paragon-analytics commited on
Commit
2888c51
1 Parent(s): 8fb9551

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -3
app.py CHANGED
@@ -22,9 +22,9 @@ model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/AD
22
  pred = transformers.pipeline("text-classification", model=model,
23
  tokenizer=tokenizer, return_all_scores=True)
24
 
 
25
 
26
  def interpretation_function(text):
27
- explainer = shap.Explainer(pred)
28
  shap_values = explainer([text])
29
  scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
30
  return scores
@@ -46,7 +46,7 @@ def interpretation_function(text):
46
  # return val
47
 
48
  def adr_predict(x):
49
- encoded_input = tokenizer(x, return_tensors='pt')
50
  output = model(**encoded_input)
51
  scores = output[0][0].detach().numpy()
52
  scores = tf.nn.softmax(scores)
@@ -93,7 +93,6 @@ def adr_predict(x):
93
  # , word_attributions ,scores
94
 
95
  def main(text):
96
- text = str(text).lower()
97
  obj = adr_predict(text)
98
  return obj[0],obj[1]
99
  # ,obj[2]
 
22
  pred = transformers.pipeline("text-classification", model=model,
23
  tokenizer=tokenizer, return_all_scores=True)
24
 
25
+ explainer = shap.Explainer(pred)
26
 
27
  def interpretation_function(text):
 
28
  shap_values = explainer([text])
29
  scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
30
  return scores
 
46
  # return val
47
 
48
  def adr_predict(x):
49
+ encoded_input = tokenizer(str(x), return_tensors='pt')
50
  output = model(**encoded_input)
51
  scores = output[0][0].detach().numpy()
52
  scores = tf.nn.softmax(scores)
 
93
  # , word_attributions ,scores
94
 
95
  def main(text):
 
96
  obj = adr_predict(text)
97
  return obj[0],obj[1]
98
  # ,obj[2]