsError() | |
file_name = file.name | |
data_source_info = { | |
"upload_file_id": file_id, | |
} | |
# check duplicate | |
if document_data.get("duplicate", False): | |
document = Document.query.filter_by( | |
dataset_id=dataset.id, | |
tenant_id=current_user.current_tenant_id, | |
data_source_type="upload_file", | |
enabled=True, | |
name=file_name, | |
).first() | |
if document: | |
document.dataset_process_rule_id = dataset_process_rule.id | |
document.updated_at = datetime.datetime.utcnow() | |
document.created_from = created_from | |
document.doc_form = document_data["doc_form"] | |
document.doc_language = document_data["doc_language"] | |
document.data_source_info = json.dumps(data_source_info) | |
document.batch = batch | |
document.indexing_status = "waiting" | |
db.session.add(document) | |
documents.append(document) | |
duplicate_document_ids.append(document.id) | |
continue | |
document = DocumentService.build_document( | |
dataset, | |
dataset_process_rule.id, | |
document_data["data_source"]["type"], | |
document_data["doc_form"], | |
document_data["doc_language"], | |
data_source_info, | |
created_from, | |
position, | |
account, | |
file_name, | |
batch, | |
) | |
db.session.add(document) | |
db.session.flush() | |
document_ids.append(document.id) | |
documents.append(document) | |
position += 1 | |
elif document_data["data_source"]["type"] == "notion_import": | |
notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] | |
exist_page_ids = [] | |
exist_document = {} | |
documents = Document.query.filter_by( | |
dataset_id=dataset.id, | |
tenant_id=current_user.current_tenant_id, | |
data_source_type="notion_import", | |
enabled=True, | |
).all() | |
if documents: | |
for document in documents: | |
data_source_info = json.loads(document.data_source_info) | |
exist_page_ids.append(data_source_info["notion_page_id"]) | |
exist_document[data_source_info["notion_page_id"]] = document.id | |
for notion_info in notion_info_list: | |
workspace_id = notion_info["workspace_id"] | |
data_source_binding = DataSourceOauthBinding.query.filter( | |
db.and_( | |
DataSourceOauthBinding.tenant_id == current_user.current_tenant_id, | |
DataSourceOauthBinding.provider == "notion", | |
DataSourceOauthBinding.disabled == False, | |
DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"', | |
) | |
).first() | |
if not data_source_binding: | |
raise ValueError("Data source binding not found.") | |
for page in notion_info["pages"]: | |
if page["page_id"] not in exist_page_ids: | |
data_source_info = { | |
"notion_workspace_id": workspace_id, | |
"notion_page_id": page["page_id"], | |
"notion_page_icon": page["page_icon"], | |
"type": page["type"], | |
} | |
document = DocumentService.build_document( | |
dataset, | |
dataset_process_rule.id, | |
document_data["data_source"]["type"], | |
document_data["doc_form"], | |
document_data["doc_language"], | |
data_source_info, | |
created_from, | |
position, | |
account, | |
page["page_name"], | |
batch, | |
) | |
db.session.add(document) | |
db.session.flush() | |
document_ids.append(document.id) | |
documents.append(document) | |
position += 1 | |
else: | |
exist_document.pop(page["page_id"]) | |
# delete not selected documents | |
if len(exist_document) > 0: | |
clean_notion_document_task.delay(list(exist_document.values()), dataset.id) | |
elif document_data["data_source"]["type"] == "website_crawl": | |
website_info = document_data["data_source"]["info_list"]["website_info_list"] | |
urls = website_info["urls"] | |
for url in urls: | |
data_source_info = { | |
"url": url, | |
"provider": website_info["provider"], | |
"job_id": website_info["job_id"], | |
"only_main_content": website_info.get("only_main_content", False), | |
"mode": "crawl", | |
} | |
if len(url) > 255: | |
document_name = url[:200] + "..." | |
else: | |
document_name = url | |
document = DocumentService.build_document( | |
dataset, | |
dataset_process_rule.id, | |
document_data["data_source"]["type"], | |
document_data["doc_form"], | |
document_data["doc_language"], | |
data_source_info, | |
created_from, | |
position, | |
account, | |
document_name, | |
batch, | |
) | |
db.session.add(document) | |
db.session.flush() | |
document_ids.append(document.id) | |
documents.append(document) | |
position += 1 | |
db.session.commit() | |
# trigger async task | |
if document_ids: | |
document_indexing_task.delay(dataset.id, document_ids) | |
if duplicate_document_ids: | |
duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids) | |
return documents, batch | |
def check_documents_upload_quota(count: int, features: FeatureModel): | |
