Spaces:
Build error
Build error
import logging | |
from argparse import ArgumentTypeError | |
from datetime import datetime, timezone | |
from flask import request | |
from flask_login import current_user | |
from flask_restful import Resource, fields, marshal, marshal_with, reqparse | |
from sqlalchemy import asc, desc | |
from transformers.hf_argparser import string_to_bool | |
from werkzeug.exceptions import Forbidden, NotFound | |
import services | |
from controllers.console import api | |
from controllers.console.app.error import ( | |
ProviderModelCurrentlyNotSupportError, | |
ProviderNotInitializeError, | |
ProviderQuotaExceededError, | |
) | |
from controllers.console.datasets.error import ( | |
ArchivedDocumentImmutableError, | |
DocumentAlreadyFinishedError, | |
DocumentIndexingError, | |
IndexingEstimateError, | |
InvalidActionError, | |
InvalidMetadataError, | |
) | |
from controllers.console.wraps import ( | |
account_initialization_required, | |
cloud_edition_billing_resource_check, | |
setup_required, | |
) | |
from core.errors.error import ( | |
LLMBadRequestError, | |
ModelCurrentlyNotSupportError, | |
ProviderTokenNotInitError, | |
QuotaExceededError, | |
) | |
from core.indexing_runner import IndexingRunner | |
from core.model_manager import ModelManager | |
from core.model_runtime.entities.model_entities import ModelType | |
from core.model_runtime.errors.invoke import InvokeAuthorizationError | |
from core.rag.extractor.entity.extract_setting import ExtractSetting | |
from extensions.ext_database import db | |
from extensions.ext_redis import redis_client | |
from fields.document_fields import ( | |
dataset_and_document_fields, | |
document_fields, | |
document_status_fields, | |
document_with_segments_fields, | |
) | |
from libs.login import login_required | |
from models import Dataset, DatasetProcessRule, Document, DocumentSegment, UploadFile | |
from services.dataset_service import DatasetService, DocumentService | |
from tasks.add_document_to_index_task import add_document_to_index_task | |
from tasks.remove_document_from_index_task import remove_document_from_index_task | |
class DocumentResource(Resource): | |
def get_document(self, dataset_id: str, document_id: str) -> Document: | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound("Dataset not found.") | |
try: | |
DatasetService.check_dataset_permission(dataset, current_user) | |
except services.errors.account.NoPermissionError as e: | |
raise Forbidden(str(e)) | |
document = DocumentService.get_document(dataset_id, document_id) | |
if not document: | |
raise NotFound("Document not found.") | |
if document.tenant_id != current_user.current_tenant_id: | |
raise Forbidden("No permission.") | |
return document | |
def get_batch_documents(self, dataset_id: str, batch: str) -> list[Document]: | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound("Dataset not found.") | |
try: | |
DatasetService.check_dataset_permission(dataset, current_user) | |
except services.errors.account.NoPermissionError as e: | |
raise Forbidden(str(e)) | |
documents = DocumentService.get_batch_documents(dataset_id, batch) | |
if not documents: | |
raise NotFound("Documents not found.") | |
return documents | |
class GetProcessRuleApi(Resource): | |
def get(self): | |
req_data = request.args | |
document_id = req_data.get("document_id") | |
# get default rules | |
mode = DocumentService.DEFAULT_RULES["mode"] | |
rules = DocumentService.DEFAULT_RULES["rules"] | |
if document_id: | |
# get the latest process rule | |
document = Document.query.get_or_404(document_id) | |
dataset = DatasetService.get_dataset(document.dataset_id) | |
if not dataset: | |
raise NotFound("Dataset not found.") | |
try: | |
DatasetService.check_dataset_permission(dataset, current_user) | |
except services.errors.account.NoPermissionError as e: | |
raise Forbidden(str(e)) | |
# get the latest process rule | |
dataset_process_rule = ( | |
db.session.query(DatasetProcessRule) | |
.filter(DatasetProcessRule.dataset_id == document.dataset_id) | |
.order_by(DatasetProcessRule.created_at.desc()) | |
.limit(1) | |
.one_or_none() | |
) | |
if dataset_process_rule: | |
mode = dataset_process_rule.mode | |
rules = dataset_process_rule.rules_dict | |
return {"mode": mode, "rules": rules} | |
class DatasetDocumentListApi(Resource): | |
def get(self, dataset_id): | |
dataset_id = str(dataset_id) | |
page = request.args.get("page", default=1, type=int) | |
limit = request.args.get("limit", default=20, type=int) | |
search = request.args.get("keyword", default=None, type=str) | |
sort = request.args.get("sort", default="-created_at", type=str) | |
# "yes", "true", "t", "y", "1" convert to True, while others convert to False. | |
try: | |
