Add HF training integration and fix binary file tracking
Browse files- .gitignore +3 -1
- Dockerfile +33 -0
- GUIDE_HF.md +103 -0
- pixi.lock +34 -0
- pixi.toml +1 -0
- tasks/image_classification/train_energy.py +146 -110
.gitignore
CHANGED
|
@@ -26,4 +26,6 @@ utils/hugging_face/
|
|
| 26 |
# pixi environments
|
| 27 |
.pixi/*
|
| 28 |
!.pixi/config.toml
|
| 29 |
-
changes.md
|
|
|
|
|
|
|
|
|
| 26 |
# pixi environments
|
| 27 |
.pixi/*
|
| 28 |
!.pixi/config.toml
|
| 29 |
+
changes.md
|
| 30 |
+
assets/activations.gif
|
| 31 |
+
examples/goldfish.jpg
|
Dockerfile
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM ghcr.io/prefix-dev/pixi:0.39.0 AS builder
|
| 2 |
+
|
| 3 |
+
# Copy source code
|
| 4 |
+
COPY . /app
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install dependencies
|
| 8 |
+
RUN pixi install
|
| 9 |
+
|
| 10 |
+
# Create a shell script to run the training
|
| 11 |
+
# We need to activate the environment
|
| 12 |
+
RUN echo '#!/bin/bash' > /app/entrypoint.sh && \
|
| 13 |
+
echo 'pixi run python tasks/image_classification/train_energy.py "$@"' >> /app/entrypoint.sh && \
|
| 14 |
+
chmod +x /app/entrypoint.sh
|
| 15 |
+
|
| 16 |
+
# Runtime image (optional, but good for size)
|
| 17 |
+
# For simplicity, we'll just use the builder image for now as it has everything.
|
| 18 |
+
# But HF Spaces might need specific permissions.
|
| 19 |
+
|
| 20 |
+
# Set up user for HF Spaces (optional but recommended)
|
| 21 |
+
# RUN useradd -m -u 1000 user
|
| 22 |
+
# USER user
|
| 23 |
+
# ENV HOME=/home/user \
|
| 24 |
+
# PATH=/home/user/.local/bin:$PATH
|
| 25 |
+
|
| 26 |
+
# ENTRYPOINT ["/app/entrypoint.sh"]
|
| 27 |
+
# CMD ["--help"]
|
| 28 |
+
|
| 29 |
+
# Let's try a simpler approach compatible with standard HF Spaces
|
| 30 |
+
# They often just run the CMD.
|
| 31 |
+
|
| 32 |
+
ENTRYPOINT ["pixi", "run", "python", "tasks/image_classification/train_energy.py"]
|
| 33 |
+
CMD ["--energy_head_enabled", "--loss_type", "energy_contrastive", "--push_to_hub", "--hub_model_id", "Uday/ctm-energy-based-halting", "--hub_token", "$HF_TOKEN"]
|
GUIDE_HF.md
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Training on Hugging Face with GPUs
|
| 2 |
+
|
| 3 |
+
This guide explains how to train the Energy Halting experiment on Hugging Face infrastructure, including local GPU training with `accelerate` and deployment to Hugging Face Spaces.
|
| 4 |
+
|
| 5 |
+
## Prerequisites
|
| 6 |
+
|
| 7 |
+
1. **Hugging Face Account**: Create one at [huggingface.co](https://huggingface.co).
|
| 8 |
+
2. **Access Token**: Get a write token from [huggingface.co/settings/tokens](https://huggingface.co/settings/tokens).
|
| 9 |
+
3. **Pixi**: Installed locally.
|
| 10 |
+
|
| 11 |
+
## 1. Local Training with Accelerate
|
| 12 |
+
|
| 13 |
+
We use Hugging Face `accelerate` for robust multi-GPU and mixed-precision training.
|
| 14 |
+
|
| 15 |
+
### Setup
|
| 16 |
+
|
| 17 |
+
Ensure dependencies are installed:
|
| 18 |
+
|
| 19 |
+
```bash
|
| 20 |
+
pixi install
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
### Configure Accelerate
|
| 24 |
+
|
| 25 |
+
Run the configuration wizard to set up your GPU environment (e.g., number of GPUs, mixed precision):
|
| 26 |
+
|
| 27 |
+
```bash
|
| 28 |
+
pixi run accelerate config
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
### Run Training
|
| 32 |
+
|
| 33 |
+
Use `accelerate launch` to start training. This handles device placement automatically.
|
| 34 |
+
|
| 35 |
+
```bash
|
| 36 |
+
pixi run accelerate launch tasks/image_classification/train_energy.py \
|
| 37 |
+
--energy_head_enabled \
|
| 38 |
+
--loss_type energy_contrastive \
|
| 39 |
+
--dataset cifar10 \
|
| 40 |
+
--batch_size 32 \
|
| 41 |
+
--use_amp \
|
| 42 |
+
--push_to_hub \
|
| 43 |
+
--hub_model_id <your-username>/ctm-energy-cifar10 \
|
| 44 |
+
--hub_token <your-token>
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
## 2. Deploying to Hugging Face Spaces (GPU)
|
| 48 |
+
|
| 49 |
+
You can run this training job on a Hugging Face Space with a GPU.
|
| 50 |
+
|
| 51 |
+
### Create a Space
|
| 52 |
+
|
| 53 |
+
1. Go to [huggingface.co/new-space](https://huggingface.co/new-space).
|
| 54 |
+
2. Name: `ctm-energy-training` (or similar).
|
| 55 |
+
3. SDK: **Docker**.
|
| 56 |
+
4. Hardware: Choose a **GPU** instance (e.g., Nvidia T4, A10G).
|
| 57 |
+
|
| 58 |
+
### Deploy Code
|
| 59 |
+
|
| 60 |
+
You can deploy by pushing your code to the Space's repository.
