Nischal Subedi commited on
Commit
0634f1a
·
1 Parent(s): 26e5b39

much enhanced UI

Browse files
Files changed (4) hide show
  1. .gitattributes +0 -1
  2. app.py +636 -391
  3. requirements.txt +1 -1
  4. vector_db.py +2 -2
.gitattributes CHANGED
@@ -33,5 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- data/tenant-landlord.pdf filter=lfs diff=lfs merge=lfs -text
37
  tenant-landlord.pdf filter=lfs diff=lfs merge=lfs -text
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
36
  tenant-landlord.pdf filter=lfs diff=lfs merge=lfs -text
app.py CHANGED
@@ -1,43 +1,63 @@
1
  import os
2
- import json
3
  import logging
4
  from typing import Dict, List, Optional
5
  from functools import lru_cache
6
  import re
7
 
8
  import gradio as gr
9
- from langchain_openai import ChatOpenAI
 
 
 
 
 
 
 
 
 
 
 
 
10
  from langchain.prompts import PromptTemplate
11
  from langchain.chains import LLMChain
12
- # Make sure vector_db.py is in the same directory or accessible via PYTHONPATH
13
- from vector_db import VectorDatabase # <-- This now imports the placeholder
14
 
15
- # Enhanced logging for better debugging
 
 
 
 
 
 
16
  logging.basicConfig(
17
  level=logging.INFO,
18
  format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s'
19
  )
20
 
 
21
  class RAGSystem:
 
 
 
 
 
 
 
22
  def __init__(self, vector_db: Optional[VectorDatabase] = None):
23
  logging.info("Initializing RAGSystem")
24
- # If no vector_db instance is passed, create one (uses placeholder for now)
25
  self.vector_db = vector_db if vector_db else VectorDatabase()
26
  self.llm = None
27
  self.chain = None
28
-
29
- # Using f-string for potentially better readability/maintenance if template gets complex
30
  self.prompt_template_str = """You are a legal assistant specializing in tenant rights and landlord-tenant laws. Your goal is to provide accurate, detailed, and helpful answers grounded in legal authority. Use the provided statutes as the primary source when available. If no relevant statutes are found in the context, rely on your general knowledge to provide a pertinent and practical response, clearly indicating when you are doing so and prioritizing state-specific information over federal laws for state-specific queries.
31
 
32
  Instructions:
33
- * Use the context and statutes as the primary basis for your answer when available.
34
- * For state-specific queries, prioritize statutes or legal principles from the specified state over federal laws.
35
- * Cite relevant statutes (e.g., (AS § 34.03.220(a)(2))) explicitly in your answer when applicable.
36
- * If multiple statutes apply, list all relevant ones.
37
- * If no specific statute is found in the context, state this clearly (e.g., 'No specific statute was found in the provided context'), then provide a general answer based on common legal principles or practices, marked as such.
38
- * Include practical examples or scenarios to enhance clarity and usefulness.
39
- * Use bullet points or numbered lists for readability when appropriate.
40
- * Maintain a professional and neutral tone.
41
 
42
  Question: {query}
43
  State: {state}
@@ -56,491 +76,716 @@ Answer:"""
56
  )
57
  logging.info("RAGSystem initialized.")
58
 
59
- def initialize_llm(self, openai_api_key: str):
60
- """Initializes the LLM and the processing chain."""
61
- if not openai_api_key:
62
- logging.error("Attempted to initialize LLM without API key.")
63
- raise ValueError("OpenAI API key is required.")
64
-
65
- # Avoid re-initializing if already done with the same key implicitly
66
- # Note: This simple check doesn't handle key changes well.
67
- # A more robust approach might involve checking if self.llm's key matches.
68
- if self.llm and self.chain:
69
- # Check if the key is the same (conceptually - can't directly read from ChatOpenAI instance easily)
70
- # If key changes are expected, need a more complex re-initialization logic.
71
- logging.info("LLM and Chain already initialized.")
72
- return
73
-
74
- try:
75
- logging.info("Initializing OpenAI LLM...")
76
- self.llm = ChatOpenAI(
77
- temperature=0.2,
78
- openai_api_key=openai_api_key,
79
- model_name="gpt-3.5-turbo",
80
- max_tokens=1500, # Max response tokens
81
- request_timeout=45 # Increased timeout
82
- )
83
- logging.info("OpenAI LLM initialized successfully.")
84
-
85
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
86
- logging.info("LLMChain created successfully.")
87
- except Exception as e:
88
- logging.error(f"Failed to initialize OpenAI LLM or Chain: {str(e)}")
89
- # Reset llm/chain if initialization failed partially
90
- self.llm = None
91
- self.chain = None
92
- raise # Re-raise the exception to be caught by the caller
93
-
94
  def extract_statutes(self, text: str) -> str:
95
- """
96
- Extract statute citations from the given text using a refined regex pattern.
97
- Returns a string of valid statutes, one per line, or a message if none are found.
98
- """
99
- # Refined Regex: Aims to capture common US statute formats. May need tuning.
100
- # - Allows state abbreviations (e.g., CA, NY) or full names (e.g, California)
101
- # - Looks for common terms like Code, Laws, Statutes, CCP, USC, ILCS
102
- # - Requires section symbol (§) followed by numbers/hyphens/parenthesized parts
103
- # - Tries to avoid matching simple parenthetical remarks like '(a)' or '(found here)'
104
- statute_pattern = r'\b(?:[A-Z]{2,}\.?\s+(?:Rev\.\s+)?Stat\.?|Code(?:\s+Ann\.?)?|Ann\.?\s+Laws|Statutes|CCP|USC|ILCS|Civ\.\s+Code|Penal\s+Code|Gen\.\s+Oblig\.\s+Law)\s+§\s*[\d\-]+(?:\.\d+)?(?:\([\w\.]+\))?|Title\s+\d+\s+USC\s+§\s*\d+(?:-\d+)?\b'
105
-
106
- # Use finditer for more control if needed later, findall is simpler for now
107
  statutes = re.findall(statute_pattern, text, re.IGNORECASE)
108
-
109
  valid_statutes = []
110
- # Basic filtering (can be improved)
111
  for statute in statutes:
112
- # Remove potential leading/trailing spaces and ensure it looks like a statute
113
- statute = statute.strip()
114
- if '§' in statute and any(char.isdigit() for char in statute):
115
- # Avoid things that might just be section references like '(a)' or URLs mistakenly caught
116
  if not re.match(r'^\([\w\.]+\)$', statute) and 'http' not in statute:
117
- valid_statutes.append(statute)
 
118
 
119
  if valid_statutes:
120
- # Deduplicate while preserving order
121
  seen = set()
122
- unique_statutes = [s for s in valid_statutes if not (s in seen or seen.add(s))]
123
  logging.info(f"Extracted {len(unique_statutes)} unique statutes.")
124
- return "\n".join(f"- {s}" for s in unique_statutes) # Format as list
125
 
126
  logging.info("No statutes found matching the pattern in the context.")
127
  return "No specific statutes found in the provided context."
128
 
129
- # Cache results for the same query, state, and key (key isn't explicitly cached but influences init)
130
- @lru_cache(maxsize=100)
131
- def process_query(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
132
- """Processes the user query using RAG."""
133
- logging.info(f"Processing query: '{query}' for state: '{state}' with n_results={n_results}")
134
-
135
- # 1. Input Validation
136
- if not state:
137
- logging.warning("No state provided for query.")
138
- return {
139
- "answer": "**Error:** Please select a state to proceed with your query.",
140
- "context_used": "N/A"
141
- }
142
- if not query:
143
  logging.warning("No query provided.")
144
- return {
145
- "answer": "**Error:** Please enter your question in the Query box.",
146
- "context_used": "N/A"
147
- }
148
- if not openai_api_key:
149
- logging.warning("No OpenAI API key provided.")
150
- return {
151
- "answer": "**Error:** Please provide an OpenAI API key to proceed.",
152
- "context_used": "N/A"
153
- }
154
-
155
- # 2. Initialize LLM (if needed)
156
  try:
157
- # Initialize LLM here, ensuring it's ready before DB query or LLM call
158
- self.initialize_llm(openai_api_key)
 
 
 
 
 
159
  except Exception as e:
160
- logging.error(f"LLM Initialization failed: {str(e)}")
161
- return {
162
- "answer": f"**Error:** Failed to initialize the AI model. Please check your API key and network connection. ({str(e)})",
163
- "context_used": "N/A"
164
- }
165
-
166
- # Ensure chain is initialized after initialize_llm() call succeeds
167
- if not self.chain:
168
- logging.error("LLM Chain is not initialized after attempting LLM initialization.")
169
- return {
170
- "answer": "**Error:** Internal system error. Failed to prepare the processing chain.",
171
- "context_used": "N/A"
172
- }
173
-
174
-
175
- # 3. Query Vector Database
176
- context = "No relevant context found." # Default context
177
  try:
 