fetch = string_to_bool(request.args.get("fetch", default="false")) | |
except (ArgumentTypeError, ValueError, Exception) as e: | |
fetch = False | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound("Dataset not found.") | |
try: | |
DatasetService.check_dataset_permission(dataset, current_user) | |
except services.errors.account.NoPermissionError as e: | |
raise Forbidden(str(e)) | |
query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=current_user.current_tenant_id) | |
if search: | |
search = f"%{search}%" | |
query = query.filter(Document.name.like(search)) | |
if sort.startswith("-"): | |
sort_logic = desc | |
sort = sort[1:] | |
else: | |
sort_logic = asc | |
if sort == "hit_count": | |
sub_query = ( | |
db.select(DocumentSegment.document_id, db.func.sum(DocumentSegment.hit_count).label("total_hit_count")) | |
.group_by(DocumentSegment.document_id) | |
.subquery() | |
) | |
query = query.outerjoin(sub_query, sub_query.c.document_id == Document.id).order_by( | |
sort_logic(db.func.coalesce(sub_query.c.total_hit_count, 0)), | |
sort_logic(Document.position), | |
) | |
elif sort == "created_at": | |
query = query.order_by( | |
sort_logic(Document.created_at), | |
sort_logic(Document.position), | |
) | |
else: | |
query = query.order_by( | |
desc(Document.created_at), | |
desc(Document.position), | |
) | |
paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False) | |
documents = paginated_documents.items | |
if fetch: | |
for document in documents: | |
completed_segments = DocumentSegment.query.filter( | |
DocumentSegment.completed_at.isnot(None), | |
DocumentSegment.document_id == str(document.id), | |
DocumentSegment.status != "re_segment", | |
).count() | |
total_segments = DocumentSegment.query.filter( | |
DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment" | |
).count() | |
document.completed_segments = completed_segments | |
document.total_segments = total_segments | |
data = marshal(documents, document_with_segments_fields) | |
else: | |
data = marshal(documents, document_fields) | |
response = { | |
"data": data, | |
"has_more": len(documents) == limit, | |
"limit": limit, | |
"total": paginated_documents.total, | |
"page": page, | |
} | |
return response | |
documents_and_batch_fields = {"documents": fields.List(fields.Nested(document_fields)), "batch": fields.String} | |
def post(self, dataset_id): | |
dataset_id = str(dataset_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound("Dataset not found.") | |
# The role of the current user in the ta table must be admin, owner, or editor | |
if not current_user.is_dataset_editor: | |
raise Forbidden() | |
try: | |
DatasetService.check_dataset_permission(dataset, current_user) | |
except services.errors.account.NoPermissionError as e: | |
raise Forbidden(str(e)) | |
parser = reqparse.RequestParser() | |
parser.add_argument( | |
"indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json" | |
) | |
parser.add_argument("data_source", type=dict, required=False, location="json") | |
parser.add_argument("process_rule", type=dict, required=False, location="json") | |
parser.add_argument("duplicate", type=bool, default=True, nullable=False, location="json") | |
parser.add_argument("original_document_id", type=str, required=False, location="json") | |
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json") | |
parser.add_argument( | |
"doc_language", type=str, default="English", required=False, nullable=False, location="json" | |
) | |
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json") | |
args = parser.parse_args() | |
if not dataset.indexing_technique and not args["indexing_technique"]: | |
raise ValueError("indexing_technique is required.") | |
# validate args | |
DocumentService.document_create_args_validate(args) | |
try: | |
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user) | |
except ProviderTokenNotInitError as ex: | |
raise ProviderNotInitializeError(ex.description) | |
except QuotaExceededError: | |
raise ProviderQuotaExceededError() | |
except ModelCurrentlyNotSupportError: | |
raise ProviderModelCurrentlyNotSupportError() | |
return {"documents": documents, "batch": batch} | |
class DatasetInitApi(Resource): | |
def post(self): | |
# The role of the current user in the ta table must be admin, owner, or editor | |
if not current_user.is_editor: | |
raise Forbidden() | |
parser = reqparse.RequestParser() | |
parser.add_argument( | |
"indexing_technique", | |
type=str, | |
choices=Dataset.INDEXING_TECHNIQUE_LIST, | |
required=True, | |
nullable=False, | |
location="json", | |
) | |
parser.add_argument("data_source", type=dict, required=True, nullable=True, location="json") | |
parser.add_argument("process_rule", type=dict, required=True, nullable=True, location="json") | |