can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size | |
if count > can_upload_size: | |
raise ValueError( | |
f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded." | |
) | |
def build_document( | |
dataset: Dataset, | |
process_rule_id: str, | |
data_source_type: str, | |
document_form: str, | |
document_language: str, | |
data_source_info: dict, | |
created_from: str, | |
position: int, | |
account: Account, | |
name: str, | |
batch: str, | |
): | |
document = Document( | |
tenant_id=dataset.tenant_id, | |
dataset_id=dataset.id, | |
position=position, | |
data_source_type=data_source_type, | |
data_source_info=json.dumps(data_source_info), | |
dataset_process_rule_id=process_rule_id, | |
batch=batch, | |
name=name, | |
created_from=created_from, | |
created_by=account.id, | |
doc_form=document_form, | |
doc_language=document_language, | |
) | |
return document | |
def get_tenant_documents_count(): | |
documents_count = Document.query.filter( | |
Document.completed_at.isnot(None), | |
Document.enabled == True, | |
Document.archived == False, | |
Document.tenant_id == current_user.current_tenant_id, | |
).count() | |
return documents_count | |
def update_document_with_dataset_id( | |
dataset: Dataset, | |
document_data: dict, | |
account: Account, | |
dataset_process_rule: Optional[DatasetProcessRule] = None, | |
created_from: str = "web", | |
): | |
DatasetService.check_dataset_model_setting(dataset) | |
document = DocumentService.get_document(dataset.id, document_data["original_document_id"]) | |
if document is None: | |
raise NotFound("Document not found") | |
if document.display_status != "available": | |
raise ValueError("Document is not available") | |
# save process rule | |
if document_data.get("process_rule"): | |
process_rule = document_data["process_rule"] | |
if process_rule["mode"] == "custom": | |
dataset_process_rule = DatasetProcessRule( | |
dataset_id=dataset.id, | |
mode=process_rule["mode"], | |
rules=json.dumps(process_rule["rules"]), | |
created_by=account.id, | |
) | |
elif process_rule["mode"] == "automatic": | |
dataset_process_rule = DatasetProcessRule( | |
dataset_id=dataset.id, | |
mode=process_rule["mode"], | |
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES), | |
created_by=account.id, | |
) | |
db.session.add(dataset_process_rule) | |
db.session.commit() | |
document.dataset_process_rule_id = dataset_process_rule.id | |
# update document data source | |
if document_data.get("data_source"): | |
file_name = "" | |
data_source_info = {} | |
if document_data["data_source"]["type"] == "upload_file": | |
upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] | |
for file_id in upload_file_list: | |
file = ( | |
db.session.query(UploadFile) | |
.filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id) | |
.first() | |
) | |
# raise error if file not found | |
if not file: | |
raise FileNotExistsError() | |
file_name = file.name | |
data_source_info = { | |
"upload_file_id": file_id, | |
} | |
elif document_data["data_source"]["type"] == "notion_import": | |
notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] | |
for notion_info in notion_info_list: | |
workspace_id = notion_info["workspace_id"] | |
data_source_binding = DataSourceOauthBinding.query.filter( | |
db.and_( | |
DataSourceOauthBinding.tenant_id == current_user.current_tenant_id, | |
DataSourceOauthBinding.provider == "notion", | |
DataSourceOauthBinding.disabled == False, | |
DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"', | |
) | |
).first() | |
if not data_source_binding: | |
raise ValueError("Data source binding not found.") | |
for page in notion_info["pages"]: | |
data_source_info = { | |
"notion_workspace_id": workspace_id, | |
"notion_page_id": page["page_id"], | |
"notion_page_icon": page["page_icon"], | |
"type": page["type"], | |
} | |
elif document_data["data_source"]["type"] == "website_crawl": | |
website_info = document_data["data_source"]["info_list"]["website_info_list"] | |
urls = website_info["urls"] | |
for url in urls: | |
data_source_info = { | |
"url": url, | |
"provider": website_info["provider"], | |
"job_id": website_info["job_id"], | |
"only_main_content": website_info.get("only_main_content", False), | |
"mode": "crawl", | |
} | |
document.data_source_type = document_data["data_source"]["type"] | |
document.data_source_info = json.dumps(data_source_info) | |
document.name = file_name | |
# update document name | |
if document_data.get("name"): | |
document.name = document_data["name"] | |
# update document to be waiting | |
document.indexing_status = "waiting" | |
document.completed_at = None | |