178
  results = self.vector_db.query(query, state=state, n_results=n_results)
179
- logging.info(f"Vector database query successful for state '{state}'.")
180
- # logging.debug(f"Raw query results: {json.dumps(results, indent=2)}")
181
 
182
  context_parts = []
183
- # Process document results carefully, checking list structure
184
  doc_results = results.get("document_results", {})
185
- docs = doc_results.get("documents", [[]])[0] # Safely access first list
186
- metadatas = doc_results.get("metadatas", [[]])[0] # Safely access first list
187
-
188
  if docs and metadatas and len(docs) == len(metadatas):
 
189
  for i, doc_content in enumerate(docs):
190
  metadata = metadatas[i]
191
  state_label = metadata.get('state', 'Unknown State')
192
  chunk_id = metadata.get('chunk_id', 'N/A')
193
- context_parts.append(f"[{state_label} - Chunk {chunk_id}] {doc_content}")
194
- else:
195
- logging.warning("No document results or mismatch in docs/metadata lengths.")
196
 
197
- # Process state summary results
198
  state_results_data = results.get("state_results", {})
199
  state_docs = state_results_data.get("documents", [[]])[0]
200
  state_metadatas = state_results_data.get("metadatas", [[]])[0]
201
-
202
  if state_docs and state_metadatas and len(state_docs) == len(state_metadatas):
203
- for i, state_doc_content in enumerate(state_docs):
 
204
  metadata = state_metadatas[i]
205
- state_label = metadata.get('state', state) # Use provided state if not in metadata
206
- context_parts.append(f"[{state_label} - Summary] {state_doc_content}")
207
- else:
208
- logging.warning("No state summary results found.")
209
 
210
  if context_parts:
211
  context = "\n\n---\n\n".join(context_parts)
212
- logging.info(f"Constructed context with {len(context_parts)} parts.")
213
- # Limit context length if necessary (though max_tokens helps)
214
- # max_context_len = 5000 # Example limit
215
- # if len(context) > max_context_len:
216
- # context = context[:max_context_len] + "\n... [Context Truncated]"
217
- # logging.warning("Context truncated due to length.")
218
  else:
219
- logging.warning("No relevant context parts found after processing DB results.")
220
- context = "No relevant context could be retrieved from the available documents for your query and selected state."
221
-
222
 
223
  except Exception as e:
224
- logging.error(f"Vector database query or context processing failed: {str(e)}", exc_info=True)
225
- # Fallback to general knowledge if DB fails, but inform the user
226
- context = f"An error occurred while retrieving specific legal documents ({str(e)}). I will attempt to answer based on general knowledge, but it may lack state-specific details."
227
- statutes_from_context = "Statute retrieval skipped due to context error."
228
-
229
-
230
- # 4. Extract Statutes from Retrieved Context (if context retrieval succeeded)
231
- statutes_from_context = "No specific statutes found in the provided context."
232
- if "An error occurred while retrieving" not in context and "No relevant context found" not in context:
233
- try:
234
- statutes_from_context = self.extract_statutes(context)
235
- logging.info(f"Statutes extracted: {statutes_from_context}")
236
- except Exception as e:
237
- logging.error(f"Error extracting statutes: {e}")
238
- statutes_from_context = "Error occurred during statute extraction."
239
-
240
 
241
- # 5. Generate Answer using LLM
242
  try:
243
- logging.info("Invoking LLMChain...")
244
- llm_input = {
245
- "query": query,
246
- "context": context,
247
- "state": state,
248
- "statutes": statutes_from_context
249
- }
250
- # logging.debug(f"Input to LLMChain: {json.dumps(llm_input, indent=2)}") # Be careful logging sensitive data
251
- answer_dict = self.chain.invoke(llm_input)
252
  answer_text = answer_dict.get('text', '').strip()
253
 
254
  if not answer_text:
255
- logging.warning("LLM returned an empty answer.")
256
- answer_text = "I received an empty response from the AI model. This might be a temporary issue. Please try rephrasing your question or try again later."
 
 
257
 
258
- logging.info("LLM generated answer successfully.")
259
- # logging.debug(f"Raw answer text from LLM: {answer_text}")
260
 
261
- return {
262
- "answer": answer_text,
263
- "context_used": context # Return the context for potential display or debugging
264
- }
265
  except Exception as e:
266
  logging.error(f"LLM processing failed: {str(e)}", exc_info=True)
267
- # Provide a more informative error message
268
- error_message = f"**Error:** An error occurred while generating the answer. This could be due to issues with the AI model connection, API key limits, or the complexity of the request. Please try again later.\n\nDetails: {str(e)}"
269
- # Check for common API errors
270
  if "authentication" in str(e).lower():
271
- error_message = "**Error:** Authentication failed. Please check if your OpenAI API key is correct and active."
 
272
  elif "rate limit" in str(e).lower():
273
- error_message = "**Error:** You've exceeded your OpenAI API usage limit. Please check your plan or try again later."
 
 
 
 
 
 
 
 
 
 
 
 
 
274
 
275
- return {
276
- "answer": error_message,
277
- "context_used": context # Still return context for debugging
278
- }
279
 
280
  def get_states(self) -> List[str]:
281
- """Retrieves the list of available states from the VectorDatabase."""
282
  try:
283
  states = self.vector_db.get_states()
284
  if not states:
285
- logging.warning("No states returned from vector_db.get_states(). Using default list.")
286
- # Provide a fallback list if needed
287
- return ["California", "New York", "Texas", "Florida", "Oregon", "Alabama", "Select State..."]
288
- logging.info(f"Retrieved {len(states)} states from VectorDatabase.")
289
- return sorted(list(set(states))) # Ensure uniqueness and sort
290
  except Exception as e:
291
- logging.error(f"Failed to get states from VectorDatabase: {str(e)}")
292
- return ["Error fetching states"] # Indicate error in the dropdown
293
 
294
  def load_pdf(self, pdf_path: str) -> int:
295
- """Loads and processes the PDF using the VectorDatabase."""
296
  if not os.path.exists(pdf_path):
297
- logging.error(f"PDF file not found at path: {pdf_path}")
298
- raise FileNotFoundError(f"PDF file not found: {pdf_path}")
299
  try:
300
- logging.info(f"Attempting to load PDF: {pdf_path}")
301
- num_states = self.vector_db.process_and_load_pdf(pdf_path)
302
- if num_states > 0:
303
- logging.info(f"Successfully processed PDF. Found data for {num_states} states.")
 
 
 
 
 
 
304
  else:
305
- logging.warning(f"Processed PDF, but found no state-specific data according to vector_db implementation.")
306
- return num_states
 
307
  except Exception as e:
308
  logging.error(f"Failed to load or process PDF '{pdf_path}': {str(e)}", exc_info=True)
309
- # Depending on vector_db, this might leave the DB in a partial state.
310
- return 0 # Indicate failure
311
 
312
 
 
313
  def gradio_interface(self):
314
- """Creates and returns the Gradio interface."""
315
-
316
- # Define the core function that Gradio will call
317
- def query_interface(api_key: str, query: str, state: str) -> str:
318
- # Clear cache for each new request if desired, or rely on LRU cache parameters
319
- # self.process_query.cache_clear()
320
- logging.info(f"Gradio interface received query: '{query}', state: '{state}'")
 
 
 
 
 
 
321
  result = self.process_query(query=query, state=state, openai_api_key=api_key)
322
 
323
- # Format the response clearly using Markdown
324
- answer = result.get("answer", "**Error:** No answer generated.")
325
- # context_used = result.get("context_used", "N/A") # Optional: show context
326
 
327
- # Simple formatting for now, can be enhanced
328
- formatted_response = f"### Answer for {state}:\n\n{answer}"
 
 
 
329
 
330
- # Optional: Include context for debugging/transparency (can be long)
331
- # formatted_response += f"\n\n---\n<details><summary>Context Used (Debug)</summary>\n\n```\n{context_used}\n```\n</details>"
 
 
 
 
332
 
333
  return formatted_response
334
 
335
- # Get states for the dropdown
336
- available_states = self.get_states()
337
- if not available_states or "Error" in available_states[0]:
338
- logging.error("Could not load states for dropdown. Interface might be unusable.")
339
- # Handle case where states couldn't be loaded
340
- available_states = ["Error: Could not load states"]
341
-
342
-
343
- # Define example queries (only query and state needed for examples UI)
344
- example_queries = [
345
- ["What is the rent due date law?", "California"],
346
- ["What are the rules for security deposit returns?", "New York"],
347
- ["Can a landlord enter without notice?", "Texas"],
348
- ["What are the eviction notice requirements?", "Florida"],
349
- ["Are there rent control laws?", "Oregon"]
 
 
 
 
 
 
 
 
350
  ]
351
-
352
- # Custom CSS (minor adjustments for clarity if needed, your CSS is quite comprehensive)
 
 
 
 
 
 
 
