Text_to_Video_Demo / shared /extract_lora.py
USF00's picture
Initial commit
2b67076
raw
history blame
26.5 kB
import torch
import torch.nn as nn
from typing import Dict, Tuple, Optional, Union
import warnings
try:
from safetensors.torch import save_file as save_safetensors
SAFETENSORS_AVAILABLE = True
except ImportError:
SAFETENSORS_AVAILABLE = False
warnings.warn("safetensors not available. Install with: pip install safetensors")
class LoRAExtractor:
"""
Extract LoRA tensors from the difference between original and fine-tuned models.
LoRA (Low-Rank Adaptation) decomposes weight updates as ΔW = B @ A where:
- A (lora_down): [rank, input_dim] matrix (saved as diffusion_model.param_name.lora_down.weight)
- B (lora_up): [output_dim, rank] matrix (saved as diffusion_model.param_name.lora_up.weight)
The decomposition uses SVD: ΔW = U @ S @ V^T ≈ (U @ S) @ V^T where:
- lora_up = U @ S (contains all singular values)
- lora_down = V^T (orthogonal matrix)
Parameter handling based on name AND dimension:
- 2D weight tensors: LoRA decomposition (.lora_down.weight, .lora_up.weight)
- Any bias tensors: direct difference (.diff_b)
- Other weight tensors (1D, 3D, 4D): full difference (.diff)
Progress tracking and test mode are available for format validation and debugging.
"""
def __init__(self, rank: int = 128, threshold: float = 1e-6, test_mode: bool = False, show_reconstruction_errors: bool = False):
"""
Initialize LoRA extractor.
Args:
rank: Target rank for LoRA decomposition (default: 128)
threshold: Minimum singular value threshold for decomposition
test_mode: If True, creates zero tensors without computation for format testing
show_reconstruction_errors: If True, calculates and displays reconstruction error for each LoRA pair
"""
self.rank = rank
self.threshold = threshold
self.test_mode = test_mode
self.show_reconstruction_errors = show_reconstruction_errors
def extract_lora_from_state_dicts(
self,
original_state_dict: Dict[str, torch.Tensor],
finetuned_state_dict: Dict[str, torch.Tensor],
device: str = 'cpu',
show_progress: bool = True
) -> Dict[str, torch.Tensor]:
"""
Extract LoRA tensors for all matching parameters between two state dictionaries.
Args:
original_state_dict: State dict of the original model
finetuned_state_dict: State dict of the fine-tuned model
device: Device to perform computations on
show_progress: Whether to display progress information
Returns:
Dictionary mapping parameter names to their LoRA components:
- For 2D weight tensors: 'diffusion_model.layer.lora_down.weight', 'diffusion_model.layer.lora_up.weight'
- For any bias tensors: 'diffusion_model.layer.diff_b'
- For other weight tensors (1D, 3D, 4D): 'diffusion_model.layer.diff'
"""
lora_tensors = {}
# Find common parameters and sort alphabetically for consistent processing order
common_keys = sorted(set(original_state_dict.keys()) & set(finetuned_state_dict.keys()))
total_params = len(common_keys)
processed_params = 0
extracted_components = 0
if show_progress:
print(f"Starting LoRA extraction for {total_params} parameters on {device}...")
# Pre-move threshold to device for faster comparisons
threshold_tensor = torch.tensor(self.threshold, device=device)
for param_name in common_keys:
if show_progress:
processed_params += 1
progress_pct = (processed_params / total_params) * 100
print(f"[{processed_params:4d}/{total_params}] ({progress_pct:5.1f}%) Processing: {param_name}")
# Move tensors to device once
original_tensor = original_state_dict[param_name]
finetuned_tensor = finetuned_state_dict[param_name]
# Check if tensors have the same shape before moving to device
if original_tensor.shape != finetuned_tensor.shape:
if show_progress:
print(f" → Shape mismatch: {original_tensor.shape} vs {finetuned_tensor.shape}. Skipping.")