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json") | |
parser.add_argument( | |
"doc_language", type=str, default="English", required=False, nullable=False, location="json" | |
) | |
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json") | |
parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json") | |
parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json") | |
args = parser.parse_args() | |
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator | |
if not current_user.is_dataset_editor: | |
raise Forbidden() | |
if args["indexing_technique"] == "high_quality": | |
if args["embedding_model"] is None or args["embedding_model_provider"] is None: | |
raise ValueError("embedding model and embedding model provider are required for high quality indexing.") | |
try: | |
model_manager = ModelManager() | |
model_manager.get_default_model_instance( | |
tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING | |
) | |
except InvokeAuthorizationError: | |
raise ProviderNotInitializeError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider." | |
) | |
except ProviderTokenNotInitError as ex: | |
raise ProviderNotInitializeError(ex.description) | |
# validate args | |
DocumentService.document_create_args_validate(args) | |
try: | |
dataset, documents, batch = DocumentService.save_document_without_dataset_id( | |
tenant_id=current_user.current_tenant_id, document_data=args, account=current_user | |
) | |
except ProviderTokenNotInitError as ex: | |
raise ProviderNotInitializeError(ex.description) | |
except QuotaExceededError: | |
raise ProviderQuotaExceededError() | |
except ModelCurrentlyNotSupportError: | |
raise ProviderModelCurrentlyNotSupportError() | |
response = {"dataset": dataset, "documents": documents, "batch": batch} | |
return response | |
class DocumentIndexingEstimateApi(DocumentResource): | |
def get(self, dataset_id, document_id): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
document = self.get_document(dataset_id, document_id) | |
if document.indexing_status in {"completed", "error"}: | |
raise DocumentAlreadyFinishedError() | |
data_process_rule = document.dataset_process_rule | |
data_process_rule_dict = data_process_rule.to_dict() | |
response = {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []} | |
if document.data_source_type == "upload_file": | |
data_source_info = document.data_source_info_dict | |
if data_source_info and "upload_file_id" in data_source_info: | |
file_id = data_source_info["upload_file_id"] | |
file = ( | |
db.session.query(UploadFile) | |
.filter(UploadFile.tenant_id == document.tenant_id, UploadFile.id == file_id) | |
.first() | |
) | |
# raise error if file not found | |
if not file: | |
raise NotFound("File not found.") | |
extract_setting = ExtractSetting( | |
datasource_type="upload_file", upload_file=file, document_model=document.doc_form | |
) | |
indexing_runner = IndexingRunner() | |
try: | |
response = indexing_runner.indexing_estimate( | |
current_user.current_tenant_id, | |
[extract_setting], | |
data_process_rule_dict, | |
document.doc_form, | |
"English", | |
dataset_id, | |
) | |
except LLMBadRequestError: | |
raise ProviderNotInitializeError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider." | |
) | |
except ProviderTokenNotInitError as ex: | |
raise ProviderNotInitializeError(ex.description) | |
except Exception as e: | |
raise IndexingEstimateError(str(e)) | |
return response | |
class DocumentBatchIndexingEstimateApi(DocumentResource): | |
def get(self, dataset_id, batch): | |
dataset_id = str(dataset_id) | |
batch = str(batch) | |
documents = self.get_batch_documents(dataset_id, batch) | |
response = {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []} | |
if not documents: | |
return response | |
data_process_rule = documents[0].dataset_process_rule | |
data_process_rule_dict = data_process_rule.to_dict() | |
info_list = [] | |
extract_settings = [] | |
for document in documents: | |
if document.indexing_status in {"completed", "error"}: | |
raise DocumentAlreadyFinishedError() | |
data_source_info = document.data_source_info_dict | |
# format document files info | |
if data_source_info and "upload_file_id" in data_source_info: | |
file_id = data_source_info["upload_file_id"] | |
info_list.append(file_id) | |
# format document notion info | |
elif ( | |
data_source_info and "notion_workspace_id" in data_source_info and "notion_page_id" in data_source_info | |
): | |
pages = [] | |
page = {"page_id": data_source_info["notion_page_id"], "type": data_source_info["type"]} | |
pages.append(page) | |
notion_info = {"workspace_id": data_source_info["notion_workspace_id"], "pages": pages} | |
info_list.append(notion_info) | |