 
353
  custom_css = """
354
- /* Your existing CSS here */
355
- .gr-form { max-width: 900px; margin: 0 auto; padding: 30px; /* ... */ }
356
- .gr-title { font-size: 2.5em; font-weight: 700; color: #1a3c34; /* ... */ }
357
- /* ... rest of your CSS ... */
358
- .output-markdown {
359
- background: #f9fafb; /* Light mode bg */
360
- color: #1f2937; /* Light mode text */
361
- padding: 20px;
362
- border-radius: 12px;
363
- border: 1px solid #e5e7eb;
364
- font-size: 1.05em; /* Slightly larger text */
365
- line-height: 1.7; /* More spacing */
366
- box-shadow: 0 2px 12px rgba(0, 0, 0, 0.05);
367
- margin-top: 20px; /* Add space above output */
368
- }
369
- .output-markdown h3 { /* Style the 'Answer for STATE:' heading */
370
- margin-top: 0;
371
- margin-bottom: 15px;
372
- color: #1a3c34; /* Match title color */
373
- border-bottom: 1px solid #e5e7eb;
374
- padding-bottom: 8px;
375
- }
376
- .output-markdown p { margin-bottom: 1em; }
377
- .output-markdown ul, .output-markdown ol { margin-left: 20px; margin-bottom: 1em; }
378
- .output-markdown li { margin-bottom: 0.5em; }
379
-
380
- /* Dark mode adjustments */
381
- @media (prefers-color-scheme: dark) {
382
- .output-markdown {
383
- background: #374151 !important; /* Dark mode bg */
384
- color: #f3f4f6 !important; /* Dark mode text */
385
- border-color: #4b5563 !important;
386
- }
387
- .output-markdown h3 {
388
- color: #f3f4f6; /* Dark title */
389
- border-bottom: 1px solid #4b5563;
390
- }
391
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392
  """
393
 
394
- # Build the Gradio Blocks interface
395
- with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: # Use a slightly different theme
396
- gr.Markdown(
397
- """
398
- <div style="text-align: center;">
399
- <img src="https://img.icons8.com/plasticine/100/000000/document.png" alt="Icon" style="vertical-align: middle; height: 50px;">
400
- <h1 class='gr-title' style='display: inline-block; margin-bottom: 0; vertical-align: middle; margin-left: 10px;'>Landlord-Tenant Rights Bot</h1>
401
- </div>
402
- <p class='gr-description'>
403
- Ask questions about tenant rights and landlord-tenant laws based on state-specific legal documents.
404
- Provide your OpenAI API key, select a state, and enter your question.
405
- Get your key from <a href='https://platform.openai.com/api-keys' target='_blank'>OpenAI</a>.
406
- </p>
407
- """
408
- )
409
 
410
- with gr.Column(elem_classes="gr-form"): # Use elem_classes if defined in CSS, otherwise elem_id
411
- # Input Components defined *within* gr.Blocks()
412
- api_key_input = gr.Textbox(
413
- label="OpenAI API Key",
414
- type="password",
415
- placeholder="Enter your OpenAI API key (e.g., sk-...)",
416
- info="Required to process your query.", # Use info parameter
417
- #elem_classes="input-field" # Use if defined in CSS
418
- )
419
- query_input = gr.Textbox(
420
- label="Your Question",
421
- placeholder="e.g., What are the rules for security deposit returns?",
422
- lines=4, # Increased lines slightly
423
- info="Enter your question about landlord-tenant law here.",
424
- #elem_classes="input-field"
425
- )
426
- state_input = gr.Dropdown(
427
- label="Select State",
428
- choices=available_states,
429
- value=available_states[0] if available_states else None, # Default to first state or None
430
- allow_custom_value=False,
431
- info="Select the state your question applies to.",
432
- #elem_classes="input-field"
433
  )
434
 
435
- with gr.Row():
436
- clear_button = gr.Button("Clear Inputs", variant="secondary")
437
- submit_button = gr.Button("Submit Query", variant="primary")
438
-
439
- output = gr.Markdown(
440
- label="Answer",
441
- value="Your answer will appear here...", # Initial placeholder text
442
- elem_classes="output-markdown" # Apply custom class for styling
443
- )
444
 
445
- gr.Markdown("---") # Separator
446
- gr.Markdown("### Examples")
447
- gr.Examples(
448
- examples=example_queries,
449
- inputs=[query_input, state_input], # Examples only fill these two
450
- # outputs=output, # Output is handled by the main submit button click
451
- # fn=query_interface, # Don't run the function directly on example click
452
- # cache_examples=False, # Don't cache example runs if fn were used
453
- label="Click an example to load it",
454
- examples_per_page=5
455
  )
456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457
 
 
 
458
  gr.Markdown(
459
  """
460
- <div class='footnote' style='margin-top: 30px; padding-top: 15px; border-top: 1px solid #e5e7eb; text-align: center; font-size: 0.9em; color: #6c757d;'>
461
- Developed by Nischal Subedi. Follow on
462
- <a href='https://www.linkedin.com/in/nischal1/' target='_blank' style='color: #007bff; text-decoration: none;'>LinkedIn</a> |
463
- Read insights on <a href='https://datascientistinsights.substack.com/' target='_blank' style='color: #007bff; text-decoration: none;'>Substack</a>.
464
- <br>Disclaimer: This bot provides informational summaries based on AI interpretation and retrieved data. It is not a substitute for professional legal advice.
465
- </div>
466
- """
467
- , elem_classes="footnote") # Apply footnote class if defined in CSS
468
 
469
- # Connect Actions to Functions
470
  submit_button.click(
471
- fn=query_interface,
472
  inputs=[api_key_input, query_input, state_input],
473
  outputs=output,
474
- api_name="submit_query" # Add API name for potential programmatic use
475
  )
476
- # Clear button clears all inputs and the output
477
  clear_button.click(
478
- fn=lambda: ( # Return empty values for each output component
479
- "", # api_key_input
480
- "", # query_input
481
- available_states[0] if available_states else None, # state_input (reset to default)
482
- "Cleared. Ready for new query..." # output
483
- ),
484
- inputs=[], # No inputs needed for clear
485
  outputs=[api_key_input, query_input, state_input, output]
486
  )
487
 
488
- logging.info("Gradio interface created successfully.")
489
- return demo # Corrected return variable name
490
 
491
-
492
- # Main execution block
493
  if __name__ == "__main__":
494
- logging.info("Starting application setup...")
495
  try:
496
- # --- Configuration ---
497
- PDF_PATH = os.getenv("PDF_PATH", "data/tenant-landlord.pdf") # Use env var or default
498
- VECTOR_DB_PATH = os.getenv("VECTOR_DB_PATH", "./vector_db_store") # For persistent DBs
 
499
 
500
- # Check if PDF exists
501
- if not os.path.exists(PDF_PATH):
502
- logging.error(f"FATAL: PDF file not found at the specified path: {PDF_PATH}")
503
- logging.error("Please ensure the PDF file exists or set the PDF_PATH environment variable correctly.")
504
- # Exit if the core data file is missing
505
- exit(1) # Or raise an exception
506
 
 
 
507
 
508
- # --- Initialization ---
509
- # Initialize VectorDatabase (using placeholder for now)
510
- # Pass path if your implementation uses it (like ChromaDB)
511
- vector_db_instance = VectorDatabase(persist_directory=VECTOR_DB_PATH)
512
 
513
- # Initialize RAGSystem with the database instance
 
 
 
 
 
 
 
 
 
 
 
514
  rag = RAGSystem(vector_db=vector_db_instance)
515
 
516
- # --- Data Loading ---
517
- # Load the PDF data into the vector database
518
- # This step is crucial and needs the *real* vector_db.py
519
- logging.info(f"Loading data from PDF: {PDF_PATH}")
520
- states_loaded = rag.load_pdf(PDF_PATH)
521
- if states_loaded == 0 and not isinstance(vector_db_instance, VectorDatabase): # Check if using placeholder
522
- logging.warning("PDF loading reported 0 states. Check PDF content and vector_db implementation.")
523
- # Decide if you want to proceed without data or halt
 
 
 
524
 
525
- # --- Interface Setup & Launch ---
526
  logging.info("Setting up Gradio interface...")
527
  app_interface = rag.gradio_interface()
528
 
529
- logging.info("Launching Gradio app...")
530
- # Launch the Gradio app
531
- # share=True generates a public link (use with caution)
532
- # server_name="0.0.0.0" makes it accessible on the network
533
- app_interface.launch(server_name="0.0.0.0", server_port=7860, share=False)
534
- # For cloud deployments (like Hugging Face Spaces), you might not need server_name/port
 
 
 
 
535
 
536
  except FileNotFoundError as fnf_error:
537
- logging.error(f"Initialization failed: {str(fnf_error)}")
538
- # No need to raise again, already logged. Maybe print a message.
539
- print(f"Error: {str(fnf_error)}. Please check file paths.")
 
 
540
  except ImportError as import_error:
541
- logging.error(f"Import error: {str(import_error)}. Please ensure all required libraries (gradio, langchain, openai, etc.) and the 'vector_db.py' file are installed and accessible.")
542
- print(f"Import Error: {str(import_error)}. Check your dependencies.")
 