|
| 61 |
+
|
| 62 |
+
1. **Clone the Space**:
|
| 63 |
+
|
| 64 |
+
```bash
|
| 65 |
+
git clone https://huggingface.co/spaces/<your-username>/ctm-energy-training
|
| 66 |
+
cd ctm-energy-training
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
2. **Copy Files**:
|
| 70 |
+
Copy your project files into this directory (excluding `.git`, `.pixi`, `data`, `logs`).
|
| 71 |
+
_Crucially, ensure `Dockerfile`, `pixi.toml`, `pixi.lock`, `tasks/`, `models/`, `utils/`, and `configs/` are present._
|
| 72 |
+
|
| 73 |
+
3. **Push**:
|
| 74 |
+
```bash
|
| 75 |
+
git add .
|
| 76 |
+
git commit -m "Deploy training job"
|
| 77 |
+
git push
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### Environment Variables
|
| 81 |
+
|
| 82 |
+
To allow the Space to push the trained model back to the Hub, you need to set your HF token as a secret.
|
| 83 |
+
|
| 84 |
+
1. Go to your Space's **Settings**.
|
| 85 |
+
2. Scroll to **Variables and secrets**.
|
| 86 |
+
3. Add a New Secret:
|
| 87 |
+
- Name: `HF_TOKEN`
|
| 88 |
+
- Value: Your write token.
|
| 89 |
+
|
| 90 |
+
### Update Dockerfile CMD (Optional)
|
| 91 |
+
|
| 92 |
+
The default `Dockerfile` CMD prints help. To run training immediately upon deployment, modify the `CMD` in the `Dockerfile` before pushing:
|
| 93 |
+
|
| 94 |
+
```dockerfile
|
| 95 |
+
CMD ["--energy_head_enabled", "--loss_type", "energy_contrastive", "--push_to_hub", "--hub_model_id", "<your-username>/ctm-energy-cifar10", "--hub_token", "$HF_TOKEN"]
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
_Note: You'll need to pass the token via env var or arg._
|
| 99 |
+
|
| 100 |
+
## 3. Monitoring
|
| 101 |
+
|
| 102 |
+
- **Local**: Check the `logs/` directory or WandB if enabled (`--wandb`).
|
| 103 |
+
- **Spaces**: Check the **Logs** tab in your Space.
|
pixi.lock
CHANGED
|
@@ -9,6 +9,7 @@ environments:
|
|
| 9 |
packages:
|
| 10 |
osx-arm64:
|
| 11 |
- conda: https://conda.anaconda.org/conda-forge/noarch/_python_abi3_support-1.0-hd8ed1ab_2.conda
|
|
|
|
| 12 |
- conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.6.1-pyhd8ed1ab_0.conda
|
| 13 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/aiohttp-3.13.2-py312he52fbff_0.conda
|
| 14 |
- conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.4.0-pyhd8ed1ab_0.conda
|
|
@@ -221,6 +222,7 @@ environments:
|
|
| 221 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pixman-0.46.4-h81086ad_1.conda
|
| 222 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/prometheus-cpp-1.3.0-h0967b3e_0.conda
|
| 223 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.3.1-py312h998013c_0.conda
|
|
|
|
| 224 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pthread-stubs-0.4-hd74edd7_1002.conda
|
| 225 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pugixml-1.15-hd3d436d_0.conda
|
| 226 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/py-opencv-4.12.0-qt6_py312he92a2c1_607.conda
|
|
@@ -302,6 +304,24 @@ packages:
|
|
| 302 |
purls: []
|
| 303 |
size: 8191
|
| 304 |
timestamp: 1744137672556
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
- conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.6.1-pyhd8ed1ab_0.conda
|
| 306 |
sha256: 7842ddc678e77868ba7b92a726b437575b23aaec293bca0d40826f1026d90e27
|
| 307 |
md5: 18fd895e0e775622906cdabfc3cf0fb4
|
|
@@ -3253,6 +3273,20 @@ packages:
|
|
| 3253 |
- pkg:pypi/propcache?source=hash-mapping
|
| 3254 |
size: 51972
|
| 3255 |
timestamp: 1744525285336
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3256 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pthread-stubs-0.4-hd74edd7_1002.conda
|
| 3257 |
sha256: 8ed65e17fbb0ca944bfb8093b60086e3f9dd678c3448b5de212017394c247ee3
|
| 3258 |
md5: 415816daf82e0b23a736a069a75e9da7
|
|
|
|
| 9 |
packages:
|
| 10 |
osx-arm64:
|
| 11 |
- conda: https://conda.anaconda.org/conda-forge/noarch/_python_abi3_support-1.0-hd8ed1ab_2.conda
|
| 12 |
+
- conda: https://conda.anaconda.org/conda-forge/noarch/accelerate-1.12.0-pyhcf101f3_0.conda
|
| 13 |
- conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.6.1-pyhd8ed1ab_0.conda
|
| 14 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/aiohttp-3.13.2-py312he52fbff_0.conda
|
| 15 |
- conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.4.0-pyhd8ed1ab_0.conda
|
|
|
|
| 222 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pixman-0.46.4-h81086ad_1.conda
|
| 223 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/prometheus-cpp-1.3.0-h0967b3e_0.conda
|