continue
# Move to device and compute difference in one go for efficiency (skip in test mode)
if not self.test_mode:
if original_tensor.device != torch.device(device):
original_tensor = original_tensor.to(device, non_blocking=True)
if finetuned_tensor.device != torch.device(device):
finetuned_tensor = finetuned_tensor.to(device, non_blocking=True)
# Compute difference on device
delta_tensor = finetuned_tensor - original_tensor
# Fast GPU-based threshold check
max_abs_diff = torch.max(torch.abs(delta_tensor))
if max_abs_diff <= threshold_tensor:
if show_progress:
print(f" → No significant changes detected (max diff: {max_abs_diff:.2e}), skipping")
continue
else:
# Test mode - create dummy delta tensor with original shape and dtype
delta_tensor = torch.zeros_like(original_tensor)
if device != 'cpu':
delta_tensor = delta_tensor.to(device)
# Extract LoRA components based on tensor dimensionality
extracted_tensors = self._extract_lora_components(delta_tensor, param_name)
if extracted_tensors:
lora_tensors.update(extracted_tensors)
extracted_components += len(extracted_tensors)
if show_progress:
# Show meaningful component names instead of just 'weight'
component_names = []
for key in extracted_tensors.keys():
if key.endswith('.lora_down.weight'):
component_names.append('lora_down')
elif key.endswith('.lora_up.weight'):
component_names.append('lora_up')
elif key.endswith('.diff_b'):
component_names.append('diff_b')
elif key.endswith('.diff'):
component_names.append('diff')
else:
component_names.append(key.split('.')[-1])
print(f" → Extracted {len(extracted_tensors)} components: {component_names}")
if show_progress:
print(f"\nExtraction completed!")
print(f"Processed: {processed_params}/{total_params} parameters")
print(f"Extracted: {extracted_components} LoRA components")
print(f"LoRA rank: {self.rank}")
# Summary by type
lora_down_count = sum(1 for k in lora_tensors.keys() if k.endswith('.lora_down.weight'))
lora_up_count = sum(1 for k in lora_tensors.keys() if k.endswith('.lora_up.weight'))
diff_b_count = sum(1 for k in lora_tensors.keys() if k.endswith('.diff_b'))
diff_count = sum(1 for k in lora_tensors.keys() if k.endswith('.diff'))
print(f"Summary: {lora_down_count} lora_down, {lora_up_count} lora_up, {diff_b_count} diff_b, {diff_count} diff")
return lora_tensors
def _extract_lora_components(
self,
delta_tensor: torch.Tensor,
param_name: str
) -> Optional[Dict[str, torch.Tensor]]:
"""
Extract LoRA components from a delta tensor.
Args:
delta_tensor: Difference between fine-tuned and original tensor
param_name: Name of the parameter (for generating output keys)
Returns:
Dictionary with modified parameter names as keys and tensors as values
"""
# Determine if this is a weight or bias parameter from the original name
is_weight = 'weight' in param_name.lower()
is_bias = 'bias' in param_name.lower()
# Remove .weight or .bias suffix from parameter name
base_name = param_name
if base_name.endswith('.weight'):
base_name = base_name[:-7] # Remove '.weight'
elif base_name.endswith('.bias'):
base_name = base_name[:-5] # Remove '.bias'
# Add diffusion_model prefix
base_name = f"diffusion_model.{base_name}"
if self.test_mode:
# Fast test mode - create zero tensors without computation
if delta_tensor.dim() == 2 and is_weight:
# 2D weight tensor -> LoRA decomposition
output_dim, input_dim = delta_tensor.shape
rank = min(self.rank, min(input_dim, output_dim))
return {
f"{base_name}.lora_down.weight": torch.zeros(rank, input_dim, dtype=delta_tensor.dtype, device=delta_tensor.device),
f"{base_name}.lora_up.weight": torch.zeros(output_dim, rank, dtype=delta_tensor.dtype, device=delta_tensor.device)
}
elif is_bias:
# Any bias tensor (1D, 2D, etc.) -> .diff_b
return {f"{base_name}.diff_b": torch.zeros_like(delta_tensor)}
else:
# Any weight tensor that's not 2D, or other tensors -> .diff
return {f"{base_name}.diff": torch.zeros_like(delta_tensor)}
# Normal mode - check dimensions AND parameter type
if delta_tensor.dim() == 2 and is_weight:
# 2D weight tensor (linear layer weight) - apply SVD decomposition
return self._decompose_2d_tensor(delta_tensor, base_name)
elif is_bias:
# Any bias tensor (regardless of dimension) - save as .diff_b
return {f"{base_name}.diff_b": delta_tensor.clone()}
else:
# Any other tensor (weight tensors that are 1D, 3D, 4D, or unknown tensors) - save as .diff
return {f"{base_name}.diff": delta_tensor.clone()}
def _decompose_2d_tensor(self, delta_tensor: torch.Tensor, base_name: str) -> Dict[str, torch.Tensor]:
"""
Decompose a 2D tensor using SVD on GPU for maximum performance.
