teaucamp commited on
Commit
cf1655c
1 Parent(s): 541c6a4

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +82 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import pandas as pd
3
+ import shap
4
+ from shap.plots._force_matplotlib import draw_additive_plot
5
+ import gradio as gr
6
+ import numpy as np
7
+ import matplotlib.pyplot as plt
8
+
9
+ # load the model from disk
10
+ loaded_model = pickle.load(open("heart_xgb.pkl", 'rb'))
11
+
12
+ # Setup SHAP
13
+ explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
14
+
15
+ # Create the main function for server
16
+ def main_func(age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall):
17
+ new_row = pd.DataFrame.from_dict({'age':age,'sex':sex,
18
+ 'cp':cp,'trtbps':trtbps,'chol':chol,
19
+ 'fbs':fbs, 'restecg':restecg,'thalachh':thalachh,'exng':exng,
20
+ 'oldpeak':oldpeak,'slp':slp,'caa':caa,'thall':thall},
21
+ orient = 'index').transpose()
22
+
23
+ prob = loaded_model.predict_proba(new_row)
24
+
25
+ shap_values = explainer(new_row)
26
+ # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
27
+ # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
28
+ plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)
29
+
30
+ plt.tight_layout()
31
+ local_plot = plt.gcf()
32
+ plt.close()
33
+
34
+ return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot
35
+
36
+ # Create the UI
37
+ title = "**Heart Attack Predictor & Interpreter** 🪐"
38
+ description1 = """This app takes info from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis."""
39
+
40
+ description2 = """
41
+ To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🤞
42
+ """
43
+
44
+ with gr.Blocks(title=title) as demo:
45
+ gr.Markdown(f"## {title}")
46
+ gr.Markdown(description1)
47
+ gr.Markdown("""---""")
48
+ gr.Markdown(description2)
49
+ gr.Markdown("""---""")
50
+
51
+ age = gr.Number(label="age Score", value=40)
52
+ sex = gr.Slider(label="sex Score", minimum=0, maximum=1, value=1, step=1)
53
+ cp = gr.Slider(label="cp Score", minimum=1, maximum=5, value=4, step=1)
54
+ trtbps = gr.Slider(label="trtbps Score", minimum=1, maximum=5, value=4, step=1)
55
+ chol = gr.Slider(label="chol Score", minimum=1, maximum=5, value=4, step=1)
56
+ fbs = gr.Slider(label="fbs Score", minimum=1, maximum=5, value=4, step=1)
57
+
58
+ restecg = gr.Slider(label="restecg Score", minimum=1, maximum=5, value=4, step=1)
59
+ thalachh = gr.Slider(label="thalachh Score", minimum=1, maximum=5, value=4, step=1)
60
+
61
+ exng = gr.Slider(label="exng Score", minimum=1, maximum=5, value=4, step=1)
62
+ oldpeak = gr.Slider(label="oldpeak Score", minimum=1, maximum=5, value=4, step=1)
63
+ slp = gr.Slider(label="slp Score", minimum=1, maximum=5, value=4, step=1)
64
+ caa = gr.Slider(label="caa Score", minimum=1, maximum=5, value=4, step=1)
65
+ thall = gr.Slider(label="thall Score", minimum=1, maximum=5, value=4, step=1)
66
+
67
+ submit_btn = gr.Button("Analyze")
68
+
69
+ with gr.Column(visible=True) as output_col:
70
+ label = gr.Label(label = "Predicted Label")
71
+ local_plot = gr.Plot(label = 'Shap:')
72
+
73
+ submit_btn.click(
74
+ main_func,
75
+ [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall],
76
+ [label,local_plot], api_name="Heart_Predictor"
77
+ )
78
+
79
+ gr.Markdown("### Click on any of the examples below to see how it works:")
80
+ gr.Examples([[24,0,4,4,5,5,4,4,5,5,1,2,3], [24,0,4,4,5,3,3,2,1,1,1,2,3]], [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], main_func, cache_examples=True)
81
+
82
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ gradio==3.41.2
2
+ pandas
3
+ scikit-learn
4
+ shap
5
+ xgboost
6
+ matplotlib
7
+ numpy
8
+ streamlit