| 224 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.3.1-py312h998013c_0.conda
|
| 225 |
+
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/psutil-7.1.3-py312h37e1c23_0.conda
|
| 226 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pthread-stubs-0.4-hd74edd7_1002.conda
|
| 227 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pugixml-1.15-hd3d436d_0.conda
|
| 228 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/py-opencv-4.12.0-qt6_py312he92a2c1_607.conda
|
|
|
|
| 304 |
purls: []
|
| 305 |
size: 8191
|
| 306 |
timestamp: 1744137672556
|
| 307 |
+
- conda: https://conda.anaconda.org/conda-forge/noarch/accelerate-1.12.0-pyhcf101f3_0.conda
|
| 308 |
+
sha256: 7351587f4771eb96b5858902d34efb4c67c1e579e745d955bc7052e204b029a6
|
| 309 |
+
md5: e02f90d5f2ee4dd409884c49839bf64c
|
| 310 |
+
depends:
|
| 311 |
+
- python >=3.10
|
| 312 |
+
- numpy >=1.17
|
| 313 |
+
- packaging >=20.0
|
| 314 |
+
- psutil
|
| 315 |
+
- pyyaml
|
| 316 |
+
- pytorch >=2.0.0
|
| 317 |
+
- huggingface_hub >=0.21.0
|
| 318 |
+
- safetensors >=0.4.3
|
| 319 |
+
- python
|
| 320 |
+
license: Apache-2.0
|
| 321 |
+
purls:
|
| 322 |
+
- pkg:pypi/accelerate?source=hash-mapping
|
| 323 |
+
size: 272809
|
| 324 |
+
timestamp: 1763737594988
|
| 325 |
- conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.6.1-pyhd8ed1ab_0.conda
|
| 326 |
sha256: 7842ddc678e77868ba7b92a726b437575b23aaec293bca0d40826f1026d90e27
|
| 327 |
md5: 18fd895e0e775622906cdabfc3cf0fb4
|
|
|
|
| 3273 |
- pkg:pypi/propcache?source=hash-mapping
|
| 3274 |
size: 51972
|
| 3275 |
timestamp: 1744525285336
|
| 3276 |
+
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/psutil-7.1.3-py312h37e1c23_0.conda
|
| 3277 |
+
sha256: cd831dfe655fdb581e1c2c71fa072d2fce38538474a36cbde3ae2dd910a2ae76
|
| 3278 |
+
md5: d0b2f83de57eafaa6d7700b589c66096
|
| 3279 |
+
depends:
|
| 3280 |
+
- python
|
| 3281 |
+
- __osx >=11.0
|
| 3282 |
+
- python 3.12.* *_cpython
|
| 3283 |
+
- python_abi 3.12.* *_cp312
|
| 3284 |
+
license: BSD-3-Clause
|
| 3285 |
+
license_family: BSD
|
| 3286 |
+
purls:
|
| 3287 |
+
- pkg:pypi/psutil?source=hash-mapping
|
| 3288 |
+
size: 508014
|
| 3289 |
+
timestamp: 1762093047823
|
| 3290 |
- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pthread-stubs-0.4-hd74edd7_1002.conda
|
| 3291 |
sha256: 8ed65e17fbb0ca944bfb8093b60086e3f9dd678c3448b5de212017394c247ee3
|
| 3292 |
md5: 415816daf82e0b23a736a069a75e9da7
|
pixi.toml
CHANGED
|
@@ -23,6 +23,7 @@ datasets = "*"
|
|
| 23 |
huggingface_hub = "*"
|
| 24 |
safetensors = "*"
|
| 25 |
ffmpeg = "*"
|
|
|
|
| 26 |
|
| 27 |
[pypi-dependencies]
|
| 28 |
autoclip = "*"
|
|
|
|
| 23 |
huggingface_hub = "*"
|
| 24 |
safetensors = "*"
|
| 25 |
ffmpeg = "*"
|
| 26 |
+
accelerate = ">=1.12.0,<2"
|
| 27 |
|
| 28 |
[pypi-dependencies]
|
| 29 |
autoclip = "*"
|
tasks/image_classification/train_energy.py
CHANGED
|
@@ -33,6 +33,9 @@ from utils.housekeeping import set_seed, zip_python_code
|
|
| 33 |
from utils.losses import image_classification_loss, EnergyContrastiveLoss # Used by CTM, LSTM
|
| 34 |
from utils.schedulers import WarmupCosineAnnealingLR, WarmupMultiStepLR, warmup
|
| 35 |
|
|
|
|
|
|
|
|
|
|
| 36 |
from autoclip.torch import QuantileClip
|
| 37 |
|
| 38 |
import gc
|
|
@@ -127,14 +130,20 @@ def parse_args():
|
|
| 127 |
parser.add_argument('--data_root', type=str, default='data/', help='Where to save dataset.')
|
| 128 |
parser.add_argument('--save_every', type=int, default=1000, help='Save checkpoints every this many iterations.')
|
| 129 |
parser.add_argument('--seed', type=int, default=412, help='Random seed.')
|
| 130 |
-
parser.add_argument('--reload', action=argparse.BooleanOptionalAction, default=False, help='Reload from disk?')
|
| 131 |
parser.add_argument('--reload_model_only', action=argparse.BooleanOptionalAction, default=False, help='Reload only the model from disk?')
|
| 132 |
parser.add_argument('--strict_reload', action=argparse.BooleanOptionalAction, default=True, help='Should use strict reload for model weights.') # Added back
|
| 133 |
parser.add_argument('--track_every', type=int, default=1000, help='Track metrics every this many iterations.')
|
| 134 |
parser.add_argument('--n_test_batches', type=int, default=20, help='How many minibatches to approx metrics. Set to -1 for full eval')
|
| 135 |
parser.add_argument('--device', type=int, nargs='+', default=[-1], help='List of GPU(s) to use. Set to -1 to use CPU.')
|
| 136 |
parser.add_argument('--use_amp', action=argparse.BooleanOptionalAction, default=False, help='AMP autocast.')
