Workflow-Engine / api /core /indexing_runner.py
Severian's picture
initial commit
a8b3f00
raw
history blame
36.6 kB
import concurrent.futures
import datetime
import json
import logging
import re
import threading
import time
import uuid
from typing import Optional, cast
from flask import Flask, current_app
from flask_login import current_user
from sqlalchemy.orm.exc import ObjectDeletedError
from configs import dify_config
from core.errors.error import ProviderTokenNotInitError
from core.llm_generator.llm_generator import LLMGenerator
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rag.cleaner.clean_processor import CleanProcessor
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
from core.rag.extractor.entity.extract_setting import ExtractSetting
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
from core.rag.models.document import Document
from core.rag.splitter.fixed_text_splitter import (
EnhanceRecursiveCharacterTextSplitter,
FixedRecursiveCharacterTextSplitter,
)
from core.rag.splitter.text_splitter import TextSplitter
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from extensions.ext_storage import storage
from libs import helper
from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
from models.dataset import Document as DatasetDocument
from models.model import UploadFile
from services.feature_service import FeatureService
class IndexingRunner:
def __init__(self):
self.storage = storage
self.model_manager = ModelManager()
def run(self, dataset_documents: list[DatasetDocument]):
"""Run the indexing process."""
for dataset_document in dataset_documents:
try:
# get dataset
dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
if not dataset:
raise ValueError("no dataset found")
# get the process rule
processing_rule = (
db.session.query(DatasetProcessRule)
.filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
.first()
)
index_type = dataset_document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
# extract
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
# transform
documents = self._transform(
index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
)
# save segment
self._load_segments(dataset, dataset_document, documents)
# load
self._load(
index_processor=index_processor,
dataset=dataset,
dataset_document=dataset_document,
documents=documents,
)
except DocumentIsPausedError:
raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = "error"
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.commit()
except ObjectDeletedError:
logging.warning("Document deleted, document id: {}".format(dataset_document.id))
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = "error"
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.commit()
def run_in_splitting_status(self, dataset_document: DatasetDocument):
"""Run the indexing process when the index_status is splitting."""
try:
# get dataset
dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
if not dataset:
raise ValueError("no dataset found")
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id, document_id=dataset_document.id
).all()
for document_segment in document_segments:
db.session.delete(document_segment)
db.session.commit()
# get the process rule
processing_rule = (
db.session.query(DatasetProcessRule)
.filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
.first()
)
index_type = dataset_document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
# extract
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
# transform
documents = self._transform(
index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
)
# save segment
self._load_segments(dataset, dataset_document, documents)
# load
self._load(
index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
)
except DocumentIsPausedError:
raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = "error"
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.commit()
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = "error"
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.commit()
def run_in_indexing_status(self, dataset_document: DatasetDocument):
"""Run the indexing process when the index_status is indexing."""
try:
# get dataset
dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
if not dataset:
raise ValueError("no dataset found")
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id, document_id=dataset_document.id
).all()
documents = []
if document_segments:
for document_segment in document_segments:
# transform segment to node
if document_segment.status != "completed":
document = Document(
page_content=document_segment.content,
metadata={
"doc_id": document_segment.index_node_id,
"doc_hash": document_segment.index_node_hash,
"document_id": document_segment.document_id,
"dataset_id": document_segment.dataset_id,
},
)
documents.append(document)
# build index
# get the process rule
processing_rule = (
db.session.query(DatasetProcessRule)
.filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
.first()
)
index_type = dataset_document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
self._load(
index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
)
except DocumentIsPausedError:
raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = "error"
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.commit()
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = "error"
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.commit()
def indexing_estimate(
self,
tenant_id: str,
extract_settings: list[ExtractSetting],
tmp_processing_rule: dict,
doc_form: Optional[str] = None,
doc_language: str = "English",
dataset_id: Optional[str] = None,
indexing_technique: str = "economy",
) -> dict:
"""
Estimate the indexing for the document.
"""
# check document limit
features = FeatureService.get_features(tenant_id)
if features.billing.enabled:
count = len(extract_settings)
batch_upload_limit = dify_config.BATCH_UPLOAD_LIMIT
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
embedding_model_instance = None
if dataset_id:
dataset = Dataset.query.filter_by(id=dataset_id).first()
if not dataset:
raise ValueError("Dataset not found.")