Args:
delta_tensor: 2D tensor to decompose (output_dim × input_dim)
base_name: Base name for the parameter (already processed, with diffusion_model prefix)
Returns:
Dictionary with lora_down and lora_up tensors:
- lora_down: [rank, input_dim]
- lora_up: [output_dim, rank]
"""
# Store original dtype and device
dtype = delta_tensor.dtype
device = delta_tensor.device
# Perform SVD in float32 for numerical stability, but keep on same device
delta_float = delta_tensor.float() if delta_tensor.dtype != torch.float32 else delta_tensor
U, S, Vt = torch.linalg.svd(delta_float, full_matrices=False)
# Determine effective rank (number of significant singular values)
# Use GPU-accelerated operations
significant_mask = S > self.threshold
effective_rank = min(self.rank, torch.sum(significant_mask).item())
effective_rank = self.rank
if effective_rank == 0:
warnings.warn(f"No significant singular values found for {base_name}")
effective_rank = 1
# Create LoRA matrices with correct SVD decomposition
# Standard approach: put all singular values in lora_up, leave lora_down as V^T
# This ensures: lora_up @ lora_down = (U @ S) @ V^T = U @ S @ V^T = ΔW ✓
lora_up = U[:, :effective_rank] * S[:effective_rank].unsqueeze(0) # [output_dim, rank]
lora_down = Vt[:effective_rank, :] # [rank, input_dim]
# Convert back to original dtype (keeping on same device)
lora_up = lora_up.to(dtype)
lora_down = lora_down.to(dtype)
# Calculate and display reconstruction error if requested
if self.show_reconstruction_errors:
with torch.no_grad():
# Reconstruct the original delta tensor
reconstructed = lora_up @ lora_down
# Calculate various error metrics
mse_error = torch.mean((delta_tensor - reconstructed) ** 2).item()
max_error = torch.max(torch.abs(delta_tensor - reconstructed)).item()
# Relative error
original_norm = torch.norm(delta_tensor).item()
relative_error = (torch.norm(delta_tensor - reconstructed).item() / original_norm * 100) if original_norm > 0 else 0
# Cosine similarity
delta_flat = delta_tensor.flatten()
reconstructed_flat = reconstructed.flatten()
if torch.norm(delta_flat) > 0 and torch.norm(reconstructed_flat) > 0:
cosine_sim = torch.nn.functional.cosine_similarity(
delta_flat.unsqueeze(0),
reconstructed_flat.unsqueeze(0)
).item()
else:
cosine_sim = 0.0
# Extract parameter name for display (remove diffusion_model prefix)
display_name = base_name[16:] if base_name.startswith('diffusion_model.') else base_name
print(f" LoRA Error [{display_name}]: MSE={mse_error:.2e}, Max={max_error:.2e}, Rel={relative_error:.2f}%, Cos={cosine_sim:.4f}, Rank={effective_rank}")
return {
f"{base_name}.lora_down.weight": lora_down,
f"{base_name}.lora_up.weight": lora_up
}
def verify_reconstruction(
self,
lora_tensors: Dict[str, torch.Tensor],
original_deltas: Dict[str, torch.Tensor]
) -> Dict[str, float]:
"""
Verify the quality of LoRA reconstruction for 2D tensors.
Args:
lora_tensors: Dictionary with LoRA tensors (flat structure with diffusion_model prefix)
original_deltas: Dictionary with original delta tensors (without prefix)
Returns:
Dictionary mapping parameter names to reconstruction errors
"""
reconstruction_errors = {}
# Group LoRA components by base parameter name
lora_pairs = {}
for key, tensor in lora_tensors.items():
if key.endswith('.lora_down.weight'):
base_name = key[:-18] # Remove '.lora_down.weight'
# Remove diffusion_model prefix for matching with original_deltas
if base_name.startswith('diffusion_model.'):
original_key = base_name[16:] # Remove 'diffusion_model.'
else:
original_key = base_name
if base_name not in lora_pairs:
lora_pairs[base_name] = {'original_key': original_key}
lora_pairs[base_name]['lora_down'] = tensor
elif key.endswith('.lora_up.weight'):
base_name = key[:-16] # Remove '.lora_up.weight'
# Remove diffusion_model prefix for matching with original_deltas
if base_name.startswith('diffusion_model.'):
original_key = base_name[16:] # Remove 'diffusion_model.'