document.processing_started_at = None | |
document.parsing_completed_at = None | |
document.cleaning_completed_at = None | |
document.splitting_completed_at = None | |
document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
document.created_from = created_from | |
document.doc_form = document_data["doc_form"] | |
db.session.add(document) | |
db.session.commit() | |
# update document segment | |
update_params = {DocumentSegment.status: "re_segment"} | |
DocumentSegment.query.filter_by(document_id=document.id).update(update_params) | |
db.session.commit() | |
# trigger async task | |
document_indexing_update_task.delay(document.dataset_id, document.id) | |
return document | |
def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account): | |
features = FeatureService.get_features(current_user.current_tenant_id) | |
if features.billing.enabled: | |
count = 0 | |
if document_data["data_source"]["type"] == "upload_file": | |
upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] | |
count = len(upload_file_list) | |
elif document_data["data_source"]["type"] == "notion_import": | |
notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] | |
for notion_info in notion_info_list: | |
count = count + len(notion_info["pages"]) | |
elif document_data["data_source"]["type"] == "website_crawl": | |
website_info = document_data["data_source"]["info_list"]["website_info_list"] | |
count = len(website_info["urls"]) | |
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT) | |
if count > batch_upload_limit: | |
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") | |
DocumentService.check_documents_upload_quota(count, features) | |
dataset_collection_binding_id = None | |
retrieval_model = None | |
if document_data["indexing_technique"] == "high_quality": | |
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
document_data["embedding_model_provider"], document_data["embedding_model"] | |
) | |
dataset_collection_binding_id = dataset_collection_binding.id | |
if document_data.get("retrieval_model"): | |
retrieval_model = document_data["retrieval_model"] | |
else: | |
default_retrieval_model = { | |
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value, | |
"reranking_enable": False, | |
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""}, | |
"top_k": 2, | |
"score_threshold_enabled": False, | |
} | |
retrieval_model = default_retrieval_model | |
# save dataset | |
dataset = Dataset( | |
tenant_id=tenant_id, | |
name="", | |
data_source_type=document_data["data_source"]["type"], | |
indexing_technique=document_data.get("indexing_technique", "high_quality"), | |
created_by=account.id, | |
embedding_model=document_data.get("embedding_model"), | |
embedding_model_provider=document_data.get("embedding_model_provider"), | |
collection_binding_id=dataset_collection_binding_id, | |
retrieval_model=retrieval_model, | |
) | |
db.session.add(dataset) | |
db.session.flush() | |
documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account) | |
cut_length = 18 | |
cut_name = documents[0].name[:cut_length] | |
dataset.name = cut_name + "..." | |
dataset.description = "useful for when you want to answer queries about the " + documents[0].name | |
db.session.commit() | |
return dataset, documents, batch | |
def document_create_args_validate(cls, args: dict): | |
if "original_document_id" not in args or not args["original_document_id"]: | |
DocumentService.data_source_args_validate(args) | |
DocumentService.process_rule_args_validate(args) | |
else: | |
if ("data_source" not in args or not args["data_source"]) and ( | |
"process_rule" not in args or not args["process_rule"] | |
): | |
raise ValueError("Data source or Process rule is required") | |
else: | |
if args.get("data_source"): | |
DocumentService.data_source_args_validate(args) | |
if args.get("process_rule"): | |
DocumentService.process_rule_args_validate(args) | |
def data_source_args_validate(cls, args: dict): | |
if "data_source" not in args or not args["data_source"]: | |
raise ValueError("Data source is required") | |
if not isinstance(args["data_source"], dict): | |
raise ValueError("Data source is invalid") | |
if "type" not in args["data_source"] or not args["data_source"]["type"]: | |
raise ValueError("Data source type is required") | |
if args["data_source"]["type"] not in Document.DATA_SOURCES: | |
raise ValueError("Data source type is invalid") | |
if "info_list" not in args["data_source"] or not args["data_source"]["info_list"]: | |
raise ValueError("Data source info is required") | |
if args["data_source"]["type"] == "upload_file": | |
if ( | |
"file_info_list" not in args["data_source"]["info_list"] | |