 
 
 
 
 
 
 
 
 
 
543
  except Exception as e:
544
- # Catch any other unexpected errors during setup or launch
545
  logging.error(f"An unexpected error occurred during application startup: {str(e)}", exc_info=True)
546
- print(f"Fatal Error: {str(e)}. Check logs for details.")
 
 
 
 
 
1
  import os
 
2
  import logging
3
  from typing import Dict, List, Optional
4
  from functools import lru_cache
5
  import re
6
 
7
  import gradio as gr
8
+ try:
9
+ from vector_db import VectorDatabase
10
+ except ImportError:
11
+ print("Error: Could not import VectorDatabase from vector_db.py.")
12
+ print("Please ensure vector_db.py exists in the same directory and is correctly defined.")
13
+ exit(1)
14
+
15
+ try:
16
+ from langchain_openai import ChatOpenAI
17
+ except ImportError:
18
+ print("Error: langchain-openai not found. Please install it: pip install langchain-openai")
19
+ exit(1)
20
+
21
  from langchain.prompts import PromptTemplate
22
  from langchain.chains import LLMChain
 
 
23
 
24
+ # Suppress warnings
25
+ import warnings
26
+ warnings.filterwarnings("ignore", category=SyntaxWarning)
27
+ warnings.filterwarnings("ignore", category=UserWarning, message=".*You are using gradio version.*")
28
+ warnings.filterwarnings("ignore", category=DeprecationWarning)
29
+
30
+ # Enhanced logging
31
  logging.basicConfig(
32
  level=logging.INFO,
33
  format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s'
34
  )
35
 
36
+ # --- RAGSystem Class ---
37
  class RAGSystem:
38
+ # (Keep the RAGSystem class exactly the same as in the previous version)
39
+ # ... __init__ ...
40
+ # ... extract_statutes ...
41
+ # ... process_query_cached ...
42
+ # ... process_query ...
43
+ # ... get_states ...
44
+ # ... load_pdf ...
45
  def __init__(self, vector_db: Optional[VectorDatabase] = None):
46
  logging.info("Initializing RAGSystem")
 
47
  self.vector_db = vector_db if vector_db else VectorDatabase()
48
  self.llm = None
49
  self.chain = None
 
 
50
  self.prompt_template_str = """You are a legal assistant specializing in tenant rights and landlord-tenant laws. Your goal is to provide accurate, detailed, and helpful answers grounded in legal authority. Use the provided statutes as the primary source when available. If no relevant statutes are found in the context, rely on your general knowledge to provide a pertinent and practical response, clearly indicating when you are doing so and prioritizing state-specific information over federal laws for state-specific queries.
51
 
52
  Instructions:
53
+ * Use the context and statutes as the primary basis for your answer when available.
54
+ * For state-specific queries, prioritize statutes or legal principles from the specified state over federal laws.
55
+ * Cite relevant statutes (e.g., (AS § 34.03.220(a)(2))) explicitly in your answer when applicable.
56
+ * If multiple statutes apply, list all relevant ones.
57
+ * If no specific statute is found in the context, state this clearly (e.g., 'No specific statute was found in the provided context'), then provide a general answer based on common legal principles or practices, marked as such.
58
+ * Include practical examples or scenarios to enhance clarity and usefulness.
59
+ * Use bullet points or numbered lists for readability when appropriate.
60
+ * Maintain a professional and neutral tone.
61
 
62
  Question: {query}
63
  State: {state}
 
76
  )
77
  logging.info("RAGSystem initialized.")
78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  def extract_statutes(self, text: str) -> str:
80
+ statute_pattern = r'\b(?:[A-Z]{2,}\.?\s+(?:Rev\.\s+)?Stat\.?|Code(?:\s+Ann\.?)?|Ann\.?\s+Laws|Statutes|CCP|USC|ILCS|Civ\.\s+Code|Penal\s+Code|Gen\.\s+Oblig\.\s+Law|R\.?S\.?|P\.?L\.?)\s+§\s*[\d\-]+(?:\.\d+)?(?:[\(\w\.\)]+)?|Title\s+\d+\s+USC\s+§\s*\d+(?:-\d+)?\b'
 
 
 
 
 
 
 
 
 
 
 
81
  statutes = re.findall(statute_pattern, text, re.IGNORECASE)
 
82
  valid_statutes = []
 
83
  for statute in statutes:
84
+ statute = statute.strip()
85
+ if '§' in statute and any(char.isdigit() for char in statute):
 
 
86
  if not re.match(r'^\([\w\.]+\)$', statute) and 'http' not in statute:
87
+ if len(statute) > 5:
88
+ valid_statutes.append(statute)
89
 
90
  if valid_statutes:
 
91
  seen = set()
92
+ unique_statutes = [s for s in valid_statutes if not (s.rstrip('.,;') in seen or seen.add(s.rstrip('.,;')))]
93
  logging.info(f"Extracted {len(unique_statutes)} unique statutes.")
94
+ return "\n".join(f"- {s}" for s in unique_statutes)
95
 
96
  logging.info("No statutes found matching the pattern in the context.")
97
  return "No specific statutes found in the provided context."
98
 
99
+ @lru_cache(maxsize=50)
100
+ def process_query_cached(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
101
+ logging.info(f"Processing query (cache key: '{query}'|'{state}'|key_hidden) with n_results={n_results}")
102
+
103
+ if not state or state == "Select a state..." or "Error" in state:
104
+ logging.warning("No valid state provided for query.")
105
+ return {"answer": "<div class='error-message'>Error: Please select a valid state.</div>", "context_used": "N/A - Invalid Input"}
106
+ if not query or not query.strip():
 
 
 
 
 
 
107
  logging.warning("No query provided.")
108
+ return {"answer": "<div class='error-message'>Error: Please enter your question.</div>", "context_used": "N/A - Invalid Input"}
109
+ if not openai_api_key or not openai_api_key.strip() or not openai_api_key.startswith("sk-"):
110
+ logging.warning("No valid OpenAI API key provided.")
111
+ return {"answer": "<div class='error-message'>Error: Please provide a valid OpenAI API key (starting with 'sk-'). Get one from <a href='https://platform.openai.com/api-keys' target='_blank'>OpenAI</a>.</div>", "context_used": "N/A - Invalid Input"}
112
+
 
 
 
 
 
 
 
113
  try:
114
+ logging.info("Initializing temporary LLM and Chain for this query...")
115
+ temp_llm = ChatOpenAI(
116
+ temperature=0.2, openai_api_key=openai_api_key, model_name="gpt-3.5-turbo",
117
+ max_tokens=1500, request_timeout=45
118
+ )
119
+ temp_chain = LLMChain(llm=temp_llm, prompt=self.prompt_template)
120
+ logging.info("Temporary LLM and Chain initialized successfully.")
121
  except Exception as e:
122
+ logging.error(f"LLM Initialization failed: {str(e)}", exc_info=True)
123
+ error_msg = "Error: Failed to initialize AI model. Please check your network connection and API key validity."
124
+ if "authentication" in str(e).lower():
125
+ error_msg = "Error: OpenAI API Key is invalid or expired. Please check your key."
126
+ return {"answer": f"<div class='error-message'>{error_msg}</div><div class='error-details'>Details: {str(e)}</div>", "context_used": "N/A - LLM Init Failed"}
127
+
128
+ context = "No relevant context found."
129
+ statutes_from_context = "Statute retrieval skipped due to context issues."
 
 
 
 
 
 
 
 
 
130
  try:
131
+ logging.info(f"Querying Vector DB for query: '{query[:50]}...' in state '{state}'...")
132
  results = self.vector_db.query(query, state=state, n_results=n_results)
133
+ logging.info(f"Vector DB query successful for state '{state}'. Processing results...")
 
