Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException, UploadFile, File | |
from pydantic import BaseModel | |
from multiprocessing import Process, Queue | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import torch | |
import io | |
import uvicorn | |
import soundfile as sf | |
app = FastAPI() | |
# Cargar el modelo y el procesador | |
model_name = "facebook/wav2vec2-large-960h-lv60" | |
processor = Wav2Vec2Processor.from_pretrained(model_name) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
class TranscriptionRequest(BaseModel): | |
file: UploadFile | |
def transcribe_audio(file, queue): | |
try: | |
audio, _ = sf.read(io.BytesIO(file.file.read())) | |
input_values = processor(audio, return_tensors="pt", padding="longest").input_values | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids)[0] | |
queue.put(transcription) | |
except Exception as e: | |
queue.put(f"Error: {str(e)}") | |
async def transcribe_audio(file: UploadFile = File(...)): | |
queue = Queue() | |
p = Process(target=transcribe_audio, args=(file, queue)) | |
p.start() | |
p.join() | |
response = queue.get() | |
if "Error" in response: | |
raise HTTPException(status_code=500, detail=response) | |
return {"transcription": response} | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=8006) | |