or not args["data_source"]["info_list"]["file_info_list"] | |
): | |
raise ValueError("File source info is required") | |
if args["data_source"]["type"] == "notion_import": | |
if ( | |
"notion_info_list" not in args["data_source"]["info_list"] | |
or not args["data_source"]["info_list"]["notion_info_list"] | |
): | |
raise ValueError("Notion source info is required") | |
if args["data_source"]["type"] == "website_crawl": | |
if ( | |
"website_info_list" not in args["data_source"]["info_list"] | |
or not args["data_source"]["info_list"]["website_info_list"] | |
): | |
raise ValueError("Website source info is required") | |
def process_rule_args_validate(cls, args: dict): | |
if "process_rule" not in args or not args["process_rule"]: | |
raise ValueError("Process rule is required") | |
if not isinstance(args["process_rule"], dict): | |
raise ValueError("Process rule is invalid") | |
if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]: | |
raise ValueError("Process rule mode is required") | |
if args["process_rule"]["mode"] not in DatasetProcessRule.MODES: | |
raise ValueError("Process rule mode is invalid") | |
if args["process_rule"]["mode"] == "automatic": | |
args["process_rule"]["rules"] = {} | |
else: | |
if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]: | |
raise ValueError("Process rule rules is required") | |
if not isinstance(args["process_rule"]["rules"], dict): | |
raise ValueError("Process rule rules is invalid") | |
if ( | |
"pre_processing_rules" not in args["process_rule"]["rules"] | |
or args["process_rule"]["rules"]["pre_processing_rules"] is None | |
): | |
raise ValueError("Process rule pre_processing_rules is required") | |
if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list): | |
raise ValueError("Process rule pre_processing_rules is invalid") | |
unique_pre_processing_rule_dicts = {} | |
for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]: | |
if "id" not in pre_processing_rule or not pre_processing_rule["id"]: | |
raise ValueError("Process rule pre_processing_rules id is required") | |
if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES: | |
raise ValueError("Process rule pre_processing_rules id is invalid") | |
if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None: | |
raise ValueError("Process rule pre_processing_rules enabled is required") | |
if not isinstance(pre_processing_rule["enabled"], bool): | |
raise ValueError("Process rule pre_processing_rules enabled is invalid") | |
unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule | |
args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values()) | |
if ( | |
"segmentation" not in args["process_rule"]["rules"] | |
or args["process_rule"]["rules"]["segmentation"] is None | |
): | |
raise ValueError("Process rule segmentation is required") | |
if not isinstance(args["process_rule"]["rules"]["segmentation"], dict): | |
raise ValueError("Process rule segmentation is invalid") | |
if ( | |
"separator" not in args["process_rule"]["rules"]["segmentation"] | |
or not args["process_rule"]["rules"]["segmentation"]["separator"] | |
): | |
raise ValueError("Process rule segmentation separator is required") | |
if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str): | |
raise ValueError("Process rule segmentation separator is invalid") | |
if ( | |
"max_tokens" not in args["process_rule"]["rules"]["segmentation"] | |
or not args["process_rule"]["rules"]["segmentation"]["max_tokens"] | |
): | |
raise ValueError("Process rule segmentation max_tokens is required") | |
if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int): | |
raise ValueError("Process rule segmentation max_tokens is invalid") | |
def estimate_args_validate(cls, args: dict): | |
if "info_list" not in args or not args["info_list"]: | |
raise ValueError("Data source info is required") | |
if not isinstance(args["info_list"], dict): | |
raise ValueError("Data info is invalid") | |
if "process_rule" not in args or not args["process_rule"]: | |
raise ValueError("Process rule is required") | |
if not isinstance(args["process_rule"], dict): | |
raise ValueError("Process rule is invalid") | |
if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]: | |
raise ValueError("Process rule mode is required") | |
if args["process_rule"]["mode"] not in DatasetProcessRule.MODES: | |
raise ValueError("Process rule mode is invalid") | |
if args["process_rule"]["mode"] == "automatic": | |
args["process_rule"]["rules"] = {} | |
else: | |
if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]: | |
raise ValueError("Process rule rules is required") | |