if dataset.indexing_technique == "high_quality" or indexing_technique == "high_quality":
if dataset.embedding_model_provider:
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
else:
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
else:
if indexing_technique == "high_quality":
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
preview_texts = []
total_segments = 0
index_type = doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
all_text_docs = []
for extract_setting in extract_settings:
# extract
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
all_text_docs.extend(text_docs)
processing_rule = DatasetProcessRule(
mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"])
)
# get splitter
splitter = self._get_splitter(processing_rule, embedding_model_instance)
# split to documents
documents = self._split_to_documents_for_estimate(
text_docs=text_docs, splitter=splitter, processing_rule=processing_rule
)
total_segments += len(documents)
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
if doc_form and doc_form == "qa_model":
if len(preview_texts) > 0:
# qa model document
response = LLMGenerator.generate_qa_document(
current_user.current_tenant_id, preview_texts[0], doc_language
)
document_qa_list = self.format_split_text(response)
return {"total_segments": total_segments * 20, "qa_preview": document_qa_list, "preview": preview_texts}
return {"total_segments": total_segments, "preview": preview_texts}
def _extract(
self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict
) -> list[Document]:
# load file
if dataset_document.data_source_type not in {"upload_file", "notion_import", "website_crawl"}:
return []
data_source_info = dataset_document.data_source_info_dict
text_docs = []
if dataset_document.data_source_type == "upload_file":
if not data_source_info or "upload_file_id" not in data_source_info:
raise ValueError("no upload file found")
file_detail = (
db.session.query(UploadFile).filter(UploadFile.id == data_source_info["upload_file_id"]).one_or_none()
)
if file_detail:
extract_setting = ExtractSetting(
datasource_type="upload_file", upload_file=file_detail, document_model=dataset_document.doc_form
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
elif dataset_document.data_source_type == "notion_import":
if (
not data_source_info
or "notion_workspace_id" not in data_source_info
or "notion_page_id" not in data_source_info
):
raise ValueError("no notion import info found")
extract_setting = ExtractSetting(
datasource_type="notion_import",
notion_info={
"notion_workspace_id": data_source_info["notion_workspace_id"],
"notion_obj_id": data_source_info["notion_page_id"],
"notion_page_type": data_source_info["type"],
"document": dataset_document,
"tenant_id": dataset_document.tenant_id,
},
document_model=dataset_document.doc_form,
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
elif dataset_document.data_source_type == "website_crawl":
if (
not data_source_info
or "provider" not in data_source_info
or "url" not in data_source_info
or "job_id" not in data_source_info
):
raise ValueError("no website import info found")
extract_setting = ExtractSetting(
datasource_type="website_crawl",
website_info={
"provider": data_source_info["provider"],
"job_id": data_source_info["job_id"],
"tenant_id": dataset_document.tenant_id,
"url": data_source_info["url"],
"mode": data_source_info["mode"],
"only_main_content": data_source_info["only_main_content"],
},
document_model=dataset_document.doc_form,
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
# update document status to splitting
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="splitting",
extra_update_params={
DatasetDocument.word_count: sum(len(text_doc.page_content) for text_doc in text_docs),
DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
},
)
# replace doc id to document model id
text_docs = cast(list[Document], text_docs)
for text_doc in text_docs:
text_doc.metadata["document_id"] = dataset_document.id
text_doc.metadata["dataset_id"] = dataset_document.dataset_id
return text_docs
@staticmethod
def filter_string(text):
text = re.sub(r"<\|", "<", text)
text = re.sub(r"\|>", ">", text)
text = re.sub(r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]", "", text)
# Unicode U+FFFE
text = re.sub("\ufffe", "", text)
return text
@staticmethod
def _get_splitter(
processing_rule: DatasetProcessRule, embedding_model_instance: Optional[ModelInstance]
) -> TextSplitter:
"""
Get the NodeParser object according to the processing rule.
"""
if processing_rule.mode == "custom":
# The user-defined segmentation rule
rules = json.loads(processing_rule.rules)
segmentation = rules["segmentation"]
max_segmentation_tokens_length = dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH
if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length:
raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")
separator = segmentation["separator"]
if separator:
separator = separator.replace("\\n", "\n")
if segmentation.get("chunk_overlap"):
chunk_overlap = segmentation["chunk_overlap"]
else:
chunk_overlap = 0
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
chunk_size=segmentation["max_tokens"],
chunk_overlap=chunk_overlap,
fixed_separator=separator,
separators=["\n\n", "。", ". ", " ", ""],
embedding_model_instance=embedding_model_instance,
)
else:
# Automatic segmentation
character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
chunk_size=DatasetProcessRule.AUTOMATIC_RULES["segmentation"]["max_tokens"],
chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES["segmentation"]["chunk_overlap"],
separators=["\n\n", "。", ". ", " ", ""],
embedding_model_instance=embedding_model_instance,
)
return character_splitter
def _step_split(
self,
text_docs: list[Document],
splitter: TextSplitter,
dataset: Dataset,
dataset_document: DatasetDocument,
processing_rule: DatasetProcessRule,
) -> list[Document]:
"""
Split the text documents into documents and save them to the document segment.
