Spaces:
Configuration error
Configuration error
Commit
·
11b029f
1
Parent(s):
d57a286
Upload detect.py
Browse files
detect.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
| 2 |
+
"""
|
| 3 |
+
Run inference on images, videos, directories, streams, etc.
|
| 4 |
+
|
| 5 |
+
Usage - sources:
|
| 6 |
+
$ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam
|
| 7 |
+
img.jpg # image
|
| 8 |
+
vid.mp4 # video
|
| 9 |
+
path/ # directory
|
| 10 |
+
path/*.jpg # glob
|
| 11 |
+
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
| 12 |
+
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
| 13 |
+
|
| 14 |
+
Usage - formats:
|
| 15 |
+
$ python path/to/detect.py --weights yolov5s.pt # PyTorch
|
| 16 |
+
yolov5s.torchscript # TorchScript
|
| 17 |
+
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
| 18 |
+
yolov5s.xml # OpenVINO
|
| 19 |
+
yolov5s.engine # TensorRT
|
| 20 |
+
yolov5s.mlmodel # CoreML (macOS-only)
|
| 21 |
+
yolov5s_saved_model # TensorFlow SavedModel
|
| 22 |
+
yolov5s.pb # TensorFlow GraphDef
|
| 23 |
+
yolov5s.tflite # TensorFlow Lite
|
| 24 |
+
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
import argparse
|
| 28 |
+
import os
|
| 29 |
+
import sys
|
| 30 |
+
from pathlib import Path
|
| 31 |
+
|
| 32 |
+
import torch
|
| 33 |
+
import torch.backends.cudnn as cudnn
|
| 34 |
+
|
| 35 |
+
FILE = Path(__file__).resolve()
|
| 36 |
+
ROOT = FILE.parents[0] # YOLOv5 root directory
|
| 37 |
+
if str(ROOT) not in sys.path:
|
| 38 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 39 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
| 40 |
+
|
| 41 |
+
from models.common import DetectMultiBackend
|
| 42 |
+
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
|
| 43 |
+
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
| 44 |
+
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
|
| 45 |
+
from utils.plots import Annotator, colors, save_one_box
|
| 46 |
+
from utils.torch_utils import select_device, time_sync
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
@torch.no_grad()
|
| 50 |
+
def run(
|
| 51 |
+
weights=ROOT / 'yolov5s.pt', # model.pt path(s)
|
| 52 |
+
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
|
| 53 |
+
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
| 54 |
+
imgsz=(640, 640), # inference size (height, width)
|
| 55 |
+
conf_thres=0.25, # confidence threshold
|
| 56 |
+
iou_thres=0.45, # NMS IOU threshold
|
| 57 |
+
max_det=1000, # maximum detections per image
|
| 58 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
| 59 |
+
view_img=False, # show results
|
| 60 |
+
save_txt=False, # save results to *.txt
|
| 61 |
+
save_conf=False, # save confidences in --save-txt labels
|
| 62 |
+
save_crop=False, # save cropped prediction boxes
|
| 63 |
+
nosave=False, # do not save images/videos
|
| 64 |
+
classes=None, # filter by class: --class 0, or --class 0 2 3
|
| 65 |
+
agnostic_nms=False, # class-agnostic NMS
|
| 66 |
+
augment=False, # augmented inference
|
| 67 |
+
visualize=False, # visualize features
|
| 68 |
+
update=False, # update all models
|
| 69 |
+
project=ROOT / 'runs/detect', # save results to project/name
|
| 70 |
+
name='exp', # save results to project/name
|
| 71 |
+
exist_ok=False, # existing project/name ok, do not increment
|
| 72 |
+
line_thickness=3, # bounding box thickness (pixels)
|
| 73 |
+
hide_labels=False, # hide labels
|
| 74 |
+
hide_conf=False, # hide confidences
|
| 75 |
+
half=False, # use FP16 half-precision inference
|
| 76 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
| 77 |
+
):
|
| 78 |
+
source = str(source)
|
| 79 |
+
save_img = not nosave and not source.endswith('.txt') # save inference images
|
| 80 |
+
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
| 81 |
+
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
| 82 |
+
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
|
| 83 |
+
if is_url and is_file:
|
| 84 |
+
source = check_file(source) # download
|
| 85 |
+
|
| 86 |
+
# Directories
|
| 87 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
| 88 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
| 89 |
+
|
| 90 |
+
# Load model
|
| 91 |
+
device = select_device(device)
|
| 92 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
| 93 |
+
stride, names, pt = model.stride, model.names, model.pt
|
| 94 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
| 95 |
+
|
| 96 |
+
# Dataloader
|
| 97 |
+
if webcam:
|
| 98 |
+
view_img = check_imshow()
|
| 99 |
+
cudnn.benchmark = True # set True to speed up constant image size inference
|
| 100 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
|
| 101 |
+
bs = len(dataset) # batch_size
|
| 102 |
+
else:
|
| 103 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
|
| 104 |
+
bs = 1 # batch_size
|
| 105 |
+
vid_path, vid_writer = [None] * bs, [None] * bs
|
| 106 |
+
|
| 107 |
+
# Run inference
|
| 108 |
+
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
|
| 109 |
+
dt, seen = [0.0, 0.0, 0.0], 0
|
| 110 |
+
for path, im, im0s, vid_cap, s in dataset:
|
| 111 |
+
t1 = time_sync()
|
| 112 |
+
im = torch.from_numpy(im).to(device)
|
| 113 |
+
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
| 114 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
| 115 |
+
if len(im.shape) == 3:
|
| 116 |
+
im = im[None] # expand for batch dim
|
| 117 |
+
t2 = time_sync()
|
| 118 |
+
dt[0] += t2 - t1
|
| 119 |
+
|
| 120 |
+
# Inference
|
| 121 |
+
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
| 122 |
+
pred = model(im, augment=augment, visualize=visualize)
|
| 123 |
+
t3 = time_sync()
|
| 124 |
+
dt[1] += t3 - t2
|
| 125 |
+
|
| 126 |
+
# NMS
|
| 127 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
| 128 |
+
dt[2] += time_sync() - t3
|