134
 
135
  context_parts = []
 
136
  doc_results = results.get("document_results", {})
137
+ docs = doc_results.get("documents", [[]])[0]
138
+ metadatas = doc_results.get("metadatas", [[]])[0]
 
139
  if docs and metadatas and len(docs) == len(metadatas):
140
+ logging.info(f"Found {len(docs)} document chunks.")
141
  for i, doc_content in enumerate(docs):
142
  metadata = metadatas[i]
143
  state_label = metadata.get('state', 'Unknown State')
144
  chunk_id = metadata.get('chunk_id', 'N/A')
145
+ context_parts.append(f"**Source: Document Chunk {chunk_id} (State: {state_label})**\n{doc_content}")
 
 
146
 
 
147
  state_results_data = results.get("state_results", {})
148
  state_docs = state_results_data.get("documents", [[]])[0]
149
  state_metadatas = state_results_data.get("metadatas", [[]])[0]
 
150
  if state_docs and state_metadatas and len(state_docs) == len(state_metadatas):
151
+ logging.info(f"Found {len(state_docs)} state summary documents.")
152
+ for i, state_doc_content in enumerate(state_docs):
153
  metadata = state_metadatas[i]
154
+ state_label = metadata.get('state', state)
155
+ context_parts.append(f"**Source: State Summary (State: {state_label})**\n{state_doc_content}")
 
 
156
 
157
  if context_parts:
158
  context = "\n\n---\n\n".join(context_parts)
159
+ logging.info(f"Constructed context with {len(context_parts)} parts. Length: {len(context)} chars.")
160
+ try:
161
+ statutes_from_context = self.extract_statutes(context)
162
+ except Exception as e:
163
+ logging.error(f"Error extracting statutes: {e}", exc_info=True)
164
+ statutes_from_context = "Error extracting statutes from context."
165
  else:
166
+ logging.warning("No relevant context parts found from vector DB query.")
167
+ context = "No relevant context could be retrieved from the knowledge base for this query and state. The AI will answer from its general knowledge."
168
+ statutes_from_context = "No specific statutes found as no context was retrieved."
169
 
170
  except Exception as e:
171
+ logging.error(f"Vector DB query/context processing failed: {str(e)}", exc_info=True)
172
+ context = f"Warning: Error retrieving documents from the knowledge base ({str(e)}). The AI will attempt to answer from its general knowledge, which may be less specific or accurate."
173
+ statutes_from_context = "Statute retrieval skipped due to error retrieving context."
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
 
175
  try:
176
+ logging.info("Invoking LLMChain with constructed input...")
177
+ llm_input = {"query": query, "context": context, "state": state, "statutes": statutes_from_context}
178
+ answer_dict = temp_chain.invoke(llm_input)
 
 
 
 
 
 
179
  answer_text = answer_dict.get('text', '').strip()
180
 
181
  if not answer_text:
182
+ logging.warning("LLM returned an empty answer.")
183
+ answer_text = "<div class='error-message'>The AI model returned an empty response. This might be due to the query, context limitations, or temporary issues. Please try rephrasing your question or try again later.</div>"
184
+ else:
185
+ logging.info("LLM generated answer successfully.")
186
 
187
+ return {"answer": answer_text, "context_used": context}
 
188
 
 
 
 
 
189
  except Exception as e:
190
  logging.error(f"LLM processing failed: {str(e)}", exc_info=True)
191
+ error_message = "Error: AI answer generation failed."
192
+ details = f"Details: {str(e)}"
 
193
  if "authentication" in str(e).lower():
194
+ error_message = "Error: Authentication failed. Please double-check your OpenAI API key."
195
+ details = ""
196
  elif "rate limit" in str(e).lower():
197
+ error_message = "Error: You've exceeded your OpenAI API rate limit or quota. Please check your usage and plan limits, or wait and try again."
198
+ details = ""
199
+ elif "context length" in str(e).lower():
200
+ error_message = "Error: The request was too long for the AI model. This can happen with very complex questions or extensive retrieved context."
201
+ details = "Try simplifying your question or asking about a more specific aspect."
202
+ elif "timeout" in str(e).lower():
203
+ error_message = "Error: The request to the AI model timed out. The service might be busy."
204
+ details = "Please try again in a few moments."
205
+
206
+ formatted_error = f"<div class='error-message'>{error_message}</div>"
207
+ if details:
208
+ formatted_error += f"<div class='error-details'>{details}</div>"
209
+
210
+ return {"answer": formatted_error, "context_used": context}
211
 
212
+ def process_query(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
213
+ return self.process_query_cached(query.strip(), state, openai_api_key.strip(), n_results)
 
 
214
 
215
  def get_states(self) -> List[str]:
 
216
  try:
217
  states = self.vector_db.get_states()
218
  if not states:
219
+ logging.warning("No states retrieved from vector_db. Returning empty list.")
220
+ return []
221
+ valid_states = sorted(list(set(s for s in states if s and isinstance(s, str) and s != "Select a state...")))
222
+ logging.info(f"Retrieved {len(valid_states)} unique, valid states from VectorDatabase.")
223
+ return valid_states
224
  except Exception as e:
225
+ logging.error(f"Failed to get states from VectorDatabase: {str(e)}", exc_info=True)
226
+ return ["Error: Could not load states"]
227
 
228
  def load_pdf(self, pdf_path: str) -> int:
 
229
  if not os.path.exists(pdf_path):
230
+ logging.error(f"PDF file not found at path: {pdf_path}")
231
+ raise FileNotFoundError(f"PDF file not found: {pdf_path}")
232
  try:
233
+ logging.info(f"Attempting to load/verify data from PDF: {pdf_path}")
234
+ num_states_processed = self.vector_db.process_and_load_pdf(pdf_path)
235
+ doc_count = self.vector_db.document_collection.count()
236
+ state_count = self.vector_db.state_collection.count()
237
+ total_items = doc_count + state_count
238
+
239
+ if total_items > 0:
240
+ logging.info(f"Vector DB contains {total_items} items ({doc_count} docs, {state_count} states). PDF processed or data already existed.")
241
+ current_states = self.get_states()
242
+ return len(current_states) if current_states and "Error" not in current_states[0] else 0
243
  else:
244
+ logging.warning(f"PDF processing completed, but the vector database appears empty. Check PDF content and processing logs.")
245
+ return 0
246
+
247
  except Exception as e:
248
  logging.error(f"Failed to load or process PDF '{pdf_path}': {str(e)}", exc_info=True)
249
+ raise RuntimeError(f"Failed to process PDF '{pdf_path}': {e}") from e
 
250
 
251
 
252
+ # --- GRADIO INTERFACE ---
253
  def gradio_interface(self):
254
+ # Wrapper function for the Gradio interface logic
255
+ def query_interface_wrapper(api_key: str, query: str, state: str) -> str:
256
+ logging.info(f"Gradio interface received query: '{query[:50]}...', state: '{state}'")
257
+
258
+ # Re-validate inputs robustly
259
+ if not api_key or not api_key.strip() or not api_key.startswith("sk-"):
260
+ return "<div class='error-message'>Please provide a valid OpenAI API key (starting with 'sk-'). <a href='https://platform.openai.com/api-keys' target='_blank'>Get one here</a>.</div>"
261
+ if not state or state == "Select a state..." or "Error" in state:
262
+ return "<div class='error-message'>Please select a valid state from the dropdown.</div>"
263
+ if not query or not query.strip():
264
+ return "<div class='error-message'>Please enter your question in the text box.</div>"
265
+
266
+ # Call the core processing logic
267
  result = self.process_query(query=query, state=state, openai_api_key=api_key)
268
 
269
+ # Format the response for display
270
+ answer = result.get("answer", "<div class='error-message'>An unexpected error occurred, and no answer was generated. Please check the logs or try again.</div>")
 
271
 
272
+ # Add a header *only* if the answer is not an error message itself
273
+ if not "<div class='error-message'>" in answer:
274
+ formatted_response = f"<h3 class='response-header'>Response for {state}</h3><hr class='divider'>{answer}"
275
+ else:
276
+ formatted_response = answer # Pass through error messages directly
277
 
278
+ # Log context length for debugging (optional)
279
+ context_used = result.get("context_used", "N/A")
280
+ if isinstance(context_used, str) and "N/A" not in context_used:
281
+ logging.debug(f"Context length used for query: {len(context_used)} characters.")
282
+ else:
283
+ logging.debug(f"No context was used or available for this query ({context_used}).")
284
 