else:
original_key = base_name
if base_name not in lora_pairs:
lora_pairs[base_name] = {'original_key': original_key}
lora_pairs[base_name]['lora_up'] = tensor
# Verify reconstruction for each complete LoRA pair
for base_name, components in lora_pairs.items():
if 'lora_down' in components and 'lora_up' in components and 'original_key' in components:
original_key = components['original_key']
if original_key in original_deltas:
lora_down = components['lora_down']
lora_up = components['lora_up']
original_delta = original_deltas[original_key]
# Get effective rank from the actual tensor dimensions
effective_rank = min(lora_up.shape[1], lora_down.shape[0])
# Reconstruct: ΔW = lora_up @ lora_down (no additional scaling needed since it's built into lora_up)
reconstructed = lora_up @ lora_down
# Compute reconstruction error
mse_error = torch.mean((original_delta - reconstructed) ** 2).item()
reconstruction_errors[base_name] = mse_error
return reconstruction_errors
def compute_reconstruction_errors(
original_tensor: torch.Tensor,
reconstructed_tensor: torch.Tensor,
target_tensor: torch.Tensor
) -> Dict[str, float]:
"""
Compute various error metrics between original, reconstructed, and target tensors.
Args:
original_tensor: Original tensor before fine-tuning
reconstructed_tensor: Reconstructed tensor from LoRA (original + LoRA_reconstruction)
target_tensor: Target tensor (fine-tuned)
Returns:
Dictionary with error metrics
"""
# Ensure all tensors are on the same device and have the same shape
device = original_tensor.device
reconstructed_tensor = reconstructed_tensor.to(device)
target_tensor = target_tensor.to(device)
# Compute differences
delta_original = target_tensor - original_tensor # True fine-tuning difference
delta_reconstructed = reconstructed_tensor - original_tensor # LoRA reconstructed difference
reconstruction_error = target_tensor - reconstructed_tensor # Final reconstruction error
# Compute various error metrics
errors = {}
# Mean Squared Error (MSE)
errors['mse_delta'] = torch.mean((delta_original - delta_reconstructed) ** 2).item()
errors['mse_final'] = torch.mean(reconstruction_error ** 2).item()
# Mean Absolute Error (MAE)
errors['mae_delta'] = torch.mean(torch.abs(delta_original - delta_reconstructed)).item()
errors['mae_final'] = torch.mean(torch.abs(reconstruction_error)).item()
# Relative errors (as percentages)
original_norm = torch.norm(original_tensor).item()
target_norm = torch.norm(target_tensor).item()
delta_norm = torch.norm(delta_original).item()
if original_norm > 0:
errors['relative_error_original'] = (torch.norm(reconstruction_error).item() / original_norm) * 100
if target_norm > 0:
errors['relative_error_target'] = (torch.norm(reconstruction_error).item() / target_norm) * 100
if delta_norm > 0:
errors['relative_error_delta'] = (torch.norm(delta_original - delta_reconstructed).item() / delta_norm) * 100
# Cosine similarity (higher is better, 1.0 = perfect)
delta_flat = delta_original.flatten()
reconstructed_flat = delta_reconstructed.flatten()
if torch.norm(delta_flat) > 0 and torch.norm(reconstructed_flat) > 0:
cosine_sim = torch.nn.functional.cosine_similarity(
delta_flat.unsqueeze(0),
reconstructed_flat.unsqueeze(0)
).item()
errors['cosine_similarity'] = cosine_sim
else:
errors['cosine_similarity'] = 0.0
# Signal-to-noise ratio (SNR) in dB
if errors['mse_final'] > 0:
signal_power = torch.mean(target_tensor ** 2).item()
errors['snr_db'] = 10 * torch.log10(signal_power / errors['mse_final']).item()
else:
errors['snr_db'] = float('inf')
return errors
# Example usage and utility functions
def load_and_extract_lora(
original_model_path: str,
finetuned_model_path: str,
rank: int = 128,
device: str = 'cuda' if torch.cuda.is_available() else 'cpu',
show_progress: bool = True,
test_mode: bool = False,
show_reconstruction_errors: bool = False
) -> Dict[str, torch.Tensor]:
"""
Convenience function to load models and extract LoRA tensors with GPU acceleration.