| 129 |
+
|
| 130 |
+
# Second-stage classifier (optional)
|
| 131 |
+
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
| 132 |
+
|
| 133 |
+
# Process predictions
|
| 134 |
+
for i, det in enumerate(pred): # per image
|
| 135 |
+
seen += 1
|
| 136 |
+
if webcam: # batch_size >= 1
|
| 137 |
+
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
| 138 |
+
s += f'{i}: '
|
| 139 |
+
else:
|
| 140 |
+
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
| 141 |
+
|
| 142 |
+
p = Path(p) # to Path
|
| 143 |
+
save_path = str(save_dir / p.name) # im.jpg
|
| 144 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
| 145 |
+
s += '%gx%g ' % im.shape[2:] # print string
|
| 146 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
| 147 |
+
imc = im0.copy() if save_crop else im0 # for save_crop
|
| 148 |
+
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
| 149 |
+
if len(det):
|
| 150 |
+
# Rescale boxes from img_size to im0 size
|
| 151 |
+
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
|
| 152 |
+
|
| 153 |
+
# Print results
|
| 154 |
+
for c in det[:, -1].unique():
|
| 155 |
+
n = (det[:, -1] == c).sum() # detections per class
|
| 156 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
| 157 |
+
|
| 158 |
+
# Write results
|
| 159 |
+
for *xyxy, conf, cls in reversed(det):
|
| 160 |
+
if save_txt: # Write to file
|
| 161 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
| 162 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
| 163 |
+
with open(txt_path + '.txt', 'a') as f:
|
| 164 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
| 165 |
+
|
| 166 |
+
if save_img or save_crop or view_img: # Add bbox to image
|
| 167 |
+
c = int(cls) # integer class
|
| 168 |
+
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
| 169 |
+
annotator.box_label(xyxy, label, color=colors(c, True))
|
| 170 |
+
if save_crop:
|
| 171 |
+
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
| 172 |
+
|
| 173 |
+
# Stream results
|
| 174 |
+
im0 = annotator.result()
|
| 175 |
+
if view_img:
|
| 176 |
+
cv2.imshow(str(p), im0)
|
| 177 |
+
cv2.waitKey(1) # 1 millisecond
|
| 178 |
+
|
| 179 |
+
# Save results (image with detections)
|
| 180 |
+
if save_img:
|
| 181 |
+
if dataset.mode == 'image':
|
| 182 |
+
cv2.imwrite(save_path, im0)
|
| 183 |
+
else: # 'video' or 'stream'
|
| 184 |
+
if vid_path[i] != save_path: # new video
|
| 185 |
+
vid_path[i] = save_path
|
| 186 |
+
if isinstance(vid_writer[i], cv2.VideoWriter):
|
| 187 |
+
vid_writer[i].release() # release previous video writer
|
| 188 |
+
if vid_cap: # video
|
| 189 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
| 190 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 191 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 192 |
+
else: # stream
|
| 193 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
| 194 |
+
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
| 195 |
+
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
| 196 |
+
vid_writer[i].write(im0)
|
| 197 |
+
|
| 198 |
+
# Print time (inference-only)
|
| 199 |
+
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
|
| 200 |
+
|
| 201 |
+
# Print results
|
| 202 |
+
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
|
| 203 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
| 204 |
+
if save_txt or save_img:
|
| 205 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
| 206 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
| 207 |
+
if update:
|
| 208 |
+
strip_optimizer(weights) # update model (to fix SourceChangeWarning)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def parse_opt():
|
| 212 |
+
parser = argparse.ArgumentParser()
|
| 213 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
|
| 214 |
+
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
|
| 215 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
| 216 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
| 217 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
| 218 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
| 219 |
+
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
| 220 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
| 221 |
+
parser.add_argument('--view-img', action='store_true', help='show results')
|
| 222 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
| 223 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
| 224 |
+
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
| 225 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
| 226 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
| 227 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
| 228 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
| 229 |
+
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
| 230 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
| 231 |
+
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
|
| 232 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
| 233 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
| 234 |
+
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
| 235 |
+
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
| 236 |
+
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
| 237 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
| 238 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
| 239 |
+
opt = parser.parse_args()
|
| 240 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
| 241 |
+
print_args(vars(opt))
|
| 242 |
+
return opt
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def main(opt):
|
| 246 |
+
check_requirements(exclude=('tensorboard', 'thop'))
|
| 247 |
+
run(**vars(opt))
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
if __name__ == "__main__":
|
| 251 |
+
opt = parse_opt()
|
| 252 |
+
main(opt)
|