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
args = parser.parse_args()
|
| 140 |
return args
|
|
@@ -208,8 +217,23 @@ if __name__=='__main__':
|
|
| 208 |
# Hosuekeeping
|
| 209 |
args = parse_args()
|
| 210 |
|
| 211 |
-
set_seed(args.seed
|
| 212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
assert args.dataset in ['cifar10', 'cifar100', 'imagenet']
|
| 215 |
|
|
@@ -229,12 +253,6 @@ if __name__=='__main__':
|
|
| 229 |
print(args, file=f)
|
| 230 |
|
| 231 |
# Configure device string (support MPS on macOS)
|
| 232 |
-
if args.device[0] != -1:
|
| 233 |
-
device = f'cuda:{args.device[0]}'
|
| 234 |
-
elif torch.backends.mps.is_available():
|
| 235 |
-
device = 'mps'
|
| 236 |
-
else:
|
| 237 |
-
device = 'cpu'
|
| 238 |
print(f'Running model {args.model} on {device}')
|
| 239 |
|
| 240 |
# Build model conditionally
|
|
@@ -265,34 +283,31 @@ if __name__=='__main__':
|
|
| 265 |
).to(device)
|
| 266 |
elif args.model == 'lstm':
|
| 267 |
model = LSTMBaseline(
|
| 268 |
-
|
| 269 |
-
iterations=args.iterations,
|
| 270 |
-
d_model=args.d_model,
|
| 271 |
d_input=args.d_input,
|
| 272 |
-
|
| 273 |
-
backbone_type=args.backbone_type,
|
| 274 |
-
positional_embedding_type=args.positional_embedding_type,
|
| 275 |
out_dims=args.out_dims,
|
| 276 |
-
prediction_reshaper=prediction_reshaper,
|
| 277 |
dropout=args.dropout,
|
| 278 |
-
)
|
| 279 |
elif args.model == 'ff':
|
| 280 |
model = FFBaseline(
|
| 281 |
-
d_model=args.d_model,
|
| 282 |
-
|
| 283 |
out_dims=args.out_dims,
|
| 284 |
dropout=args.dropout,
|
| 285 |
-
)
|
| 286 |
else:
|
| 287 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
|
| 290 |
# For lazy modules so that we can get param count
|
| 291 |
pseudo_inputs = train_data.__getitem__(0)[0].unsqueeze(0).to(device)
|
| 292 |
model(pseudo_inputs)
|
| 293 |
-
|
| 294 |
-
model.train()
|
| 295 |
-
|
| 296 |
|
| 297 |
print(f'Total params: {sum(p.numel() for p in model.parameters())}')
|
| 298 |
decay_params = []
|
|
@@ -332,6 +347,11 @@ if __name__=='__main__':
|
|
| 332 |
else:
|
| 333 |
raise NotImplementedError
|
| 334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
# Metrics tracking
|
| 337 |
start_iter = 0
|
|
@@ -344,9 +364,13 @@ if __name__=='__main__':
|
|
| 344 |
train_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None
|
| 345 |
test_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None
|
| 346 |
|
|
|
|
|
|
|
|
|
|
| 347 |
# scaler = torch.amp.GradScaler("cuda" if "cuda" in device else "cpu", enabled=args.use_amp)
|
| 348 |
# Fallback for older torch versions or specific builds
|
| 349 |
-
scaler = torch.cuda.amp.GradScaler(enabled=args.use_amp)
|
|
|
|
| 350 |
|
| 351 |
# Reloading logic
|
| 352 |
if args.reload:
|
|
@@ -355,14 +379,14 @@ if __name__=='__main__':
|
|
| 355 |
print(f'Reloading from: {checkpoint_path}')
|
| 356 |
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
|
| 357 |
if not args.strict_reload: print('WARNING: not using strict reload for model weights!')
|
| 358 |
-
load_result = model.load_state_dict(checkpoint['model_state_dict'], strict=args.strict_reload)
|
| 359 |
print(f" Loaded state_dict. Missing: {load_result.missing_keys}, Unexpected: {load_result.unexpected_keys}")
|
| 360 |
|
| 361 |
if not args.reload_model_only:
|
| 362 |
print('Reloading optimizer etc.')
|
| 363 |
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
| 364 |
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
|
| 365 |
-
scaler.load_state_dict(checkpoint['scaler_state_dict'])
|
| 366 |
start_iter = checkpoint['iteration']
|
| 367 |
# Load common metrics
|
| 368 |
train_losses = checkpoint['train_losses']
|
|
@@ -414,59 +438,58 @@ if __name__=='__main__':
|
|
| 414 |
iterator = iter(trainloader)
|
| 415 |
inputs, targets = next(iterator)
|
| 416 |
|
| 417 |
-
inputs = inputs.to(device)
|
| 418 |
-
targets = targets.to(device)
|
| 419 |
|
| 420 |
loss = None
|
| 421 |
accuracy = None
|
| 422 |
# Model-specific forward and loss calculation
|
| 423 |
-
with torch.autocast(device_type="cuda" if "cuda" in device else "cpu", dtype=torch.float16, enabled=args.use_amp):
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 436 |
-
pbar_desc = f'CTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}. Avg Energy={stats["avg_energy"]:0.3f}'
|
| 437 |
-
else:
|
| 438 |
-
# Fallback to standard loss even if energy head is enabled (but unused)
|
| 439 |
-
loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
|
| 440 |
-
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 441 |
-
pbar_desc = f'CTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}'
|
| 442 |
-
else:
|
| 443 |
-
predictions, certainties, synchronisation = model(inputs)
|
| 444 |
-
loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
|
| 445 |
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 446 |
-
pbar_desc = f'CTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}.