if not isinstance(args["process_rule"]["rules"], dict): | |
raise ValueError("Process rule rules is invalid") | |
if ( | |
"pre_processing_rules" not in args["process_rule"]["rules"] | |
or args["process_rule"]["rules"]["pre_processing_rules"] is None | |
): | |
raise ValueError("Process rule pre_processing_rules is required") | |
if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list): | |
raise ValueError("Process rule pre_processing_rules is invalid") | |
unique_pre_processing_rule_dicts = {} | |
for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]: | |
if "id" not in pre_processing_rule or not pre_processing_rule["id"]: | |
raise ValueError("Process rule pre_processing_rules id is required") | |
if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES: | |
raise ValueError("Process rule pre_processing_rules id is invalid") | |
if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None: | |
raise ValueError("Process rule pre_processing_rules enabled is required") | |
if not isinstance(pre_processing_rule["enabled"], bool): | |
raise ValueError("Process rule pre_processing_rules enabled is invalid") | |
unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule | |
args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values()) | |
if ( | |
"segmentation" not in args["process_rule"]["rules"] | |
or args["process_rule"]["rules"]["segmentation"] is None | |
): | |
raise ValueError("Process rule segmentation is required") | |
if not isinstance(args["process_rule"]["rules"]["segmentation"], dict): | |
raise ValueError("Process rule segmentation is invalid") | |
if ( | |
"separator" not in args["process_rule"]["rules"]["segmentation"] | |
or not args["process_rule"]["rules"]["segmentation"]["separator"] | |
): | |
raise ValueError("Process rule segmentation separator is required") | |
if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str): | |
raise ValueError("Process rule segmentation separator is invalid") | |
if ( | |
"max_tokens" not in args["process_rule"]["rules"]["segmentation"] | |
or not args["process_rule"]["rules"]["segmentation"]["max_tokens"] | |
): | |
raise ValueError("Process rule segmentation max_tokens is required") | |
if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int): | |
raise ValueError("Process rule segmentation max_tokens is invalid") | |
class SegmentService: | |
def segment_create_args_validate(cls, args: dict, document: Document): | |
if document.doc_form == "qa_model": | |
if "answer" not in args or not args["answer"]: | |
raise ValueError("Answer is required") | |
if not args["answer"].strip(): | |
raise ValueError("Answer is empty") | |
if "content" not in args or not args["content"] or not args["content"].strip(): | |
raise ValueError("Content is empty") | |
def create_segment(cls, args: dict, document: Document, dataset: Dataset): | |
content = args["content"] | |
doc_id = str(uuid.uuid4()) | |
segment_hash = helper.generate_text_hash(content) | |
tokens = 0 | |
if dataset.indexing_technique == "high_quality": | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
provider=dataset.embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=dataset.embedding_model, | |
) | |
# calc embedding use tokens | |
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) | |
lock_name = "add_segment_lock_document_id_{}".format(document.id) | |
with redis_client.lock(lock_name, timeout=600): | |
max_position = ( | |
db.session.query(func.max(DocumentSegment.position)) | |
.filter(DocumentSegment.document_id == document.id) | |
.scalar() | |
) | |
segment_document = DocumentSegment( | |
tenant_id=current_user.current_tenant_id, | |
dataset_id=document.dataset_id, | |
document_id=document.id, | |
index_node_id=doc_id, | |
index_node_hash=segment_hash, | |
position=max_position + 1 if max_position else 1, | |
content=content, | |
word_count=len(content), | |
tokens=tokens, | |
status="completed", | |
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
created_by=current_user.id, | |
) | |
if document.doc_form == "qa_model": | |
segment_document.answer = args["answer"] | |
db.session.add(segment_document) | |
db.session.commit() | |
# save vector index | |
try: | |
VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset) | |
except Exception as e: | |
logging.exception("create segment index failed") | |
segment_document.enabled = False | |
segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment_document.status = "error" | |
segment_document.error = str(e) | |
db.session.commit() | |
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first() | |
return segment | |
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset): | |