if document.data_source_type == "upload_file": | |
file_id = data_source_info["upload_file_id"] | |
file_detail = ( | |
db.session.query(UploadFile) | |
.filter(UploadFile.tenant_id == current_user.current_tenant_id, UploadFile.id == file_id) | |
.first() | |
) | |
if file_detail is None: | |
raise NotFound("File not found.") | |
extract_setting = ExtractSetting( | |
datasource_type="upload_file", upload_file=file_detail, document_model=document.doc_form | |
) | |
extract_settings.append(extract_setting) | |
elif document.data_source_type == "notion_import": | |
extract_setting = ExtractSetting( | |
datasource_type="notion_import", | |
notion_info={ | |
"notion_workspace_id": data_source_info["notion_workspace_id"], | |
"notion_obj_id": data_source_info["notion_page_id"], | |
"notion_page_type": data_source_info["type"], | |
"tenant_id": current_user.current_tenant_id, | |
}, | |
document_model=document.doc_form, | |
) | |
extract_settings.append(extract_setting) | |
elif document.data_source_type == "website_crawl": | |
extract_setting = ExtractSetting( | |
datasource_type="website_crawl", | |
website_info={ | |
"provider": data_source_info["provider"], | |
"job_id": data_source_info["job_id"], | |
"url": data_source_info["url"], | |
"tenant_id": current_user.current_tenant_id, | |
"mode": data_source_info["mode"], | |
"only_main_content": data_source_info["only_main_content"], | |
}, | |
document_model=document.doc_form, | |
) | |
extract_settings.append(extract_setting) | |
else: | |
raise ValueError("Data source type not support") | |
indexing_runner = IndexingRunner() | |
try: | |
response = indexing_runner.indexing_estimate( | |
current_user.current_tenant_id, | |
extract_settings, | |
data_process_rule_dict, | |
document.doc_form, | |
"English", | |
dataset_id, | |
) | |
except LLMBadRequestError: | |
raise ProviderNotInitializeError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider." | |
) | |
except ProviderTokenNotInitError as ex: | |
raise ProviderNotInitializeError(ex.description) | |
except Exception as e: | |
raise IndexingEstimateError(str(e)) | |
return response | |
class DocumentBatchIndexingStatusApi(DocumentResource): | |
def get(self, dataset_id, batch): | |
dataset_id = str(dataset_id) | |
batch = str(batch) | |
documents = self.get_batch_documents(dataset_id, batch) | |
documents_status = [] | |
for document in documents: | |
completed_segments = DocumentSegment.query.filter( | |
DocumentSegment.completed_at.isnot(None), | |
DocumentSegment.document_id == str(document.id), | |
DocumentSegment.status != "re_segment", | |
).count() | |
total_segments = DocumentSegment.query.filter( | |
DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment" | |
).count() | |
document.completed_segments = completed_segments | |
document.total_segments = total_segments | |
if document.is_paused: | |
document.indexing_status = "paused" | |
documents_status.append(marshal(document, document_status_fields)) | |
data = {"data": documents_status} | |
return data | |
class DocumentIndexingStatusApi(DocumentResource): | |
def get(self, dataset_id, document_id): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
document = self.get_document(dataset_id, document_id) | |
completed_segments = DocumentSegment.query.filter( | |
DocumentSegment.completed_at.isnot(None), | |
DocumentSegment.document_id == str(document_id), | |
DocumentSegment.status != "re_segment", | |
).count() | |
total_segments = DocumentSegment.query.filter( | |
DocumentSegment.document_id == str(document_id), DocumentSegment.status != "re_segment" | |
).count() | |
document.completed_segments = completed_segments | |
document.total_segments = total_segments | |
if document.is_paused: | |
document.indexing_status = "paused" | |
return marshal(document, document_status_fields) | |
class DocumentDetailApi(DocumentResource): | |
METADATA_CHOICES = {"all", "only", "without"} | |
def get(self, dataset_id, document_id): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
document = self.get_document(dataset_id, document_id) | |
metadata = request.args.get("metadata", "all") | |
if metadata not in self.METADATA_CHOICES: | |
raise InvalidMetadataError(f"Invalid metadata value: {metadata}") | |
if metadata == "only": | |
response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata} | |
elif metadata == "without": | |
process_rules = DatasetService.get_process_rules(dataset_id) | |
data_source_info = document.data_source_detail_dict | |
response = { | |
"id": document.id, | |
"position": document.position, | |
"data_source_type": document.data_source_type, | |
"data_source_info": data_source_info, | |
"dataset_process_rule_id": document.dataset_process_rule_id, | |
"dataset_process_rule": process_rules, | |
"name": document.name, | |