|
| 447 |
-
|
| 448 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
predictions, certainties, synchronisation = model(inputs)
|
| 450 |
loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
|
| 451 |
-
# LSTM where_most_certain will just be -1 because use_most_certain is False owing to stability issues with LSTM training
|
| 452 |
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 453 |
-
pbar_desc = f'
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
scheduler.step()
|
| 471 |
|
| 472 |
pbar.set_description(f'Dataset={args.dataset}. Model={args.model}. {pbar_desc}')
|
|
@@ -493,16 +516,16 @@ if __name__=='__main__':
|
|
| 493 |
|
| 494 |
pbar.set_description('Tracking: Computing TRAIN metrics')
|
| 495 |
with torch.no_grad(): # Should use inference_mode? CTM/LSTM scripts used no_grad
|
| 496 |
-
loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test)
|
| 497 |
all_targets_list = []
|
| 498 |
all_predictions_list = [] # List to store raw predictions (B, C, T) or (B, C)
|
| 499 |
all_predictions_most_certain_list = [] # Only for CTM/LSTM
|
| 500 |
all_losses = []
|
| 501 |
|
| 502 |
-
with tqdm(total=len(
|
| 503 |
-
for inferi, (inputs, targets) in enumerate(
|
| 504 |
-
inputs = inputs.to(device)
|
| 505 |
-
targets = targets.to(device)
|
| 506 |
all_targets_list.append(targets.detach().cpu().numpy())
|
| 507 |
|
| 508 |
# Model-specific forward and loss for evaluation
|
|
@@ -552,16 +575,16 @@ if __name__=='__main__':
|
|
| 552 |
model.eval()
|
| 553 |
pbar.set_description('Tracking: Computing TEST metrics')
|
| 554 |
with torch.inference_mode(): # Use inference_mode for test eval
|
| 555 |
-
loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test)
|
| 556 |
all_targets_list = []
|
| 557 |
all_predictions_list = []
|
| 558 |
all_predictions_most_certain_list = [] # Only for CTM/LSTM
|
| 559 |
all_losses = []
|
| 560 |
|
| 561 |
-
with tqdm(total=len(
|
| 562 |
-
for inferi, (inputs, targets) in enumerate(
|
| 563 |
-
inputs = inputs.to(device)
|
| 564 |
-
targets = targets.to(device)
|
| 565 |
all_targets_list.append(targets.detach().cpu().numpy())
|
| 566 |
|
| 567 |
# Model-specific forward and loss for evaluation
|
|
@@ -655,13 +678,13 @@ if __name__=='__main__':
|
|
| 655 |
if args.model in ['ctm', 'lstm']:
|
| 656 |
try: # For safety
|
| 657 |
inputs_viz, targets_viz = next(iter(testloader)) # Get a fresh batch
|
| 658 |
-
inputs_viz = inputs_viz.to(device)
|
| 659 |
-
targets_viz = targets_viz.to(device)
|
| 660 |
|
| 661 |
pbar.set_description('Tracking: Processing test data for viz')
|
| 662 |
predictions_viz, certainties_viz, _, pre_activations_viz, post_activations_viz, attention_tracking_viz = model(inputs_viz, track=True)
|
| 663 |
|
| 664 |
-
att_shape = (model.kv_features.shape[2], model.kv_features.shape[3])
|
| 665 |
attention_tracking_viz = attention_tracking_viz.reshape(
|
| 666 |
attention_tracking_viz.shape[0],
|
| 667 |
attention_tracking_viz.shape[1], -1, att_shape[0], att_shape[1])
|
|
@@ -694,32 +717,45 @@ if __name__=='__main__':
|
|
| 694 |
model.train() # Switch back to train mode
|
| 695 |
|
| 696 |
|
|
|
|
| 697 |
# Save model checkpoint (conditional metrics)
|
| 698 |
if (bi % args.save_every == 0 or bi == args.training_iterations - 1) and bi != start_iter:
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
checkpoint_data['train_accuracies_most_certain'] = train_accuracies_most_certain
|
| 721 |
-
checkpoint_data['test_accuracies_most_certain'] = test_accuracies_most_certain
|
| 722 |
|
| 723 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 724 |
|
| 725 |
pbar.update(1)
|
|
|
|
| 33 |
from utils.losses import image_classification_loss, EnergyContrastiveLoss # Used by CTM, LSTM
|
| 34 |
from utils.schedulers import WarmupCosineAnnealingLR, WarmupMultiStepLR, warmup
|
| 35 |
|
| 36 |
+
from accelerate import Accelerator
|
| 37 |
+
from huggingface_hub import upload_folder
|
| 38 |
+
|
| 39 |
from autoclip.torch import QuantileClip
|
| 40 |
|
| 41 |
import gc
|
|
|
|
| 130 |
parser.add_argument('--data_root', type=str, default='data/', help='Where to save dataset.')
|
| 131 |
parser.add_argument('--save_every', type=int, default=1000, help='Save checkpoints every this many iterations.')
|
| 132 |
parser.add_argument('--seed', type=int, default=412, help='Random seed.')
|
|
|
|
| 133 |
parser.add_argument('--reload_model_only', action=argparse.BooleanOptionalAction, default=False, help='Reload only the model from disk?')