lock_name = "multi_add_segment_lock_document_id_{}".format(document.id) | |
with redis_client.lock(lock_name, timeout=600): | |
embedding_model = None | |
if dataset.indexing_technique == "high_quality": | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
provider=dataset.embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=dataset.embedding_model, | |
) | |
max_position = ( | |
db.session.query(func.max(DocumentSegment.position)) | |
.filter(DocumentSegment.document_id == document.id) | |
.scalar() | |
) | |
pre_segment_data_list = [] | |
segment_data_list = [] | |
keywords_list = [] | |
for segment_item in segments: | |
content = segment_item["content"] | |
doc_id = str(uuid.uuid4()) | |
segment_hash = helper.generate_text_hash(content) | |
tokens = 0 | |
if dataset.indexing_technique == "high_quality" and embedding_model: | |
# calc embedding use tokens | |
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) | |
segment_document = DocumentSegment( | |
tenant_id=current_user.current_tenant_id, | |
dataset_id=document.dataset_id, | |
document_id=document.id, | |
index_node_id=doc_id, | |
index_node_hash=segment_hash, | |
position=max_position + 1 if max_position else 1, | |
content=content, | |
word_count=len(content), | |
tokens=tokens, | |
status="completed", | |
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
created_by=current_user.id, | |
) | |
if document.doc_form == "qa_model": | |
segment_document.answer = segment_item["answer"] | |
db.session.add(segment_document) | |
segment_data_list.append(segment_document) | |
pre_segment_data_list.append(segment_document) | |
if "keywords" in segment_item: | |
keywords_list.append(segment_item["keywords"]) | |
else: | |
keywords_list.append(None) | |
try: | |
# save vector index | |
VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset) | |
except Exception as e: | |
logging.exception("create segment index failed") | |
for segment_document in segment_data_list: | |
segment_document.enabled = False | |
segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment_document.status = "error" | |
segment_document.error = str(e) | |
db.session.commit() | |
return segment_data_list | |
def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset): | |
indexing_cache_key = "segment_{}_indexing".format(segment.id) | |
cache_result = redis_client.get(indexing_cache_key) | |
if cache_result is not None: | |
raise ValueError("Segment is indexing, please try again later") | |
if "enabled" in args and args["enabled"] is not None: | |
action = args["enabled"] | |
if segment.enabled != action: | |
if not action: | |
segment.enabled = action | |
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment.disabled_by = current_user.id | |
db.session.add(segment) | |
db.session.commit() | |
# Set cache to prevent indexing the same segment multiple times | |
redis_client.setex(indexing_cache_key, 600, 1) | |
disable_segment_from_index_task.delay(segment.id) | |
return segment | |
if not segment.enabled: | |
if "enabled" in args and args["enabled"] is not None: | |
if not args["enabled"]: | |
raise ValueError("Can't update disabled segment") | |
else: | |
raise ValueError("Can't update disabled segment") | |
try: | |
content = args["content"] | |
if segment.content == content: | |
if document.doc_form == "qa_model": | |
segment.answer = args["answer"] | |
if args.get("keywords"): | |
segment.keywords = args["keywords"] | |
segment.enabled = True | |
segment.disabled_at = None | |
segment.disabled_by = None | |
db.session.add(segment) | |
db.session.commit() | |
# update segment index task | |
if "keywords" in args: | |
keyword = Keyword(dataset) | |
keyword.delete_by_ids([segment.index_node_id]) | |
document = RAGDocument( | |
page_content=segment.content, | |
metadata={ | |
"doc_id": segment.index_node_id, | |
"doc_hash": segment.index_node_hash, | |
"document_id": segment.document_id, | |
"dataset_id": segment.dataset_id, | |
}, | |
) | |
keyword.add_texts([document], keywords_list=[args["keywords"]]) | |
else: | |
segment_hash = helper.generate_text_hash(content) | |
tokens = 0 | |
if dataset.indexing_technique == "high_quality": | |
model_manager = ModelManager() | |
embedding_model = model_manager.get_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
provider=dataset.embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=dataset.embedding_model, | |
) | |
# calc embedding use tokens | |
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) | |
segment.content = content | |
segment.index_node_hash = segment_hash | |
segment.word_count = len(content) | |
segment.tokens = tokens | |