"created_from": document.created_from, | |
"created_by": document.created_by, | |
"created_at": document.created_at.timestamp(), | |
"tokens": document.tokens, | |
"indexing_status": document.indexing_status, | |
"completed_at": int(document.completed_at.timestamp()) if document.completed_at else None, | |
"updated_at": int(document.updated_at.timestamp()) if document.updated_at else None, | |
"indexing_latency": document.indexing_latency, | |
"error": document.error, | |
"enabled": document.enabled, | |
"disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None, | |
"disabled_by": document.disabled_by, | |
"archived": document.archived, | |
"segment_count": document.segment_count, | |
"average_segment_length": document.average_segment_length, | |
"hit_count": document.hit_count, | |
"display_status": document.display_status, | |
"doc_form": document.doc_form, | |
"doc_language": document.doc_language, | |
} | |
else: | |
process_rules = DatasetService.get_process_rules(dataset_id) | |
data_source_info = document.data_source_detail_dict | |
response = { | |
"id": document.id, | |
"position": document.position, | |
"data_source_type": document.data_source_type, | |
"data_source_info": data_source_info, | |
"dataset_process_rule_id": document.dataset_process_rule_id, | |
"dataset_process_rule": process_rules, | |
"name": document.name, | |
"created_from": document.created_from, | |
"created_by": document.created_by, | |
"created_at": document.created_at.timestamp(), | |
"tokens": document.tokens, | |
"indexing_status": document.indexing_status, | |
"completed_at": int(document.completed_at.timestamp()) if document.completed_at else None, | |
"updated_at": int(document.updated_at.timestamp()) if document.updated_at else None, | |
"indexing_latency": document.indexing_latency, | |
"error": document.error, | |
"enabled": document.enabled, | |
"disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None, | |
"disabled_by": document.disabled_by, | |
"archived": document.archived, | |
"doc_type": document.doc_type, | |
"doc_metadata": document.doc_metadata, | |
"segment_count": document.segment_count, | |
"average_segment_length": document.average_segment_length, | |
"hit_count": document.hit_count, | |
"display_status": document.display_status, | |
"doc_form": document.doc_form, | |
"doc_language": document.doc_language, | |
} | |
return response, 200 | |
class DocumentProcessingApi(DocumentResource): | |
def patch(self, dataset_id, document_id, action): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
document = self.get_document(dataset_id, document_id) | |
# The role of the current user in the ta table must be admin, owner, or editor | |
if not current_user.is_editor: | |
raise Forbidden() | |
if action == "pause": | |
if document.indexing_status != "indexing": | |
raise InvalidActionError("Document not in indexing state.") | |
document.paused_by = current_user.id | |
document.paused_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
document.is_paused = True | |
db.session.commit() | |
elif action == "resume": | |
if document.indexing_status not in {"paused", "error"}: | |
raise InvalidActionError("Document not in paused or error state.") | |
document.paused_by = None | |
document.paused_at = None | |
document.is_paused = False | |
db.session.commit() | |
else: | |
raise InvalidActionError() | |
return {"result": "success"}, 200 | |
class DocumentDeleteApi(DocumentResource): | |
def delete(self, dataset_id, document_id): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if dataset is None: | |
raise NotFound("Dataset not found.") | |
# check user's model setting | |
DatasetService.check_dataset_model_setting(dataset) | |
document = self.get_document(dataset_id, document_id) | |
try: | |
DocumentService.delete_document(document) | |
except services.errors.document.DocumentIndexingError: | |
raise DocumentIndexingError("Cannot delete document during indexing.") | |
return {"result": "success"}, 204 | |
class DocumentMetadataApi(DocumentResource): | |
def put(self, dataset_id, document_id): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
document = self.get_document(dataset_id, document_id) | |
req_data = request.get_json() | |
doc_type = req_data.get("doc_type") | |
doc_metadata = req_data.get("doc_metadata") | |
# The role of the current user in the ta table must be admin, owner, or editor | |
if not current_user.is_editor: | |
raise Forbidden() | |
if doc_type is None or doc_metadata is None: | |
raise ValueError("Both doc_type and doc_metadata must be provided.") | |
if doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA: | |
raise ValueError("Invalid doc_type.") | |
if not isinstance(doc_metadata, dict): | |