|
| 134 |
parser.add_argument('--strict_reload', action=argparse.BooleanOptionalAction, default=True, help='Should use strict reload for model weights.') # Added back
|
| 135 |
parser.add_argument('--track_every', type=int, default=1000, help='Track metrics every this many iterations.')
|
| 136 |
parser.add_argument('--n_test_batches', type=int, default=20, help='How many minibatches to approx metrics. Set to -1 for full eval')
|
| 137 |
parser.add_argument('--device', type=int, nargs='+', default=[-1], help='List of GPU(s) to use. Set to -1 to use CPU.')
|
| 138 |
parser.add_argument('--use_amp', action=argparse.BooleanOptionalAction, default=False, help='AMP autocast.')
|
| 139 |
+
parser.add_argument('--reload', type=str, default=None, help='Path to checkpoint to reload from.')
|
| 140 |
+
parser.add_argument('--wandb', action=argparse.BooleanOptionalAction, default=False, help='Log to WandB.')
|
| 141 |
+
|
| 142 |
+
# HF Hub
|
| 143 |
+
parser.add_argument('--push_to_hub', action=argparse.BooleanOptionalAction, default=False, help='Push model to HF Hub.')
|
| 144 |
+
parser.add_argument('--hub_model_id', type=str, default=None, help='HF Hub model ID (e.g., username/repo).')
|
| 145 |
+
parser.add_argument('--hub_token', type=str, default=None, help='HF Hub token.')
|
| 146 |
+
parser.add_argument('--hub_private', action=argparse.BooleanOptionalAction, default=False, help='Make HF Hub repo private.')
|
| 147 |
|
| 148 |
args = parser.parse_args()
|
| 149 |
return args
|
|
|
|
| 217 |
# Hosuekeeping
|
| 218 |
args = parse_args()
|
| 219 |
|
| 220 |
+
set_seed(args.seed)
|
| 221 |
+
|
| 222 |
+
# Initialize Accelerator
|
| 223 |
+
accelerator = Accelerator(log_with="wandb" if args.wandb else None)
|
| 224 |
+
device = accelerator.device
|
| 225 |
+
|
| 226 |
+
# Setup Logging
|
| 227 |
+
if accelerator.is_main_process:
|
| 228 |
+
if not os.path.exists(args.log_dir):
|
| 229 |
+
os.makedirs(args.log_dir)
|
| 230 |
+
print(f"Logging to {args.log_dir}")
|
| 231 |
+
if args.wandb:
|
| 232 |
+
accelerator.init_trackers(
|
| 233 |
+
project_name="continuous-thought-machines",
|
| 234 |
+
config=vars(args),
|
| 235 |
+
init_kwargs={"wandb": {"name": args.log_dir.split('/')[-1]}}
|
| 236 |
+
)
|
| 237 |
|
| 238 |
assert args.dataset in ['cifar10', 'cifar100', 'imagenet']
|
| 239 |
|
|
|
|
| 253 |
print(args, file=f)
|
| 254 |
|
| 255 |
# Configure device string (support MPS on macOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
print(f'Running model {args.model} on {device}')
|
| 257 |
|
| 258 |
# Build model conditionally
|
|
|
|
| 283 |
).to(device)
|
| 284 |
elif args.model == 'lstm':
|
| 285 |
model = LSTMBaseline(
|
| 286 |
+
d_model=args.d_model,
|
|
|
|
|
|
|
| 287 |
d_input=args.d_input,
|
| 288 |
+
num_layers=args.num_layers,
|
|
|
|
|
|
|
| 289 |
out_dims=args.out_dims,
|
|
|
|
| 290 |
dropout=args.dropout,
|
| 291 |
+
)
|
| 292 |
elif args.model == 'ff':
|
| 293 |
model = FFBaseline(
|
| 294 |
+
d_model=args.d_model,
|
| 295 |
+
d_input=args.d_input,
|
| 296 |
out_dims=args.out_dims,
|
| 297 |
dropout=args.dropout,
|
| 298 |
+
)
|
| 299 |
else:
|
| 300 |
+
raise NotImplementedError
|
| 301 |
+
|
| 302 |
+
model.train()
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
# Param counting moved after initialization
|
| 306 |
|
| 307 |
|
| 308 |
# For lazy modules so that we can get param count
|
| 309 |
pseudo_inputs = train_data.__getitem__(0)[0].unsqueeze(0).to(device)
|
| 310 |
model(pseudo_inputs)
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
print(f'Total params: {sum(p.numel() for p in model.parameters())}')
|
| 313 |
decay_params = []
|
|
|
|
| 347 |
else:
|
| 348 |
raise NotImplementedError
|
| 349 |
|
| 350 |
+
# Prepare with Accelerator
|
| 351 |
+
# Note: Accelerate handles device placement
|
| 352 |
+
model, optimizer, trainloader, testloader, scheduler = accelerator.prepare(
|
| 353 |
+
model, optimizer, trainloader, testloader, scheduler
|
| 354 |
+
)
|
| 355 |
|
| 356 |
# Metrics tracking
|
| 357 |
start_iter = 0
|
|
|
|
| 364 |
train_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None
|
| 365 |
test_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None
|
| 366 |
|
| 367 |
+
train_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None
|
| 368 |
+
test_accuracies_most_certain = [] if args.model in ['ctm', 'lstm'] else None
|
| 369 |
+
|
| 370 |
# scaler = torch.amp.GradScaler("cuda" if "cuda" in device else "cpu", enabled=args.use_amp)
|
| 371 |
# Fallback for older torch versions or specific builds
|
| 372 |
+
# scaler = torch.cuda.amp.GradScaler(enabled=args.use_amp)
|
| 373 |
+
# Accelerate handles mixed precision automatically
|
| 374 |
|
| 375 |
# Reloading logic
|
| 376 |
if args.reload:
|
|
|
|
| 379 |
print(f'Reloading from: {checkpoint_path}')
|
| 380 |
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
|
| 381 |
if not args.strict_reload: print('WARNING: not using strict reload for model weights!')
