Spaces:
Running
Running
| import logging | |
| import os | |
| from pathlib import Path | |
| from typing import Optional, Union | |
| import pandas as pd | |
| import torch | |
| import torchaudio | |
| from torch.utils.data.dataset import Dataset | |
| from torchvision.transforms import v2 | |
| from torio.io import StreamingMediaDecoder | |
| from ...utils.dist_utils import local_rank | |
| log = logging.getLogger() | |
| _CLIP_SIZE = 384 | |
| _CLIP_FPS = 8.0 | |
| _SYNC_SIZE = 224 | |
| _SYNC_FPS = 25.0 | |
| class VGGSound(Dataset): | |
| def __init__( | |
| self, | |
| root: Union[str, Path], | |
| *, | |
| tsv_path: Union[str, Path] = 'sets/vgg3-train.tsv', | |
| sample_rate: int = 16_000, | |
| duration_sec: float = 8.0, | |
| audio_samples: Optional[int] = None, | |
| normalize_audio: bool = False, | |
| ): | |
| self.root = Path(root) | |
| self.normalize_audio = normalize_audio | |
| if audio_samples is None: | |
| self.audio_samples = int(sample_rate * duration_sec) | |
| else: | |
| self.audio_samples = audio_samples | |
| effective_duration = audio_samples / sample_rate | |
| # make sure the duration is close enough, within 15ms | |
| assert abs(effective_duration - duration_sec) < 0.015, \ | |
| f'audio_samples {audio_samples} does not match duration_sec {duration_sec}' | |
| videos = sorted(os.listdir(self.root)) | |
| videos = set([Path(v).stem for v in videos]) # remove extensions | |
| self.labels = {} | |
| self.videos = [] | |
| missing_videos = [] | |
| # read the tsv for subset information | |
| df_list = pd.read_csv(tsv_path, sep='\t', dtype={'id': str}).to_dict('records') | |
| for record in df_list: | |
| id = record['id'] | |
| label = record['label'] | |
| if id in videos: | |
| self.labels[id] = label | |
| self.videos.append(id) | |
| else: | |
| missing_videos.append(id) | |
| if local_rank == 0: | |
| log.info(f'{len(videos)} videos found in {root}') | |
| log.info(f'{len(self.videos)} videos found in {tsv_path}') | |
| log.info(f'{len(missing_videos)} videos missing in {root}') | |
| self.sample_rate = sample_rate | |
| self.duration_sec = duration_sec | |
| self.expected_audio_length = audio_samples | |
| self.clip_expected_length = int(_CLIP_FPS * self.duration_sec) | |
| self.sync_expected_length = int(_SYNC_FPS * self.duration_sec) | |
| self.clip_transform = v2.Compose([ | |
| v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC), | |
| v2.ToImage(), | |
| v2.ToDtype(torch.float32, scale=True), | |
| ]) | |
| self.sync_transform = v2.Compose([ | |
| v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC), | |
| v2.CenterCrop(_SYNC_SIZE), | |
| v2.ToImage(), | |
| v2.ToDtype(torch.float32, scale=True), | |
| v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
| ]) | |
| self.resampler = {} | |
| def sample(self, idx: int) -> dict[str, torch.Tensor]: | |
| video_id = self.videos[idx] | |
| label = self.labels[video_id] | |
| reader = StreamingMediaDecoder(self.root / (video_id + '.mp4')) | |
| reader.add_basic_video_stream( | |
| frames_per_chunk=int(_CLIP_FPS * self.duration_sec), | |
| frame_rate=_CLIP_FPS, | |
| format='rgb24', | |
| ) | |
| reader.add_basic_video_stream( | |
| frames_per_chunk=int(_SYNC_FPS * self.duration_sec), | |
| frame_rate=_SYNC_FPS, | |
| format='rgb24', | |
| ) | |
| reader.add_basic_audio_stream(frames_per_chunk=2**30, ) | |
| reader.fill_buffer() | |
| data_chunk = reader.pop_chunks() | |
| clip_chunk = data_chunk[0] | |
| sync_chunk = data_chunk[1] | |
| audio_chunk = data_chunk[2] | |
| if clip_chunk is None: | |
| raise RuntimeError(f'CLIP video returned None {video_id}') | |
| if clip_chunk.shape[0] < self.clip_expected_length: | |
| raise RuntimeError( | |
| f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}' | |
| ) | |
| if sync_chunk is None: | |
| raise RuntimeError(f'Sync video returned None {video_id}') | |
| if sync_chunk.shape[0] < self.sync_expected_length: | |
| raise RuntimeError( | |
| f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}' | |
| ) | |
| # process audio | |
| sample_rate = int(reader.get_out_stream_info(2).sample_rate) | |
| audio_chunk = audio_chunk.transpose(0, 1) | |
| audio_chunk = audio_chunk.mean(dim=0) # mono | |
| if self.normalize_audio: | |
| abs_max = audio_chunk.abs().max() | |
| audio_chunk = audio_chunk / abs_max * 0.95 | |
| if abs_max <= 1e-6: | |
| raise RuntimeError(f'Audio is silent {video_id}') | |
| # resample | |
| if sample_rate == self.sample_rate: | |
| audio_chunk = audio_chunk | |
| else: | |
| if sample_rate not in self.resampler: | |
| # https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best | |
| self.resampler[sample_rate] = torchaudio.transforms.Resample( | |
| sample_rate, | |
| self.sample_rate, | |
| lowpass_filter_width=64, | |
| rolloff=0.9475937167399596, | |
| resampling_method='sinc_interp_kaiser', | |
| beta=14.769656459379492, | |
| ) | |
| audio_chunk = self.resampler[sample_rate](audio_chunk) | |
| if audio_chunk.shape[0] < self.expected_audio_length: | |
| raise RuntimeError(f'Audio too short {video_id}') | |
| audio_chunk = audio_chunk[:self.expected_audio_length] | |
| # truncate the video | |
| clip_chunk = clip_chunk[:self.clip_expected_length] | |
| if clip_chunk.shape[0] != self.clip_expected_length: | |
| raise RuntimeError(f'CLIP video wrong length {video_id}, ' | |
| f'expected {self.clip_expected_length}, ' | |
| f'got {clip_chunk.shape[0]}') | |
| clip_chunk = self.clip_transform(clip_chunk) | |
| sync_chunk = sync_chunk[:self.sync_expected_length] | |
| if sync_chunk.shape[0] != self.sync_expected_length: | |
| raise RuntimeError(f'Sync video wrong length {video_id}, ' | |
| f'expected {self.sync_expected_length}, ' | |
| f'got {sync_chunk.shape[0]}') | |
| sync_chunk = self.sync_transform(sync_chunk) | |
| data = { | |
| 'id': video_id, | |
| 'caption': label, | |
| 'audio': audio_chunk, | |
| 'clip_video': clip_chunk, | |
| 'sync_video': sync_chunk, | |
| } | |
| return data | |
| def __getitem__(self, idx: int) -> dict[str, torch.Tensor]: | |
| try: | |
| return self.sample(idx) | |
| except Exception as e: | |
| log.error(f'Error loading video {self.videos[idx]}: {e}') | |
| return None | |
| def __len__(self): | |
| return len(self.labels) | |