"""
documents = self._split_to_documents(
text_docs=text_docs,
splitter=splitter,
processing_rule=processing_rule,
tenant_id=dataset.tenant_id,
document_form=dataset_document.doc_form,
document_language=dataset_document.doc_language,
)
# save node to document segment
doc_store = DatasetDocumentStore(
dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
)
# add document segments
doc_store.add_documents(documents)
# update document status to indexing
cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="indexing",
extra_update_params={
DatasetDocument.cleaning_completed_at: cur_time,
DatasetDocument.splitting_completed_at: cur_time,
},
)
# update segment status to indexing
self._update_segments_by_document(
dataset_document_id=dataset_document.id,
update_params={
DocumentSegment.status: "indexing",
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
},
)
return documents
def _split_to_documents(
self,
text_docs: list[Document],
splitter: TextSplitter,
processing_rule: DatasetProcessRule,
tenant_id: str,
document_form: str,
document_language: str,
) -> list[Document]:
"""
Split the text documents into nodes.
"""
all_documents = []
all_qa_documents = []
for text_doc in text_docs:
# document clean
document_text = self._document_clean(text_doc.page_content, processing_rule)
text_doc.page_content = document_text
# parse document to nodes
documents = splitter.split_documents([text_doc])
split_documents = []
for document_node in documents:
if document_node.page_content.strip():
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)
document_node.metadata["doc_id"] = doc_id
document_node.metadata["doc_hash"] = hash
# delete Splitter character
page_content = document_node.page_content
if page_content.startswith(".") or page_content.startswith("。"):
page_content = page_content[1:]
else:
page_content = page_content
document_node.page_content = page_content
if document_node.page_content:
split_documents.append(document_node)
all_documents.extend(split_documents)
# processing qa document
if document_form == "qa_model":
for i in range(0, len(all_documents), 10):
threads = []
sub_documents = all_documents[i : i + 10]
for doc in sub_documents:
document_format_thread = threading.Thread(
target=self.format_qa_document,
kwargs={
"flask_app": current_app._get_current_object(),
"tenant_id": tenant_id,
"document_node": doc,
"all_qa_documents": all_qa_documents,
"document_language": document_language,
},
)
threads.append(document_format_thread)
document_format_thread.start()
for thread in threads:
thread.join()
return all_qa_documents
return all_documents
def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
format_documents = []
if document_node.page_content is None or not document_node.page_content.strip():
return
with flask_app.app_context():
try:
# qa model document
response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
document_qa_list = self.format_split_text(response)
qa_documents = []
for result in document_qa_list:
qa_document = Document(
page_content=result["question"], metadata=document_node.metadata.model_copy()
)
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(result["question"])
qa_document.metadata["answer"] = result["answer"]
qa_document.metadata["doc_id"] = doc_id
qa_document.metadata["doc_hash"] = hash
qa_documents.append(qa_document)
format_documents.extend(qa_documents)
except Exception as e:
logging.exception(e)
all_qa_documents.extend(format_documents)
def _split_to_documents_for_estimate(
self, text_docs: list[Document], splitter: TextSplitter, processing_rule: DatasetProcessRule
) -> list[Document]:
"""
Split the text documents into nodes.
"""
all_documents = []
for text_doc in text_docs:
# document clean
document_text = self._document_clean(text_doc.page_content, processing_rule)
text_doc.page_content = document_text
# parse document to nodes
documents = splitter.split_documents([text_doc])
split_documents = []
for document in documents:
if document.page_content is None or not document.page_content.strip():
continue
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document.page_content)
document.metadata["doc_id"] = doc_id
document.metadata["doc_hash"] = hash
split_documents.append(document)
all_documents.extend(split_documents)
return all_documents
@staticmethod
def _document_clean(text: str, processing_rule: DatasetProcessRule) -> str:
"""
Clean the document text according to the processing rules.