|
| 382 |
+
load_result = accelerator.unwrap_model(model).load_state_dict(checkpoint['model_state_dict'], strict=args.strict_reload)
|
| 383 |
print(f" Loaded state_dict. Missing: {load_result.missing_keys}, Unexpected: {load_result.unexpected_keys}")
|
| 384 |
|
| 385 |
if not args.reload_model_only:
|
| 386 |
print('Reloading optimizer etc.')
|
| 387 |
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
| 388 |
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
|
| 389 |
+
# scaler.load_state_dict(checkpoint['scaler_state_dict']) # Scaler is handled by accelerator
|
| 390 |
start_iter = checkpoint['iteration']
|
| 391 |
# Load common metrics
|
| 392 |
train_losses = checkpoint['train_losses']
|
|
|
|
| 438 |
iterator = iter(trainloader)
|
| 439 |
inputs, targets = next(iterator)
|
| 440 |
|
| 441 |
+
# inputs = inputs.to(device) # Handled by accelerator.prepare
|
| 442 |
+
# targets = targets.to(device) # Handled by accelerator.prepare
|
| 443 |
|
| 444 |
loss = None
|
| 445 |
accuracy = None
|
| 446 |
# Model-specific forward and loss calculation
|
| 447 |
+
# with torch.autocast(device_type="cuda" if "cuda" in device else "cpu", dtype=torch.float16, enabled=args.use_amp): # Handled by accelerator
|
| 448 |
+
if args.do_compile: # CUDAGraph marking for clean compile
|
| 449 |
+
torch.compiler.cudagraph_mark_step_begin()
|
| 450 |
+
|
| 451 |
+
if args.model == 'ctm':
|
| 452 |
+
if args.energy_head_enabled:
|
| 453 |
+
predictions, certainties, energies = model(inputs)
|
| 454 |
+
if args.loss_type == 'energy_contrastive':
|
| 455 |
+
criterion = EnergyContrastiveLoss(margin=args.energy_margin, energy_scale=args.energy_scale)
|
| 456 |
+
loss, stats = criterion(predictions, energies, targets)
|
| 457 |
+
# Use standard accuracy metric for now
|
| 458 |
+
where_most_certain = certainties[:,1].argmax(-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 460 |
+
pbar_desc = f'CTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}. Avg Energy={stats["avg_energy"]:0.3f}'
|
| 461 |
+
else:
|
| 462 |
+
# Fallback to standard loss even if energy head is enabled (but unused)
|
| 463 |
+
loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
|
| 464 |
+
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 465 |
+
pbar_desc = f'CTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}'
|
| 466 |
+
else:
|
| 467 |
predictions, certainties, synchronisation = model(inputs)
|
| 468 |
loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
|
|
|
|
| 469 |
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 470 |
+
pbar_desc = f'CTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}. Where_certain={where_most_certain.float().mean().item():0.2f}+-{where_most_certain.float().std().item():0.2f} ({where_most_certain.min().item():d}<->{where_most_certain.max().item():d})'
|
| 471 |
+
|
| 472 |
+
elif args.model == 'lstm':
|
| 473 |
+
predictions, certainties, synchronisation = model(inputs)
|
| 474 |
+
loss, where_most_certain = image_classification_loss(predictions, certainties, targets, use_most_certain=True)
|
| 475 |
+
# LSTM where_most_certain will just be -1 because use_most_certain is False owing to stability issues with LSTM training
|
| 476 |
+
accuracy = (predictions.argmax(1)[torch.arange(predictions.size(0), device=predictions.device),where_most_certain] == targets).float().mean().item()
|
| 477 |
+
pbar_desc = f'LSTM Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}. Where_certain={where_most_certain.float().mean().item():0.2f}+-{where_most_certain.float().std().item():0.2f} ({where_most_certain.min().item():d}<->{where_most_certain.max().item():d})'
|
| 478 |
+
|
| 479 |
+
elif args.model == 'ff':
|
| 480 |
+
predictions = model(inputs)
|
| 481 |
+
loss = nn.CrossEntropyLoss()(predictions, targets)
|
| 482 |
+
accuracy = (predictions.argmax(1) == targets).float().mean().item()
|
| 483 |
+
pbar_desc = f'FF Loss={loss.item():0.3f}. Acc={accuracy:0.3f}. LR={current_lr:0.6f}'
|
| 484 |
+
|
| 485 |
+
# Backward pass with Accelerate
|
| 486 |
+
accelerator.backward(loss)
|
| 487 |
+
|
| 488 |
+
if args.gradient_clipping > 0:
|
| 489 |
+
accelerator.clip_grad_norm_(model.parameters(), args.gradient_clipping)
|
| 490 |
+
|
| 491 |
+
optimizer.step()
|
| 492 |
+
optimizer.zero_grad()
|
| 493 |
scheduler.step()
|
| 494 |
|
| 495 |
pbar.set_description(f'Dataset={args.dataset}. Model={args.model}. {pbar_desc}')
|
|
|
|
| 516 |
|
| 517 |
pbar.set_description('Tracking: Computing TRAIN metrics')
|
| 518 |
with torch.no_grad(): # Should use inference_mode? CTM/LSTM scripts used no_grad
