Spaces:
Build error
Build error
Umama-at-Bluchip
commited on
Commit
•
6d57dc5
1
Parent(s):
f7c91ce
Upload 4 files
Browse files- .env +1 -0
- app.py +51 -0
- requirements.txt +11 -0
- utils/functions.py +39 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
API_KEY='AIzaSyBeNMjIT8iPUcnO2zzu7hWkfJFRxFwQTUg'
|
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
import sounddevice as sd
|
4 |
+
from scipy.io.wavfile import write
|
5 |
+
import numpy as np
|
6 |
+
import soundfile as sf
|
7 |
+
from utils.functions import voice_to_text, get_gemini_response, text_to_audio
|
8 |
+
import pygame
|
9 |
+
|
10 |
+
def main():
|
11 |
+
st.title("Mental Health Chatbot")
|
12 |
+
|
13 |
+
if "messages" not in st.session_state:
|
14 |
+
st.session_state.messages = []
|
15 |
+
|
16 |
+
for message in st.session_state.messages:
|
17 |
+
with st.container():
|
18 |
+
if message["role"] == "user":
|
19 |
+
st.markdown(f":speech_balloon: **You:** {message['content']}")
|
20 |
+
else:
|
21 |
+
st.markdown(f":robot: **Chatbot:** {message['content']}")
|
22 |
+
|
23 |
+
if st.button("Speak"):
|
24 |
+
with st.spinner('Recording...'):
|
25 |
+
try:
|
26 |
+
fs = 44100
|
27 |
+
seconds = 5
|
28 |
+
myrecording = sd.rec(int(seconds * fs), samplerate=fs, channels=1)
|
29 |
+
sd.wait()
|
30 |
+
audio_file = "user_audio.wav"
|
31 |
+
write(audio_file, fs, myrecording)
|
32 |
+
|
33 |
+
text_input = voice_to_text(audio_file)
|
34 |
+
if text_input != "Error during transcription":
|
35 |
+
st.session_state.messages.append({"role": "user", "content": text_input})
|
36 |
+
response = get_gemini_response(text_input)
|
37 |
+
if response:
|
38 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
39 |
+
audio_array = text_to_audio(response)
|
40 |
+
bot_audio_file = "bot_audio.wav"
|
41 |
+
sf.write(bot_audio_file, audio_array, 44100)
|
42 |
+
pygame.mixer.init()
|
43 |
+
pygame.mixer.music.load(bot_audio_file)
|
44 |
+
pygame.mixer.music.play()
|
45 |
+
while pygame.mixer.music.get_busy():
|
46 |
+
time.sleep(1)
|
47 |
+
except Exception as e:
|
48 |
+
st.error(f"Error: {e}")
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
sounddevice
|
4 |
+
soundfile
|
5 |
+
pygame
|
6 |
+
torch
|
7 |
+
numpy
|
8 |
+
scipy
|
9 |
+
requests
|
10 |
+
google.generativeai
|
11 |
+
time
|
utils/functions.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import pipeline
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
import soundfile as sf
|
6 |
+
import os
|
7 |
+
import google.generativeai as genai
|
8 |
+
|
9 |
+
|
10 |
+
def voice_to_text(audio_data, model_name="openai/whisper-small", device="cuda" if torch.cuda.is_available() else "cpu"):
|
11 |
+
|
12 |
+
try:
|
13 |
+
model = pipeline("automatic-speech-recognition", model=model_name, device=device, trust_remote_code=True)
|
14 |
+
text = model(audio_data)["text"]
|
15 |
+
return text
|
16 |
+
|
17 |
+
except Exception as e:
|
18 |
+
return f"Error during transcription"
|
19 |
+
|
20 |
+
|
21 |
+
def get_gemini_response(text):
|
22 |
+
|
23 |
+
genai.configure(api_key=os.environ['API_KEY'])
|
24 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
25 |
+
|
26 |
+
prompt = f"You are a compassionate and supportive mental health assistant. Provide helpful advice, encouragement, and information to the user. Respond in a warm and understanding tone. User: {text}"
|
27 |
+
|
28 |
+
response = model.generate_content(prompt)
|
29 |
+
return response.text
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def text_to_audio(text):
|
34 |
+
|
35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
+
model = pipeline("text-to-speech", model="parler-tts/parler_tts_mini_v0.1", device=device, trust_remote_code=True)
|
37 |
+
|
38 |
+
audio_array = model(text)["audio"]
|
39 |
+
return audio_array
|