Spaces:
Running
Running
import gradio as gr | |
import PIL.Image as Image | |
from ultralytics import ASSETS, YOLO | |
model = None | |
def predict_image(img, conf_threshold, iou_threshold, model_name): | |
"""Predicts objects in an image using a YOLOv8 model with adjustable confidence and IOU thresholds.""" | |
model = YOLO(model_name) | |
results = model.predict( | |
source=img, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=True, | |
show_conf=True, | |
imgsz=640, | |
) | |
for r in results: | |
im_array = r.plot() | |
im = Image.fromarray(im_array[..., ::-1]) | |
return im | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), | |
gr.Radio(choices=["yolov8n", "yolov8s", "yolov8m"], label="Model Name", value="yolov8n"), | |
], | |
outputs=gr.Image(type="pil", label="Result"), | |
title="Ultralytics Gradio Application π", | |
description="Upload images for inference. The Ultralytics YOLOv8n model is used by default.", | |
examples=[ | |
[ASSETS / "bus.jpg", 0.25, 0.45, "yolov8n.pt"], | |
[ASSETS / "zidane.jpg", 0.25, 0.45, "yolov8n.pt"], | |
], | |
) | |
iface.launch(share=True) | |