raise ValueError("doc_metadata must be a dictionary.") | |
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type] | |
document.doc_metadata = {} | |
if doc_type == "others": | |
document.doc_metadata = doc_metadata | |
else: | |
for key, value_type in metadata_schema.items(): | |
value = doc_metadata.get(key) | |
if value is not None and isinstance(value, value_type): | |
document.doc_metadata[key] = value | |
document.doc_type = doc_type | |
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
return {"result": "success", "message": "Document metadata updated."}, 200 | |
class DocumentStatusApi(DocumentResource): | |
def patch(self, dataset_id, document_id, action): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if dataset is None: | |
raise NotFound("Dataset not found.") | |
# The role of the current user in the ta table must be admin, owner, or editor | |
if not current_user.is_dataset_editor: | |
raise Forbidden() | |
# check user's model setting | |
DatasetService.check_dataset_model_setting(dataset) | |
# check user's permission | |
DatasetService.check_dataset_permission(dataset, current_user) | |
document = self.get_document(dataset_id, document_id) | |
indexing_cache_key = "document_{}_indexing".format(document.id) | |
cache_result = redis_client.get(indexing_cache_key) | |
if cache_result is not None: | |
raise InvalidActionError("Document is being indexed, please try again later") | |
if action == "enable": | |
if document.enabled: | |
raise InvalidActionError("Document already enabled.") | |
document.enabled = True | |
document.disabled_at = None | |
document.disabled_by = None | |
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
# Set cache to prevent indexing the same document multiple times | |
redis_client.setex(indexing_cache_key, 600, 1) | |
add_document_to_index_task.delay(document_id) | |
return {"result": "success"}, 200 | |
elif action == "disable": | |
if not document.completed_at or document.indexing_status != "completed": | |
raise InvalidActionError("Document is not completed.") | |
if not document.enabled: | |
raise InvalidActionError("Document already disabled.") | |
document.enabled = False | |
document.disabled_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
document.disabled_by = current_user.id | |
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
# Set cache to prevent indexing the same document multiple times | |
redis_client.setex(indexing_cache_key, 600, 1) | |
remove_document_from_index_task.delay(document_id) | |
return {"result": "success"}, 200 | |
elif action == "archive": | |
if document.archived: | |
raise InvalidActionError("Document already archived.") | |
document.archived = True | |
document.archived_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
document.archived_by = current_user.id | |
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
if document.enabled: | |
# Set cache to prevent indexing the same document multiple times | |
redis_client.setex(indexing_cache_key, 600, 1) | |
remove_document_from_index_task.delay(document_id) | |
return {"result": "success"}, 200 | |
elif action == "un_archive": | |
if not document.archived: | |
raise InvalidActionError("Document is not archived.") | |
document.archived = False | |
document.archived_at = None | |
document.archived_by = None | |
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
# Set cache to prevent indexing the same document multiple times | |
redis_client.setex(indexing_cache_key, 600, 1) | |
add_document_to_index_task.delay(document_id) | |
return {"result": "success"}, 200 | |
else: | |
raise InvalidActionError() | |
class DocumentPauseApi(DocumentResource): | |
def patch(self, dataset_id, document_id): | |
"""pause document.""" | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound("Dataset not found.") | |
document = DocumentService.get_document(dataset.id, document_id) | |
# 404 if document not found | |
if document is None: | |
raise NotFound("Document Not Exists.") | |
# 403 if document is archived | |
if DocumentService.check_archived(document): | |
raise ArchivedDocumentImmutableError() | |
try: | |
# pause document | |
DocumentService.pause_document(document) | |
except services.errors.document.DocumentIndexingError: | |
raise DocumentIndexingError("Cannot pause completed document.") | |
return {"result": "success"}, 204 | |
class DocumentRecoverApi(DocumentResource): | |
def patch(self, dataset_id, document_id): | |
"""recover document.""" | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound("Dataset not found.") | |
document = DocumentService.get_document(dataset.id, document_id) | |
# 404 if document not found | |
if document is None: | |
raise NotFound("Document Not Exists.") | |
