Spaces:
Sleeping
Sleeping
paragon-analytics
commited on
Commit
•
55ecc4c
1
Parent(s):
cde5ee9
Update app.py
Browse files
app.py
CHANGED
@@ -32,6 +32,11 @@ def med_score(x):
|
|
32 |
score_1 = x['score']
|
33 |
return score_1
|
34 |
|
|
|
|
|
|
|
|
|
|
|
35 |
##
|
36 |
|
37 |
def adr_predict(x):
|
@@ -44,14 +49,15 @@ def adr_predict(x):
|
|
44 |
local_plot = shap.plots.text(shap_values[0], display=False)
|
45 |
|
46 |
med = med_score(classifier(x+str(", There is a medication."))[0])
|
|
|
47 |
|
48 |
-
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)}
|
49 |
|
50 |
|
51 |
def main(prob1):
|
52 |
text = str(prob1).lower()
|
53 |
obj = adr_predict(text)
|
54 |
-
return obj[0],obj[1],obj[2]
|
55 |
|
56 |
title = "Welcome to **ADR Detector** 🪐"
|
57 |
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
|
@@ -64,22 +70,23 @@ with gr.Blocks(title=title) as demo:
|
|
64 |
submit_btn = gr.Button("Analyze")
|
65 |
|
66 |
with gr.Row():
|
|
|
67 |
local_plot = gr.HTML(label = 'Shap:')
|
68 |
|
69 |
with gr.Column(visible=True) as output_col:
|
70 |
-
label = gr.Label(label = "Predicted Label")
|
71 |
med = gr.Label(label = "Contains Medication")
|
72 |
-
|
|
|
73 |
submit_btn.click(
|
74 |
main,
|
75 |
[prob1],
|
76 |
[label
|
77 |
-
,local_plot, med
|
78 |
], api_name="adr"
|
79 |
)
|
80 |
|
81 |
gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
|
82 |
-
gr.Examples([["I
|
83 |
], main, cache_examples=True)
|
84 |
|
85 |
demo.launch()
|
|
|
32 |
score_1 = x['score']
|
33 |
return score_1
|
34 |
|
35 |
+
def sym_score(x):
|
36 |
+
label = x['label']
|
37 |
+
score_1 = x['score']
|
38 |
+
return score_1
|
39 |
+
|
40 |
##
|
41 |
|
42 |
def adr_predict(x):
|
|
|
49 |
local_plot = shap.plots.text(shap_values[0], display=False)
|
50 |
|
51 |
med = med_score(classifier(x+str(", There is a medication."))[0])
|
52 |
+
sym = sym_score(classifier(x+str(", There is a symptom."))[0])
|
53 |
|
54 |
+
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)}, {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
|
55 |
|
56 |
|
57 |
def main(prob1):
|
58 |
text = str(prob1).lower()
|
59 |
obj = adr_predict(text)
|
60 |
+
return obj[0],obj[1],obj[2],obj[3]
|
61 |
|
62 |
title = "Welcome to **ADR Detector** 🪐"
|
63 |
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
|
|
|
70 |
submit_btn = gr.Button("Analyze")
|
71 |
|
72 |
with gr.Row():
|
73 |
+
label = gr.Label(label = "Predicted Label")
|
74 |
local_plot = gr.HTML(label = 'Shap:')
|
75 |
|
76 |
with gr.Column(visible=True) as output_col:
|
|
|
77 |
med = gr.Label(label = "Contains Medication")
|
78 |
+
sym = gr.Label(label = "Contains Symptoms")
|
79 |
+
|
80 |
submit_btn.click(
|
81 |
main,
|
82 |
[prob1],
|
83 |
[label
|
84 |
+
,local_plot, med, sym
|
85 |
], api_name="adr"
|
86 |
)
|
87 |
|
88 |
gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
|
89 |
+
gr.Examples([["I had severe headache after taking Aspirin."],["I had minor headache after taking Acetaminophen."]], [prob1], [label,local_plot, med, sym
|
90 |
], main, cache_examples=True)
|
91 |
|
92 |
demo.launch()
|