285
  return formatted_response
286
 
287
+ # --- Get Available States for Dropdown ---
288
+ try:
289
+ available_states_list = self.get_states()
290
+ if not available_states_list or "Error" in available_states_list[0]:
291
+ dropdown_choices = ["Error: Could not load states"]
292
+ initial_value = dropdown_choices[0]
293
+ logging.error("Could not load states for dropdown. UI will show error.")
294
+ else:
295
+ dropdown_choices = ["Select a state..."] + available_states_list
296
+ initial_value = dropdown_choices[0]
297
+ except Exception as e:
298
+ logging.error(f"Unexpected critical error getting states: {e}", exc_info=True)
299
+ dropdown_choices = ["Error: Critical failure loading states"]
300
+ initial_value = dropdown_choices[0]
301
+
302
+ # --- Prepare Example Queries ---
303
+ example_queries_base = [
304
+ ["What are the rules for security deposit returns?", "California"],
305
+ ["Can a landlord enter my apartment without notice?", "New York"],
306
+ ["My landlord hasn't made necessary repairs. What can I do?", "Texas"],
307
+ ["What are the limits on rent increases in my state?", "Florida"],
308
+ ["Is my lease automatically renewed if I don't move out?", "Illinois"],
309
+ ["What happens if I break my lease early?", "Washington"]
310
  ]
311
+ example_queries = []
312
+ if available_states_list and "Error" not in available_states_list[0]:
313
+ loaded_states_set = set(available_states_list)
314
+ example_queries = [ex for ex in example_queries_base if ex[1] in loaded_states_set]
315
+ if not example_queries:
316
+ fallback_state = available_states_list[0] if available_states_list and "Error" not in available_states_list[0] else "California"
317
+ example_queries.append(["What basic rights do tenants have?", fallback_state])
318
+
319
+ # --- Refined Custom CSS ---
320
+ # Focus: Unified background, distinct white cards, proper centering, refined examples table
321
  custom_css = """
322
+ @import url('https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&display=swap');
323
+
324
+ /* --- Base & Body --- */
325
+ body, .gradio-container {
326
+ font-family: 'Roboto', sans-serif !important;
327
+ background-color: #F5F7FA !important; /* Light grey base background */
328
+ color: #1F2A44;
329
+ margin: 0;
330
+ padding: 0;
331
+ min-height: 100vh;
332
+ font-size: 16px; /* Base font size */
333
+ -webkit-font-smoothing: antialiased;
334
+ -moz-osx-font-smoothing: grayscale;
335
+ }
336
+ * {
337
+ box-sizing: border-box;
338
+ }
339
+
340
+ /* --- Main Content Container --- */
341
+ .gradio-container > .flex.flex-col { /* Target the main content column */
342
+ max-width: 960px; /* Slightly wider max-width */
343
+ margin: 0 auto !important; /* Center the column */
344
+ padding: 3rem 1.5rem !important; /* More vertical padding */
345
+ gap: 2.5rem !important; /* Consistent gap between sections */
346
+ background-color: transparent !important; /* Ensure container itself is transparent */
347
+ }
348
+
349
+ /* --- Card Styling (Applied to Groups) --- */
350
+ .card-style {
351
+ background-color: #FFFFFF !important; /* White background for cards */
352
+ border: 1px solid #E5E7EB !important; /* Subtle border */
353
+ border-radius: 12px !important;
354
+ padding: 2rem !important; /* Consistent padding inside cards */
355
+ box-shadow: 0 4px 12px rgba(101, 119, 134, 0.08) !important; /* Refined shadow */
356
+ overflow: hidden; /* Prevent content spill */
357
+ }
358
+ /* Remove default Gradio Group padding if using custom padding */
359
+ .gradio-group {
360
+ padding: 0 !important;
361
+ border: none !important;
362
+ background: none !important;
363
+ box-shadow: none !important;
364
+ }
365
+
366
+ /* --- Header Section --- */
367
+ .header-section {
368
+ background-color: transparent !important; /* Header blends */
369
+ padding: 1rem 0 !important;
370
+ text-align: center !important; /* Center align all content */
371
+ border: none !important;
372
+ box-shadow: none !important;
373
+ }
374
+ .header-logo {
375
+ font-size: 2.8rem;
376
+ color: #2563EB;
377
+ margin-bottom: 0.75rem;
378
+ display: block; /* Ensure centering */
379
+ }
380
+ .header-title {
381
+ font-size: 2rem; /* Larger title */
382
+ font-weight: 700;
383
+ color: #111827; /* Darker title */
384
+ margin: 0 0 0.25rem 0;
385
+ }
386
+ .header-tagline {
387
+ font-size: 1.1rem;
388
+ color: #4B5563;
389
+ margin: 0;
390
+ }
391
+
392
+ /* --- Introduction Section --- */
393
+ /* Uses card-style defined above */
394
+ .intro-card h3 {
395
+ font-size: 1.5rem;
396
+ font-weight: 600;
397
+ color: #0369A1; /* Blue heading */
398
+ margin: 0 0 1rem 0;
399
+ padding-bottom: 0.5rem;
400
+ border-bottom: 1px solid #E0F2FE; /* Light blue underline */
401
+ }
402
+ .intro-card p {
403
+ font-size: 1rem;
404
+ line-height: 1.6;
405
+ color: #374151; /* Standard text color */
406
+ margin: 0 0 0.75rem 0;
407
+ }
408
+ .intro-card a {
409
+ color: #0369A1;
410
+ text-decoration: underline;
411
+ font-weight: 500;
412
+ }
413
+ .intro-card a:hover { color: #0284C7; }
414
+ .intro-card strong { font-weight: 600; color: #1F2A44; }
415
+
416
+ /* --- Input Form Section --- */
417
+ /* Uses card-style */
418
+ .input-form-card h3 {
419
+ font-size: 1.4rem;
420
+ font-weight: 600;
421
+ color: #1F2A44;
422
+ margin: 0 0 1.75rem 0;
423
+ padding-bottom: 0.75rem;
424
+ border-bottom: 1px solid #E5E7EB;
425
+ }
426
+ .input-field-group { margin-bottom: 1.5rem; }
427
+ .input-row { display: flex; gap: 1.5rem; flex-wrap: wrap; margin-bottom: 1.5rem; }
428
+ .input-field { flex: 1; min-width: 220px; }
429
+
430
+ /* Input Elements */
431
+ .gradio-textbox textarea, .gradio-dropdown select, .gradio-textbox input[type=password] {
432
+ border: 1px solid #D1D5DB !important;
433
+ border-radius: 8px !important;
434
+ padding: 0.8rem 1rem !important;
435
+ font-size: 1rem !important; /* Make inputs slightly larger */
436
+ background-color: #F9FAFB !important;
437
+ color: #1F2A44 !important;
438
+ transition: border-color 0.2s ease, box-shadow 0.2s ease;
439
+ width: 100% !important;
440
+ }
441
+ .gradio-textbox textarea { min-height: 90px; }
442
+ .gradio-textbox textarea:focus, .gradio-dropdown select:focus, .gradio-textbox input[type=password]:focus {
443
+ border-color: #2563EB !important;
444
+ box-shadow: 0 0 0 3px rgba(37, 99, 235, 0.15) !important;
445
+ outline: none !important;
446
+ background-color: #FFFFFF !important;
447
+ }
448
+ .gradio-input-label, .gradio-output-label { /* Label styling */
449
+ font-size: 0.9rem !important;
450
+ font-weight: 500 !important;
451
+ color: #374151 !important;
452
+ margin-bottom: 0.5rem !important;
453
+ display: block !important;
454
+ }
455
+ .gradio-input-info { /* Info text */
456
+ font-size: 0.85rem !important;
457
+ color: #6B7280 !important;
458
+ margin-top: 0.3rem;
459
+ }
460
+
461
+ /* Buttons */
462
+ .button-row { display: flex; gap: 1rem; margin-top: 1.5rem; flex-wrap: wrap; justify-content: flex-end; }
463
+ .gradio-button {
464
+ border-radius: 8px !important; padding: 0.75rem 1.5rem !important; font-size: 0.95rem !important;
465
+ font-weight: 500 !important; border: none !important; cursor: pointer;
466
+ transition: background-color 0.2s ease, transform 0.1s ease, box-shadow 0.2s ease;
467
+ }
468
+ .gradio-button:hover:not(:disabled) { transform: translateY(-1px); box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); }
469
+ .gradio-button:active:not(:disabled) { transform: scale(0.98); box-shadow: none; }
470
+ .gradio-button:disabled { background: #E5E7EB !important; color: #9CA3AF !important; cursor: not-allowed; }
471
+ .gr-button-primary { background-color: #2563EB !important; color: #FFFFFF !important; }
472
+ .gr-button-primary:hover:not(:disabled) { background-color: #1D4ED8 !important; }
473
+ .gr-button-secondary { background-color: #F3F4F6 !important; color: #374151 !important; border: 1px solid #D1D5DB !important; }
474
+ .gr-button-secondary:hover:not(:disabled) { background-color: #E5E7EB !important; border-color: #9CA3AF !important; }
475
+
476
+ /* --- Output Section --- */
477
+ /* Uses card-style */
478
+ .output-card .response-header { /* Style the H3 we add in Python */
479
+ font-size: 1.3rem;
480
+ font-weight: 600;
481
+ color: #1F2A44;
482
+ margin: 0 0 0.75rem 0;
483
+ }
484
+ .output-card .divider { /* Style the HR we add */
485
+ border: none; border-top: 1px solid #E5E7EB; margin: 1rem 0 1.5rem 0;
486
+ }
487
+ .output-card .output-content-wrapper { /* Wrapper for the markdown content */
488
+ font-size: 1rem; line-height: 1.7; color: #374151;
489
+ }
490
+ .output-card .output-content-wrapper p { margin-bottom: 1rem; }
491
+ .output-card .output-content-wrapper ul, .output-card .output-content-wrapper ol { margin-left: 1.5rem; margin-bottom: 1rem; padding-left: 1rem; }
492
+ .output-card .output-content-wrapper li { margin-bottom: 0.5rem; }
493
+ .output-card .output-content-wrapper strong, .output-card .output-content-wrapper b { font-weight: 600; color: #111827; }
494
+ .output-card .output-content-wrapper a { color: #2563EB; text-decoration: underline; }
495
+ .output-card .output-content-wrapper a:hover { color: #1D4ED8; }
496
+
497
+ /* Error message styling */
498
+ .output-card .error-message {
499
+ background-color: #FEF2F2; border: 1px solid #FECACA; border-left: 4px solid #F87171;
500
+ border-radius: 8px; padding: 1rem 1.25rem; color: #B91C1C; font-weight: 500; margin-top: 0.5rem;
501
+ }
502
+ .output-card .error-details { font-size: 0.9rem; color: #991B1B; margin-top: 0.5rem; font-style: italic; }
503
+ /* Placeholder text */
504
+ .output-card .placeholder { color: #9CA3AF; font-style: italic; text-align: center; padding: 2rem 1rem; display: block; }
505
+
506
+ /* --- Examples Section --- */
507
+ /* Uses card-style */
508
+ .examples-card .gr-examples-header { /* Style the header Gradio adds */
509
+ font-size: 1.3rem !important; font-weight: 600 !important; color: #1F2A44 !important;
510
+ margin: 0 0 1.5rem 0 !important; padding-bottom: 0.75rem !important; border-bottom: 1px solid #E5E7EB !important;
511
+ }
512
+ /* Style the TABLE generated by gr.Examples */
513
+ .examples-card .gr-examples-table { border-collapse: collapse !important; width: 100% !important; }
514
+ .examples-card .gr-examples-table th,
515
+ .examples-card .gr-examples-table td {
516
+ text-align: left !important; padding: 0.75rem 1rem !important;
517
+ border: 1px solid #E5E7EB !important; font-size: 0.95rem !important;
518
+ color: #374151 !important; background-color: transparent !important;
519
+ }
520
+ .examples-card .gr-examples-table th {
521
+ font-weight: 500 !important; background-color: #F9FAFB !important; color: #1F2A44 !important;
522
+ }
523
+ /* Style the example *rows* when clickable */
524
+ .examples-card .gr-examples-table tr { cursor: pointer; transition: background-color 0.2s ease; }
525
+ .examples-card .gr-examples-table tr:hover td { background-color: #F3F4F6 !important; }
526
+
527
+ /* --- Footer Section --- */
528
+ .footer-section {
529
+ background-color: transparent !important;
530
+ border-top: 1px solid #E5E7EB !important;
531
+ padding: 2rem 1rem !important;
532
+ margin-top: 1rem !important; /* Space above footer */
533
+ text-align: center !important;
534
+ color: #6B7280 !important;
535
+ font-size: 0.9rem !important;
536
+ line-height: 1.6 !important;
537
+ box-shadow: none !important; border-radius: 0 !important;
538
+ }
539
+ .footer-section strong { color: #374151; font-weight: 500; }
540
+ .footer-section a { color: #2563EB; text-decoration: none; font-weight: 500; }
541
+ .footer-section a:hover { color: #1D4ED8; text-decoration: underline; }
542
+
543
+ /* --- Accessibility & Focus --- */
544
+ :focus-visible {
545
+ outline: 2px solid #2563EB !important;
546
+ outline-offset: 2px;
547
+ box-shadow: 0 0 0 3px rgba(37, 99, 235, 0.2) !important;
548
+ }
549
+ /* Remove default Gradio focus on button internal span */
550
+ .gradio-button span:focus { outline: none !important; }
551
+
552
+ /* --- Responsive Adjustments --- */
553
+ @media (max-width: 768px) {
554
+ .gradio-container > .flex.flex-col { padding: 2rem 1rem !important; gap: 2rem !important; }
555
+ .card-style { padding: 1.5rem !important; }
556
+ .header-title { font-size: 1.8rem; }
557
+ .header-tagline { font-size: 1rem; }
558
+ .input-row { flex-direction: column; gap: 1rem; margin-bottom: 1rem; }
559
+ .button-row { justify-content: center; }
560
+ }
561
+ @media (max-width: 480px) {
562
+ body { font-size: 15px; }
563
+ .gradio-container > .flex.flex-col { padding: 1.5rem 1rem !important; gap: 1.5rem !important; }
564
+ .card-style { padding: 1.25rem !important; border-radius: 10px !important;}
565
+ .header-logo { font-size: 2.5rem; margin-bottom: 0.5rem;}
566
+ .header-title { font-size: 1.5rem; }
567
+ .header-tagline { font-size: 0.95rem; }
568
+ .intro-card h3, .input-form-card h3, .output-card .response-header, .examples-card .gr-examples-header { font-size: 1.2rem !important; margin-bottom: 1rem !important; }
569
+ .gradio-textbox textarea, .gradio-dropdown select, .gradio-textbox input[type=password] { font-size: 0.95rem !important; padding: 0.75rem !important; }
570
+ .gradio-button { width: 100%; padding: 0.7rem 1.2rem !important; font-size: 0.9rem !important; }
571
+ .button-row { flex-direction: column; gap: 0.75rem; }
572
+ .footer-section { font-size: 0.85rem; padding: 1.5rem 1rem !important; }
573
+ .examples-card .gr-examples-table th, .examples-card .gr-examples-table td { padding: 0.6rem 0.8rem !important; font-size: 0.9rem !important;}
574
+ }
575
+
576
+ /* Gradio Specific Overrides (Use sparingly) */
577
+ /* Force main container gap */
578
+ .gradio-container > .flex { gap: 2.5rem !important; }
579
+ /* Ensure no weird margins collapse */
580
+ .gradio-markdown > *:first-child { margin-top: 0; }
581
+ .gradio-markdown > *:last-child { margin-bottom: 0; }
582
+ /* Remove border from dropdown wrapper if needed */
583
+ .gradio-dropdown { border: none !important; padding: 0 !important; }
584
+ /* Remove border from textbox wrapper */
585
+ .gradio-textbox { border: none !important; padding: 0 !important; }
586
  """
587
 