"""
if processing_rule.mode == "automatic":
rules = DatasetProcessRule.AUTOMATIC_RULES
else:
rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
document_text = CleanProcessor.clean(text, {"rules": rules})
return document_text
@staticmethod
def format_split_text(text):
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
matches = re.findall(regex, text, re.UNICODE)
return [{"question": q, "answer": re.sub(r"\n\s*", "\n", a.strip())} for q, a in matches if q and a]
def _load(
self,
index_processor: BaseIndexProcessor,
dataset: Dataset,
dataset_document: DatasetDocument,
documents: list[Document],
) -> None:
"""
insert index and update document/segment status to completed
"""
embedding_model_instance = None
if dataset.indexing_technique == "high_quality":
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
chunk_size = 10
# create keyword index
create_keyword_thread = threading.Thread(
target=self._process_keyword_index,
args=(current_app._get_current_object(), dataset.id, dataset_document.id, documents),
)
create_keyword_thread.start()
if dataset.indexing_technique == "high_quality":
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for i in range(0, len(documents), chunk_size):
chunk_documents = documents[i : i + chunk_size]
futures.append(
executor.submit(
self._process_chunk,
current_app._get_current_object(),
index_processor,
chunk_documents,
dataset,
dataset_document,
embedding_model_instance,
)
)
for future in futures:
tokens += future.result()
create_keyword_thread.join()
indexing_end_at = time.perf_counter()
# update document status to completed
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="completed",
extra_update_params={
DatasetDocument.tokens: tokens,
DatasetDocument.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
DatasetDocument.error: None,
},
)
@staticmethod
def _process_keyword_index(flask_app, dataset_id, document_id, documents):
with flask_app.app_context():
dataset = Dataset.query.filter_by(id=dataset_id).first()
if not dataset:
raise ValueError("no dataset found")
keyword = Keyword(dataset)
keyword.create(documents)
if dataset.indexing_technique != "high_quality":
document_ids = [document.metadata["doc_id"] for document in documents]
db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == document_id,
DocumentSegment.dataset_id == dataset_id,
DocumentSegment.index_node_id.in_(document_ids),
DocumentSegment.status == "indexing",
).update(
{
DocumentSegment.status: "completed",
DocumentSegment.enabled: True,
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
}
)
db.session.commit()
def _process_chunk(
self, flask_app, index_processor, chunk_documents, dataset, dataset_document, embedding_model_instance
):
with flask_app.app_context():
# check document is paused
self._check_document_paused_status(dataset_document.id)
tokens = 0
if embedding_model_instance:
tokens += sum(
embedding_model_instance.get_text_embedding_num_tokens([document.page_content])
for document in chunk_documents
)
# load index
index_processor.load(dataset, chunk_documents, with_keywords=False)
document_ids = [document.metadata["doc_id"] for document in chunk_documents]
db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.index_node_id.in_(document_ids),
DocumentSegment.status == "indexing",
).update(
{
DocumentSegment.status: "completed",
DocumentSegment.enabled: True,
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
}
)
db.session.commit()
return tokens
@staticmethod
def _check_document_paused_status(document_id: str):
indexing_cache_key = "document_{}_is_paused".format(document_id)
result = redis_client.get(indexing_cache_key)
if result:
raise DocumentIsPausedError()
@staticmethod
def _update_document_index_status(
document_id: str, after_indexing_status: str, extra_update_params: Optional[dict] = None
) -> None:
"""
Update the document indexing status.
"""
count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
if count > 0:
raise DocumentIsPausedError()
document = DatasetDocument.query.filter_by(id=document_id).first()
if not document:
raise DocumentIsDeletedPausedError()
update_params = {DatasetDocument.indexing_status: after_indexing_status}
if extra_update_params:
update_params.update(extra_update_params)
DatasetDocument.query.filter_by(id=document_id).update(update_params)
db.session.commit()
@staticmethod
def _update_segments_by_document(dataset_document_id: str, update_params: dict) -> None:
"""
Update the document segment by document id.
"""
DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
db.session.commit()
@staticmethod
def batch_add_segments(segments: list[DocumentSegment], dataset: Dataset):
"""
Batch add segments index processing
"""
documents = []
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
},
)
documents.append(document)
# save vector index
index_type = dataset.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
index_processor.load(dataset, documents)
def _transform(
self,
index_processor: BaseIndexProcessor,
dataset: Dataset,
text_docs: list[Document],
doc_language: str,
process_rule: dict,
) -> list[Document]:
# get embedding model instance
embedding_model_instance = None
if dataset.indexing_technique == "high_quality":
if dataset.embedding_model_provider:
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
else:
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=dataset.tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
documents = index_processor.transform(
text_docs,
embedding_model_instance=embedding_model_instance,
process_rule=process_rule,
tenant_id=dataset.tenant_id,
doc_language=doc_language,
)
return documents
def _load_segments(self, dataset, dataset_document, documents):
# save node to document segment
doc_store = DatasetDocumentStore(
dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
)
# add document segments
doc_store.add_documents(documents)
# update document status to indexing
cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="indexing",
extra_update_params={
DatasetDocument.cleaning_completed_at: cur_time,
DatasetDocument.splitting_completed_at: cur_time,
},
)
# update segment status to indexing
self._update_segments_by_document(
dataset_document_id=dataset_document.id,
update_params={
DocumentSegment.status: "indexing",
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
},
)
pass
class DocumentIsPausedError(Exception):
pass
class DocumentIsDeletedPausedError(Exception):
pass