Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,95 +1,82 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
|
|
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from
|
6 |
-
from langchain.
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from langchain.chains import ConversationChain # Note: Not from "langchain_community"
|
10 |
from langchain.memory import ConversationBufferMemory
|
|
|
11 |
from pathlib import Path
|
12 |
import chromadb
|
|
|
13 |
from transformers import AutoTokenizer
|
14 |
import transformers
|
15 |
import torch
|
16 |
-
import tqdm
|
17 |
import accelerate
|
18 |
|
19 |
-
# LLM model and parameters (adjusted for clarity)
|
20 |
-
chosen_llm_model = "mistralai/Mistral-7B-Instruct-v0.2"
|
21 |
-
llm_temperature = 0.7
|
22 |
-
max_tokens = 1024
|
23 |
-
top_k = 3
|
24 |
-
|
25 |
-
# Chunk size and overlap (adjusted for clarity)
|
26 |
-
chunk_size = 600
|
27 |
-
chunk_overlap = 40
|
28 |
-
|
29 |
-
# Initialize vector database in background
|
30 |
-
accelerate(initialize_database)() # Function definition moved here
|
31 |
-
|
32 |
-
|
33 |
-
def initialize_database():
|
34 |
-
"""
|
35 |
-
This function initializes the vector database (assumed to be ChromaDB).
|
36 |
-
Modify this function based on your specific database needs.
|
37 |
-
"""
|
38 |
-
# Replace with your ChromaDB connection and schema creation logic
|
39 |
-
# ...
|
40 |
-
pass
|
41 |
-
|
42 |
-
|
43 |
-
def demo():
|
44 |
-
with gr.Blocks(theme="base") as demo:
|
45 |
-
qa_chain = gr.State() # Store the initialized QA chain
|
46 |
-
collection_name = gr.State()
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
)
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
submit_btn = gr.Button("Submit")
|
86 |
-
clear_btn = gr.ClearButton([msg, chatbot])
|
87 |
-
|
88 |
-
# Initialize default QA chain when documents are uploaded
|
89 |
-
document.uploaded(initialize_LLM, inputs=[chosen_llm_model])
|
90 |
-
|
91 |
-
# Chatbot events
|
92 |
-
msg.submit(conversation, inputs=[qa_chain, msg, chatbot])
|
93 |
-
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot])
|
94 |
-
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page])
|
95 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.llms import HuggingFaceHub
|
9 |
+
from langchain.chains import ConversationalRetrievalChain
|
|
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
+
|
12 |
from pathlib import Path
|
13 |
import chromadb
|
14 |
+
|
15 |
from transformers import AutoTokenizer
|
16 |
import transformers
|
17 |
import torch
|
18 |
+
import tqdm
|
19 |
import accelerate
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Default LLM model
|
23 |
+
llm_model = "mistralai/Mistral-7B-Instruct-v0.2"
|
24 |
+
|
25 |
+
# Other settings
|
26 |
+
default_persist_directory = './chroma_HF/'
|
27 |
+
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
28 |
+
"google/gemma-7b-it","google/gemma-2b-it", \
|
29 |
+
"HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
|
30 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
|
31 |
+
"google/flan-t5-xxl"
|
32 |
+
]
|
33 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
34 |
+
|
35 |
+
# Load vector database
|
36 |
+
def load_db():
|
37 |
+
embedding = HuggingFaceEmbeddings()
|
38 |
+
vectordb = Chroma(
|
39 |
+
persist_directory=default_persist_directory,
|
40 |
+
embedding_function=embedding)
|
41 |
+
return vectordb
|
42 |
+
|
43 |
+
|
44 |
+
# Initialize langchain LLM chain
|
45 |
+
def initialize_llmchain(vector_db, progress=gr.Progress()):
|
46 |
+
progress(0.5, desc="Initializing HF Hub...")
|
47 |
+
# Use of trust_remote_code as model_kwargs
|
48 |
+
# Warning: langchain issue
|
49 |
+
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
50 |
+
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
51 |
+
llm = HuggingFaceHub(
|
52 |
+
repo_id=llm_model,
|
53 |
+
model_kwargs={"temperature": 0.7, "max_new_tokens": 1024, "top_k": 3, "load_in_8bit": True}
|
54 |
)
|
55 |
+
# ... (other model configurations for different model options)
|
56 |
+
else:
|
57 |
+
llm = HuggingFaceHub(
|
58 |
+
repo_id=llm_model,
|
59 |
+
model_kwargs={"temperature": 0.7, "max_new_tokens": 1024, "top_k": 3}
|
60 |
+
)
|
61 |
+
|
62 |
+
progress(0.75, desc="Defining buffer memory...")
|
63 |
+
memory = ConversationBufferMemory(
|
64 |
+
memory_key="chat_history",
|
65 |
+
output_key='answer',
|
66 |
+
return_messages=True
|
67 |
+
)
|
68 |
+
retriever=vector_db.as_retriever()
|
69 |
+
progress(0.8, desc="Defining retrieval chain...")
|
70 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
71 |
+
llm,
|
72 |
+
retriever=retriever,
|
73 |
+
chain_type="stuff",
|
74 |
+
memory=memory,
|
75 |
+
return_source_documents=True,
|
76 |
+
verbose=False,
|
77 |
+
)
|
78 |
+
progress(0.9, desc="Done!")
|
79 |
+
return qa_chain
|
80 |
+
|
81 |
+
|
82 |
+
# ... (other functions remain the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|