|
| 519 |
+
# loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test) # Use prepared loader
|
| 520 |
all_targets_list = []
|
| 521 |
all_predictions_list = [] # List to store raw predictions (B, C, T) or (B, C)
|
| 522 |
all_predictions_most_certain_list = [] # Only for CTM/LSTM
|
| 523 |
all_losses = []
|
| 524 |
|
| 525 |
+
with tqdm(total=len(trainloader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
|
| 526 |
+
for inferi, (inputs, targets) in enumerate(trainloader):
|
| 527 |
+
# inputs = inputs.to(device) # Handled by accelerator.prepare
|
| 528 |
+
# targets = targets.to(device) # Handled by accelerator.prepare
|
| 529 |
all_targets_list.append(targets.detach().cpu().numpy())
|
| 530 |
|
| 531 |
# Model-specific forward and loss for evaluation
|
|
|
|
| 575 |
model.eval()
|
| 576 |
pbar.set_description('Tracking: Computing TEST metrics')
|
| 577 |
with torch.inference_mode(): # Use inference_mode for test eval
|
| 578 |
+
# loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test) # Use prepared loader
|
| 579 |
all_targets_list = []
|
| 580 |
all_predictions_list = []
|
| 581 |
all_predictions_most_certain_list = [] # Only for CTM/LSTM
|
| 582 |
all_losses = []
|
| 583 |
|
| 584 |
+
with tqdm(total=len(testloader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
|
| 585 |
+
for inferi, (inputs, targets) in enumerate(testloader):
|
| 586 |
+
# inputs = inputs.to(device) # Handled by accelerator.prepare
|
| 587 |
+
# targets = targets.to(device) # Handled by accelerator.prepare
|
| 588 |
all_targets_list.append(targets.detach().cpu().numpy())
|
| 589 |
|
| 590 |
# Model-specific forward and loss for evaluation
|
|
|
|
| 678 |
if args.model in ['ctm', 'lstm']:
|
| 679 |
try: # For safety
|
| 680 |
inputs_viz, targets_viz = next(iter(testloader)) # Get a fresh batch
|
| 681 |
+
# inputs_viz = inputs_viz.to(device) # Handled by accelerator.prepare
|
| 682 |
+
# targets_viz = targets_viz.to(device) # Handled by accelerator.prepare
|
| 683 |
|
| 684 |
pbar.set_description('Tracking: Processing test data for viz')
|
| 685 |
predictions_viz, certainties_viz, _, pre_activations_viz, post_activations_viz, attention_tracking_viz = model(inputs_viz, track=True)
|
| 686 |
|
| 687 |
+
att_shape = (accelerator.unwrap_model(model).kv_features.shape[2], accelerator.unwrap_model(model).kv_features.shape[3])
|
| 688 |
attention_tracking_viz = attention_tracking_viz.reshape(
|
| 689 |
attention_tracking_viz.shape[0],
|
| 690 |
attention_tracking_viz.shape[1], -1, att_shape[0], att_shape[1])
|
|
|
|
| 717 |
model.train() # Switch back to train mode
|
| 718 |
|
| 719 |
|
| 720 |
+
# Save model checkpoint (conditional metrics)
|
| 721 |
# Save model checkpoint (conditional metrics)
|
| 722 |
if (bi % args.save_every == 0 or bi == args.training_iterations - 1) and bi != start_iter:
|
| 723 |
+
if accelerator.is_main_process:
|
| 724 |
+
pbar.set_description('Saving model checkpoint...')
|
| 725 |
+
checkpoint_data = {
|
| 726 |
+
'model_state_dict': accelerator.unwrap_model(model).state_dict(),
|
| 727 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
| 728 |
+
'scheduler_state_dict': scheduler.state_dict(),
|
| 729 |
+
'iteration': bi,
|
| 730 |
+
'train_losses': train_losses,
|
| 731 |
+
'test_losses': test_losses,
|
| 732 |
+
'train_accuracies': train_accuracies,
|
| 733 |
+
'test_accuracies': test_accuracies,
|
| 734 |
+
'iters': iters,
|
| 735 |
+
'args': args,
|
| 736 |
+
'torch_rng_state': torch.get_rng_state(),
|
| 737 |
+
'numpy_rng_state': np.random.get_state(),
|
| 738 |
+
'random_rng_state': random.getstate(),
|
| 739 |
+
}
|
| 740 |
+
|
| 741 |
+
if args.model in ['ctm', 'lstm']:
|
| 742 |
+
checkpoint_data['train_accuracies_most_certain'] = train_accuracies_most_certain
|
| 743 |
+
checkpoint_data['test_accuracies_most_certain'] = test_accuracies_most_certain
|
|
|
|
|
|
|
| 744 |
|
| 745 |
+
accelerator.save(checkpoint_data, f'{args.log_dir}/checkpoint.pt')
|
| 746 |
+
|
| 747 |
+
# Push to Hub
|
| 748 |
+
if args.push_to_hub and args.hub_model_id:
|
| 749 |
+
if bi % (args.save_every * 5) == 0: # Upload less frequently
|
| 750 |
+
try:
|
| 751 |
+
upload_folder(
|
| 752 |
+
folder_path=args.log_dir,
|
| 753 |
+
repo_id=args.hub_model_id,
|
| 754 |
+
token=args.hub_token,
|
| 755 |
+
commit_message=f"Training checkpoint {bi}",
|
| 756 |
+
ignore_patterns=["*.pt"],
|
| 757 |
+
)
|
| 758 |
+
except Exception as e:
|
| 759 |
+
print(f"Failed to upload to hub: {e}")
|
| 760 |
|
| 761 |
pbar.update(1)
|