# 403 if document is archived | |
if DocumentService.check_archived(document): | |
raise ArchivedDocumentImmutableError() | |
try: | |
# pause document | |
DocumentService.recover_document(document) | |
except services.errors.document.DocumentIndexingError: | |
raise DocumentIndexingError("Document is not in paused status.") | |
return {"result": "success"}, 204 | |
class DocumentRetryApi(DocumentResource): | |
def post(self, dataset_id): | |
"""retry document.""" | |
parser = reqparse.RequestParser() | |
parser.add_argument("document_ids", type=list, required=True, nullable=False, location="json") | |
args = parser.parse_args() | |
dataset_id = str(dataset_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
retry_documents = [] | |
if not dataset: | |
raise NotFound("Dataset not found.") | |
for document_id in args["document_ids"]: | |
try: | |
document_id = str(document_id) | |
document = DocumentService.get_document(dataset.id, document_id) | |
# 404 if document not found | |
if document is None: | |
raise NotFound("Document Not Exists.") | |
# 403 if document is archived | |
if DocumentService.check_archived(document): | |
raise ArchivedDocumentImmutableError() | |
# 400 if document is completed | |
if document.indexing_status == "completed": | |
raise DocumentAlreadyFinishedError() | |
retry_documents.append(document) | |
except Exception as e: | |
logging.error(f"Document {document_id} retry failed: {str(e)}") | |
continue | |
# retry document | |
DocumentService.retry_document(dataset_id, retry_documents) | |
return {"result": "success"}, 204 | |
class DocumentRenameApi(DocumentResource): | |
def post(self, dataset_id, document_id): | |
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator | |
if not current_user.is_dataset_editor: | |
raise Forbidden() | |
dataset = DatasetService.get_dataset(dataset_id) | |
DatasetService.check_dataset_operator_permission(current_user, dataset) | |
parser = reqparse.RequestParser() | |
parser.add_argument("name", type=str, required=True, nullable=False, location="json") | |
args = parser.parse_args() | |
try: | |
document = DocumentService.rename_document(dataset_id, document_id, args["name"]) | |
except services.errors.document.DocumentIndexingError: | |
raise DocumentIndexingError("Cannot delete document during indexing.") | |
return document | |
class WebsiteDocumentSyncApi(DocumentResource): | |
def get(self, dataset_id, document_id): | |
"""sync website document.""" | |
dataset_id = str(dataset_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound("Dataset not found.") | |
document_id = str(document_id) | |
document = DocumentService.get_document(dataset.id, document_id) | |
if not document: | |
raise NotFound("Document not found.") | |
if document.tenant_id != current_user.current_tenant_id: | |
raise Forbidden("No permission.") | |
if document.data_source_type != "website_crawl": | |
raise ValueError("Document is not a website document.") | |
# 403 if document is archived | |
if DocumentService.check_archived(document): | |
raise ArchivedDocumentImmutableError() | |
# sync document | |
DocumentService.sync_website_document(dataset_id, document) | |
return {"result": "success"}, 200 | |
api.add_resource(GetProcessRuleApi, "/datasets/process-rule") | |
api.add_resource(DatasetDocumentListApi, "/datasets/<uuid:dataset_id>/documents") | |
api.add_resource(DatasetInitApi, "/datasets/init") | |
api.add_resource( | |
DocumentIndexingEstimateApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-estimate" | |
) | |
api.add_resource(DocumentBatchIndexingEstimateApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-estimate") | |
api.add_resource(DocumentBatchIndexingStatusApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-status") | |
api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-status") | |
api.add_resource(DocumentDetailApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>") | |
api.add_resource( | |
DocumentProcessingApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/<string:action>" | |
) | |
api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>") | |
api.add_resource(DocumentMetadataApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/metadata") | |
api.add_resource(DocumentStatusApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>") | |
api.add_resource(DocumentPauseApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause") | |
api.add_resource(DocumentRecoverApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume") | |
api.add_resource(DocumentRetryApi, "/datasets/<uuid:dataset_id>/retry") | |
api.add_resource(DocumentRenameApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/rename") | |
api.add_resource(WebsiteDocumentSyncApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/website-sync") | |