|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from llama_cpp import Llama |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from tqdm import tqdm |
|
import uvicorn |
|
from dotenv import load_dotenv |
|
from difflib import SequenceMatcher |
|
import re |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
global_data = { |
|
'models': [] |
|
} |
|
|
|
|
|
model_configs = [ |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"} |
|
] |
|
|
|
|
|
class ModelManager: |
|
def __init__(self): |
|
self.models = [] |
|
|
|
def load_model(self, model_config): |
|
print(f"Cargando modelo: {model_config['name']}...") |
|
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']} |
|
|
|
def load_all_models(self): |
|
print("Iniciando carga de modelos...") |
|
with ThreadPoolExecutor(max_workers=len(model_configs)) as executor: |
|
futures = [executor.submit(self.load_model, config) for config in model_configs] |
|
models = [] |
|
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"): |
|
try: |
|
model = future.result() |
|
models.append(model) |
|
print(f"Modelo cargado exitosamente: {model['name']}") |
|
except Exception as e: |
|
print(f"Error al cargar el modelo: {e}") |
|
print("Todos los modelos han sido cargados.") |
|
return models |
|
|
|
|
|
model_manager = ModelManager() |
|
global_data['models'] = model_manager.load_all_models() |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
message: str |
|
top_k: int = 50 |
|
top_p: float = 0.95 |
|
temperature: float = 0.7 |
|
|
|
|
|
def generate_chat_response(request, model_data): |
|
try: |
|
user_input = normalize_input(request.message) |
|
llm = model_data['model'] |
|
response = llm.create_chat_completion( |
|
messages=[{"role": "user", "content": user_input}], |
|
top_k=request.top_k, |
|
top_p=request.top_p, |
|
temperature=request.temperature |
|
) |
|
reply = response['choices'][0]['message']['content'] |
|
return {"response": reply, "literal": user_input, "model_name": model_data['name']} |
|
except Exception as e: |
|
return {"response": f"Error: {str(e)}", "literal": user_input, "model_name": model_data['name']} |
|
|
|
def normalize_input(input_text): |
|
return input_text.strip() |
|
|
|
def remove_duplicates(text): |
|
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text) |
|
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text) |
|
text = text.replace('[/INST]', '') |
|
lines = text.split('\n') |
|
unique_lines = list(dict.fromkeys(lines)) |
|
return '\n'.join(unique_lines).strip() |
|
|
|
def remove_repetitive_responses(responses): |
|
seen = set() |
|
unique_responses = [] |
|
for response in responses: |
|
normalized_response = remove_duplicates(response['response']) |
|
if normalized_response not in seen: |
|
seen.add(normalized_response) |
|
unique_responses.append(response) |
|
return unique_responses |
|
|
|
def select_best_response(responses): |
|
print("Filtrando respuestas...") |
|
responses = remove_repetitive_responses(responses) |
|
responses = [remove_duplicates(response['response']) for response in responses] |
|
unique_responses = list(set(responses)) |
|
coherent_responses = filter_by_coherence(unique_responses) |
|
best_response = filter_by_similarity(coherent_responses) |
|
return best_response |
|
|
|
def filter_by_coherence(responses): |
|
print("Ordenando respuestas por coherencia...") |
|
responses.sort(key=len, reverse=True) |
|
return responses |
|
|
|
def filter_by_similarity(responses): |
|
print("Filtrando respuestas por similitud...") |
|
responses.sort(key=len, reverse=True) |
|
best_response = responses[0] |
|
for i in range(1, len(responses)): |
|
ratio = SequenceMatcher(None, best_response, responses[i]).ratio() |
|
if ratio < 0.9: |
|
best_response = responses[i] |
|
break |
|
return best_response |
|
|
|
def worker_function(model_data, request): |
|
print(f"Generando respuesta con el modelo: {model_data['name']}...") |
|
response = generate_chat_response(request, model_data) |
|
return response |
|
|
|
@app.post("/generate_chat") |
|
async def generate_chat(request: ChatRequest): |
|
if not request.message.strip(): |
|
raise HTTPException(status_code=400, detail="The message cannot be empty.") |
|
|
|
print(f"Procesando solicitud: {request.message}") |
|
|
|
responses = [] |
|
num_models = len(global_data['models']) |
|
|
|
with ThreadPoolExecutor(max_workers=num_models) as executor: |
|
futures = [executor.submit(worker_function, model_data, request) for model_data in global_data['models']] |
|
for future in tqdm(as_completed(futures), total=num_models, desc="Generando respuestas", unit="modelo"): |
|
try: |
|
response = future.result() |
|
responses.append(response) |
|
except Exception as exc: |
|
print(f"Error en la generaci贸n de respuesta: {exc}") |
|
|
|
best_response = select_best_response(responses) |
|
|
|
print(f"Mejor respuesta seleccionada: {best_response}") |
|
|
|
return { |
|
"best_response": best_response, |
|
"all_responses": responses |
|
} |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|