588
+ # --- Gradio Blocks Layout ---
589
+ with gr.Blocks(css=custom_css, title="Landlord-Tenant Rights Assistant") as demo:
590
+ # The main container class is applied implicitly by Gradio, CSS targets it
 
 
 
 
 
 
 
 
 
 
 
 
591
 
592
+ # Header Section (No Card Style)
593
+ with gr.Group(elem_classes="header-section"): # Use Group for structure, styled via class
594
+ gr.Markdown(
595
+ """
596
+ <span class="header-logo">⚖️</span>
597
+ <h1 class="header-title">Landlord-Tenant Rights Assistant</h1>
598
+ <p class="header-tagline">Your AI-powered guide to U.S. landlord-tenant laws</p>
599
+ """, elem_id="app-title"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600
  )
601
 
602
+ # Introduction Section (Card Style)
603
+ with gr.Group(elem_classes="card-style intro-card"):
604
+ gr.Markdown(
605
+ """
606
+ <h3 style="text-align: center;">Discover Your Rights</h3>
 
 
 
 
607
 
608
+ <p>Get accurate, AI-powered answers to your questions about landlord-tenant laws. Select your state, provide an <strong>OpenAI API key</strong>, and ask your question below.</p>
609
+ <p>Need an API key? <a href='https://platform.openai.com/api-keys' target='_blank'>Get one free here</a> from OpenAI.</p>
610
+ <p><strong>Note:</strong> This tool is for informational purposes only. Always consult a licensed attorney for legal advice specific to your situation.</p>
611
+ """,
612
+ elem_id="app-description"
 
 
 
 
 
613
  )
614
 
615
+ # Examples Section (Card Style)
616
+
617
+ # Input Form Section (Card Style)
618
+ with gr.Group(elem_classes="card-style input-form-card"):
619
+ gr.Markdown("<h3>Query Section</h3>", elem_id="form-heading")
620
+
621
+ with gr.Column(elem_classes="input-field-group"):
622
+ api_key_input = gr.Textbox(
623
+ label="OpenAI API Key", type="password",
624
+ placeholder="Enter your API key (e.g., sk-...)",
625
+ info="Required to process your question. Securely used per request, not stored.",
626
+ elem_id="api-key-input", lines=1
627
+ )
628
+
629
+ with gr.Row(elem_classes="input-row"):
630
+ with gr.Column(elem_classes="input-field"):
631
+ query_input = gr.Textbox(
632
+ label="Curious about landlord-tenant laws in your state? Ask away!",
633
+ placeholder="E.g., What are the rules for security deposit returns in my state?",
634
+ lines=4, max_lines=8, elem_id="query-input"
635
+ )
636
+ with gr.Column(elem_classes="input-field"):
637
+ state_input = gr.Dropdown(
638
+ label="Select State", choices=dropdown_choices, value=initial_value,
639
+ allow_custom_value=False, elem_id="state-dropdown"
640
+ )
641
+
642
+ with gr.Row(elem_classes="button-row"):
643
+ clear_button = gr.Button(
644
+ "Clear Inputs", variant="secondary", elem_id="clear-button",
645
+ elem_classes=["gr-button-secondary"]
646
+ )
647
+ submit_button = gr.Button(
648
+ "Submit Question", variant="primary", elem_id="submit-button",
649
+ elem_classes=["gr-button-primary"]
650
+ )
651
+
652
+ # Output Section (Card Style)
653
+ with gr.Group(elem_classes="card-style output-card"):
654
+ # Wrap the output markdown for better targeting if needed
655
+ with gr.Column(): # Add column wrapper if needed for spacing/styling
656
+ output = gr.Markdown(
657
+ value="<div class='placeholder'>The response will appear here after submitting a question.</div>",
658
+ elem_id="output-content",
659
+ elem_classes="output-content-wrapper" # Apply styling to this wrapper
660
+ )
661
+
662
+ # Example Questions Section (Card Style)
663
+ if example_queries:
664
+ with gr.Group(elem_classes="card-style examples-card"):
665
+ gr.Examples(
666
+ examples=example_queries,
667
+ inputs=[query_input, state_input],
668
+ label="Example Sample Questions", # Uses .gr-examples-header class
669
+ examples_per_page=6
670
+ )
671
+ else:
672
+ with gr.Group(elem_classes="card-style examples-card"): # Still use card style for consistency
673
+ gr.Markdown(
674
+ "<div class='placeholder'>Sample questions could not be loaded. Please ensure states are available.</div>"
675
+ )
676
 
