|
import pickle |
|
import pandas as pd |
|
import shap |
|
from shap.plots._force_matplotlib import draw_additive_plot |
|
import gradio as gr |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
loaded_model = pickle.load(open("classroom_xgb.pkl", 'rb')) |
|
|
|
|
|
explainer = shap.Explainer(loaded_model) |
|
|
|
|
|
def main_func(Target, Admission_Grade, 2nd_Sem_Grades, Previous_Qualification_Grade, 1st_Sem_Grades, Course, 2nd_Sem_Units_Approved, Age_at_Enrollment): |
|
new_row = pd.DataFrame.from_dict({'Target':Target,'Admission_Grade':Admission_Grade, |
|
'2nd_Sem_Grades':2nd_Sem_Grades,'Previous_Qualification_Grade':Previous_Qualification_Grade,'1st_Sem_Grades':1st_Sem_Grades, |
|
'Course':Course,'2nd_Sem_Units_Approved':2nd_Sem_Units_Approved,'Age_at_Enrollment':Age_at_Enrollment}, |
|
orient = 'index').transpose() |
|
|
|
prob = loaded_model.predict_proba(new_row) |
|
|
|
shap_values = explainer(new_row) |
|
|
|
|
|
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) |
|
|
|
plt.tight_layout() |
|
local_plot = plt.gcf() |
|
plt.close() |
|
|
|
return {"Dropout": float(prob[0][0]), "Graduate": 1-float(prob[0][0])}, local_plot |
|
|
|
|
|
title = "**Student Graduation Predictor & Interpreter** πͺ" |
|
description1 = """This app takes info from subjects and predicts their graduation likelihood.""" |
|
|
|
description2 = """ |
|
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. π€ |
|
""" |
|
|
|
with gr.Blocks(title=title) as demo: |
|
gr.Markdown(f"## {title}") |
|
gr.Markdown(description1) |
|
gr.Markdown("""---""") |
|
gr.Markdown(description2) |
|
gr.Markdown("""---""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
Target = gr.Number(label="Target Score", value=40) |
|
Admission_Grade = gr.Slider(label="AdmissionGrade Score", minimum=0, maximum=1, value=1, step=1) |
|
2nd_Sem_Grades = gr.Slider(label="PreviousQualificationGrade Score", minimum=1, maximum=5, value=4, step=1) |
|
Previous_Qualification_Grade = gr.Slider(label="CurricularUnits1stSemGrade Score", minimum=1, maximum=5, value=4, step=1) |
|
1st_Sem_Grades = gr.Slider(label="Course Score", minimum=1, maximum=5, value=4, step=1) |
|
Course = gr.Slider(label="Course", minimum=1, maximum=5, value=4, step=1) |
|
2nd_Sem_Units_Approved = gr.Slider(label="2nd_Sem_Units_Approved", minimum=1, maximum=5, value=4, step=1) |
|
Age_at_Enrollment = gr.Slider(label="AgeAtEnrollment Score", minimum=1, maximum=5, value=4, step=1) |
|
submit_btn = gr.Button("Analyze") |
|
|
|
with gr.Column(visible=True) as output_col: |
|
label = gr.Label(label = "Predicted Label") |
|
local_plot = gr.Plot(label = 'Shap:') |
|
|
|
submit_btn.click( |
|
main_func, |
|
[Target, Admission_Grade, 2nd_Sem_Grades, Previous_Qualification_Grade, 1st_Sem_Grades, Course, 2nd_Sem_Units_Approved, Age_at_Enrollment], |
|
[label,local_plot], api_name="Graduation_Predictor" |
|
) |
|
|
|
gr.Markdown("### Click on any of the examples below to see how it works:") |
|
gr.Examples([['Graduate',119.6,13.000000,122.0,9773,5,18], [Target, Admission_Grade, 2nd_Sem_Grades, Previous_Qualification_Grade, 1st_Sem_Grades, Course, 2nd_Sem_Units_Approved, Age_at_Enrollment] |
|
, [label,local_plot], main_func, cache_examples=True) |
|
|
|
demo.launch() |