segment.status = "completed" | |
segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment.updated_by = current_user.id | |
segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment.enabled = True | |
segment.disabled_at = None | |
segment.disabled_by = None | |
if document.doc_form == "qa_model": | |
segment.answer = args["answer"] | |
db.session.add(segment) | |
db.session.commit() | |
# update segment vector index | |
VectorService.update_segment_vector(args["keywords"], segment, dataset) | |
except Exception as e: | |
logging.exception("update segment index failed") | |
segment.enabled = False | |
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
segment.status = "error" | |
segment.error = str(e) | |
db.session.commit() | |
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first() | |
return segment | |
def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset): | |
indexing_cache_key = "segment_{}_delete_indexing".format(segment.id) | |
cache_result = redis_client.get(indexing_cache_key) | |
if cache_result is not None: | |
raise ValueError("Segment is deleting.") | |
# enabled segment need to delete index | |
if segment.enabled: | |
# send delete segment index task | |
redis_client.setex(indexing_cache_key, 600, 1) | |
delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id) | |
db.session.delete(segment) | |
db.session.commit() | |
class DatasetCollectionBindingService: | |
def get_dataset_collection_binding( | |
cls, provider_name: str, model_name: str, collection_type: str = "dataset" | |
) -> DatasetCollectionBinding: | |
dataset_collection_binding = ( | |
db.session.query(DatasetCollectionBinding) | |
.filter( | |
DatasetCollectionBinding.provider_name == provider_name, | |
DatasetCollectionBinding.model_name == model_name, | |
DatasetCollectionBinding.type == collection_type, | |
) | |
.order_by(DatasetCollectionBinding.created_at) | |
.first() | |
) | |
if not dataset_collection_binding: | |
dataset_collection_binding = DatasetCollectionBinding( | |
provider_name=provider_name, | |
model_name=model_name, | |
collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())), | |
type=collection_type, | |
) | |
db.session.add(dataset_collection_binding) | |
db.session.commit() | |
return dataset_collection_binding | |
def get_dataset_collection_binding_by_id_and_type( | |
cls, collection_binding_id: str, collection_type: str = "dataset" | |
) -> DatasetCollectionBinding: | |
dataset_collection_binding = ( | |
db.session.query(DatasetCollectionBinding) | |
.filter( | |
DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type | |
) | |
.order_by(DatasetCollectionBinding.created_at) | |
.first() | |
) | |
return dataset_collection_binding | |
class DatasetPermissionService: | |
def get_dataset_partial_member_list(cls, dataset_id): | |
user_list_query = ( | |
db.session.query( | |
DatasetPermission.account_id, | |
) | |
.filter(DatasetPermission.dataset_id == dataset_id) | |
.all() | |
) | |
user_list = [] | |
for user in user_list_query: | |
user_list.append(user.account_id) | |
return user_list | |
def update_partial_member_list(cls, tenant_id, dataset_id, user_list): | |
try: | |
db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete() | |
permissions = [] | |
for user in user_list: | |
permission = DatasetPermission( | |
tenant_id=tenant_id, | |
dataset_id=dataset_id, | |
account_id=user["user_id"], | |
) | |
permissions.append(permission) | |
db.session.add_all(permissions) | |
db.session.commit() | |
except Exception as e: | |
db.session.rollback() | |
raise e | |
def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list): | |
if not user.is_dataset_editor: | |
raise NoPermissionError("User does not have permission to edit this dataset.") | |
if user.is_dataset_operator and dataset.permission != requested_permission: | |
raise NoPermissionError("Dataset operators cannot change the dataset permissions.") | |
if user.is_dataset_operator and requested_permission == "partial_members": | |
if not requested_partial_member_list: | |
raise ValueError("Partial member list is required when setting to partial members.") | |
local_member_list = cls.get_dataset_partial_member_list(dataset.id) | |
request_member_list = [user["user_id"] for user in requested_partial_member_list] | |
if set(local_member_list) != set(request_member_list): | |
raise ValueError("Dataset operators cannot change the dataset permissions.") | |
def clear_partial_member_list(cls, dataset_id): | |
try: | |
db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete() | |
db.session.commit() | |
except Exception as e: | |
db.session.rollback() | |
raise e | |