677
+ # Footer Section (No Card Style)
678
+ with gr.Group(elem_classes="footer-section"):
679
  gr.Markdown(
680
  """
681
+ **Disclaimer**: This tool is for informational purposes only and does not constitute legal advice.
682
+ <br><br>
683
+ Developed by **Nischal Subedi**. Connect on <a href="https://www.linkedin.com/in/nischal1/" target="_blank">LinkedIn</a> or explore insights at <a href="https://datascientistinsights.substack.com/" target="_blank">Substack</a>.
684
+ """, elem_id="app-footer"
685
+ )
 
 
 
686
 
687
+ # --- Event Listeners ---
688
  submit_button.click(
689
+ fn=query_interface_wrapper,
690
  inputs=[api_key_input, query_input, state_input],
691
  outputs=output,
692
+ api_name="submit_query"
693
  )
694
+
695
  clear_button.click(
696
+ fn=lambda: (
697
+ "", "", initial_value,
698
+ "<div class='placeholder'>Inputs cleared. Ready for your next question.</div>"
699
+ ),
700
+ inputs=[],
 
 
701
  outputs=[api_key_input, query_input, state_input, output]
702
  )
703
 
704
+ logging.info("Refined Gradio interface created successfully.")
705
+ return demo
706
 
707
+ # --- Main Execution Block ---
 
708
  if __name__ == "__main__":
709
+ logging.info("Starting Landlord-Tenant Rights Bot application...")
710
  try:
711
+ SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
712
+ DEFAULT_DATA_DIR = os.path.join(SCRIPT_DIR, "data")
713
+ DEFAULT_PDF_PATH = os.path.join(DEFAULT_DATA_DIR, "tenant-landlord.pdf")
714
+ DEFAULT_DB_PATH = os.path.join(DEFAULT_DATA_DIR, "chroma_db")
715
 
716
+ PDF_PATH = os.getenv("PDF_PATH", DEFAULT_PDF_PATH)
717
+ VECTOR_DB_PATH = os.getenv("VECTOR_DB_PATH", DEFAULT_DB_PATH)
 
 
 
 
718
 
719
+ os.makedirs(os.path.dirname(VECTOR_DB_PATH), exist_ok=True)
720
+ os.makedirs(os.path.dirname(PDF_PATH), exist_ok=True)
721
 
722
+ logging.info(f"Using PDF path: {PDF_PATH}")
723
+ logging.info(f"Using Vector DB path: {VECTOR_DB_PATH}")
 
 
724
 
725
+ if not os.path.exists(PDF_PATH):
726
+ logging.error(f"FATAL: PDF file not found at the specified path: {PDF_PATH}")
727
+ print(f"\n--- CONFIGURATION ERROR ---")
728
+ print(f"The required PDF file ('{os.path.basename(PDF_PATH)}') was not found at:")
729
+ print(f" {PDF_PATH}")
730
+ print(f"Please ensure the file exists or set 'PDF_PATH' environment variable.")
731
+ print(f"---------------------------\n")
732
+ exit(1)
733
+
734
+ logging.info("Initializing Vector Database...")
735
+ vector_db_instance = VectorDatabase(persist_directory=VECTOR_DB_PATH)
736
+ logging.info("Initializing RAG System...")
737
  rag = RAGSystem(vector_db=vector_db_instance)
738
 
739
+ logging.info(f"Loading/Verifying data from PDF: {PDF_PATH}")
740
+ states_loaded_count = rag.load_pdf(PDF_PATH)
741
+ doc_count = vector_db_instance.document_collection.count() if vector_db_instance.document_collection else 0
742
+ state_count = vector_db_instance.state_collection.count() if vector_db_instance.state_collection else 0
743
+ total_items = doc_count + state_count
744
+
745
+ if total_items > 0:
746
+ logging.info(f"Data loading/verification complete. Vector DB contains {total_items} items. Found {states_loaded_count} distinct states.")
747
+ else:
748
+ logging.warning("Potential issue: PDF processed but Vector DB appears empty. Check PDF content/format and logs.")
749
+ print("\nWarning: No data loaded from PDF or found in DB. Application might not function correctly.\n")
750
 
 
751
  logging.info("Setting up Gradio interface...")
752
  app_interface = rag.gradio_interface()
753
 
754
+ SERVER_PORT = 7861
755
+ logging.info(f"Launching Gradio app on http://0.0.0.0:{SERVER_PORT}")
756
+ print("\n--- Gradio App Running ---")
757
+ print(f"Access the interface in your browser at: http://localhost:{SERVER_PORT} or http://<your-ip-address>:{SERVER_PORT}")
758
+ print("--------------------------\n")
759
+ app_interface.launch(
760
+ server_name="0.0.0.0", server_port=SERVER_PORT,
761
+ share=False,
762
+ # enable_queue=True # Consider for higher traffic
763
+ )
764
 
765
  except FileNotFoundError as fnf_error:
766
+ logging.error(f"Initialization failed due to a missing file: {str(fnf_error)}", exc_info=True)
767
+ print(f"\n--- STARTUP ERROR: File Not Found ---")
768
+ print(f"{str(fnf_error)}")
769
+ print(f"---------------------------------------\n")
770
+ exit(1)
771
  except ImportError as import_error:
772
+ logging.error(f"Import error: {str(import_error)}. Check dependencies.", exc_info=True)
773
+ print(f"\n--- STARTUP ERROR: Missing Dependency ---")
774
+ print(f"Import Error: {str(import_error)}")
775
+ print(f"Please ensure required libraries are installed (e.g., pip install -r requirements.txt).")
776
+ print(f"-----------------------------------------\n")
777
+ exit(1)
778
+ except RuntimeError as runtime_error:
779
+ logging.error(f"A runtime error occurred during setup: {str(runtime_error)}", exc_info=True)
780
+ print(f"\n--- STARTUP ERROR: Runtime Problem ---")
781
+ print(f"Runtime Error: {str(runtime_error)}")
782
+ print(f"Check logs for details, often related to data loading or DB setup.")
783
+ print(f"--------------------------------------\n")
784
+ exit(1)
785
  except Exception as e:
 
786
  logging.error(f"An unexpected error occurred during application startup: {str(e)}", exc_info=True)
787
+ print(f"\n--- FATAL STARTUP ERROR ---")
788
+ print(f"An unexpected error stopped the application: {str(e)}")
789
+ print(f"Check logs for detailed traceback.")
790
+ print(f"---------------------------\n")
791
+ exit(1)
requirements.txt CHANGED
@@ -11,4 +11,4 @@ pandas==2.2.2
11
  huggingface_hub==0.23.4
12
  pymupdf==1.24.9
13
  langchain_community
14
- # force rebuild
 
11
  huggingface_hub==0.23.4
12
  pymupdf==1.24.9
13
  langchain_community
14
+ # force rebuild #1
vector_db.py CHANGED
@@ -13,7 +13,7 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
13
  class VectorDatabase:
14
  """Vector database for storing and retrieving tenant rights information from PDF."""
15
 
16
- def __init__(self, persist_directory="./data/chroma_db"):
17
  """Initialize the vector database."""
18
  logging.info("Initializing VectorDatabase")
19
  logging.info(f"NumPy version: {np.__version__}")
@@ -182,7 +182,7 @@ class VectorDatabase:
182
  if __name__ == "__main__":
183
  try:
184
  db = VectorDatabase()
185
- pdf_path = "data/tenant-landlord.pdf"
186
  db.process_and_load_pdf(pdf_path)
187
  states = db.get_states()
188
  print(f"Available states: {states}")
 
13
  class VectorDatabase:
14
  """Vector database for storing and retrieving tenant rights information from PDF."""
15
 
16
+ def __init__(self, persist_directory="./chroma_db"):
17
  """Initialize the vector database."""
18
  logging.info("Initializing VectorDatabase")
19
  logging.info(f"NumPy version: {np.__version__}")
 
182
  if __name__ == "__main__":
183
  try:
184
  db = VectorDatabase()
185
+ pdf_path = "tenant-landlord.pdf"
186
  db.process_and_load_pdf(pdf_path)
187
  states = db.get_states()
188
  print(f"Available states: {states}")