Args:
original_model_path: Path to original model state dict
finetuned_model_path: Path to fine-tuned model state dict
rank: Target LoRA rank (default: 128)
device: Device for computation (defaults to GPU if available)
show_progress: Whether to display progress information
test_mode: If True, creates zero tensors without computation for format testing
show_reconstruction_errors: If True, calculates and displays reconstruction error for each LoRA pair
Returns:
Dictionary of LoRA tensors with modified parameter names as keys
"""
# Load state dictionaries directly to CPU first (safetensors loads to CPU by default)
if show_progress:
print(f"Loading original model from: {original_model_path}")
original_state_dict = torch.load(original_model_path, map_location='cpu')
if show_progress:
print(f"Loading fine-tuned model from: {finetuned_model_path}")
finetuned_state_dict = torch.load(finetuned_model_path, map_location='cpu')
# Handle nested state dicts (if wrapped in 'model' key or similar)
if 'state_dict' in original_state_dict:
original_state_dict = original_state_dict['state_dict']
if 'state_dict' in finetuned_state_dict:
finetuned_state_dict = finetuned_state_dict['state_dict']
# Extract LoRA tensors with GPU acceleration
extractor = LoRAExtractor(rank=rank, test_mode=test_mode, show_reconstruction_errors=show_reconstruction_errors)
lora_tensors = extractor.extract_lora_from_state_dicts(
original_state_dict,
finetuned_state_dict,
device=device,
show_progress=show_progress
)
return lora_tensors
def save_lora_tensors(lora_tensors: Dict[str, torch.Tensor], save_path: str):
"""Save extracted LoRA tensors to disk."""
torch.save(lora_tensors, save_path)
print(f"LoRA tensors saved to {save_path}")
def save_lora_safetensors(lora_tensors: Dict[str, torch.Tensor], save_path: str, rank: int = None):
"""Save extracted LoRA tensors as safetensors format with metadata."""
if not SAFETENSORS_AVAILABLE:
raise ImportError("safetensors not available. Install with: pip install safetensors")
# Ensure all tensors are contiguous for safetensors
contiguous_tensors = {k: v.contiguous() if v.is_floating_point() else v.contiguous()
for k, v in lora_tensors.items()}
# Add rank as metadata if provided
metadata = {}
if rank is not None:
metadata["rank"] = str(rank)
save_safetensors(contiguous_tensors, save_path, metadata=metadata if metadata else None)
print(f"LoRA tensors saved as safetensors to {save_path}")
if metadata:
print(f"Metadata: {metadata}")
def analyze_lora_tensors(lora_tensors: Dict[str, torch.Tensor]):
"""Analyze the extracted LoRA tensors."""
print(f"Extracted LoRA tensors ({len(lora_tensors)} components):")
# Group by type for better organization
lora_down_tensors = {k: v for k, v in lora_tensors.items() if k.endswith('.lora_down.weight')}
lora_up_tensors = {k: v for k, v in lora_tensors.items() if k.endswith('.lora_up.weight')}
diff_b_tensors = {k: v for k, v in lora_tensors.items() if k.endswith('.diff_b')}
diff_tensors = {k: v for k, v in lora_tensors.items() if k.endswith('.diff')}
if lora_down_tensors:
print(f"\nLinear LoRA down matrices ({len(lora_down_tensors)}):")
for name, tensor in lora_down_tensors.items():
print(f" {name}: {tensor.shape}")
if lora_up_tensors:
print(f"\nLinear LoRA up matrices ({len(lora_up_tensors)}):")
for name, tensor in lora_up_tensors.items():
print(f" {name}: {tensor.shape}")
if diff_b_tensors:
print(f"\nBias differences ({len(diff_b_tensors)}):")
for name, tensor in diff_b_tensors.items():
print(f" {name}: {tensor.shape}")
if diff_tensors:
print(f"\nFull weight differences ({len(diff_tensors)}):")
print(" (Includes conv, modulation, and other multi-dimensional tensors)")
for name, tensor in diff_tensors.items():
print(f" {name}: {tensor.shape}")
# Example usage
if __name__ == "__main__":
from safetensors.torch import load_file as load_safetensors
# Load original and fine-tuned models from safetensors files
original_state_dict = load_safetensors("ckpts/wan2.2_text2video_14B_high_mbf16.safetensors")
finetuned_state_dict = load_safetensors("ckpts/wan2.2_text2video_14B_low_mbf16.safetensors")
# original_state_dict = load_safetensors("ckpts/flux1-dev_bf16.safetensors")
# finetuned_state_dict = load_safetensors("ckpts/flux1-schnell_bf16.safetensors")
print(f"Loaded original model with {len(original_state_dict)} parameters")
print(f"Loaded fine-tuned model with {len(finetuned_state_dict)} parameters")
# extractor_test = LoRAExtractor(test_mode=True)
extractor_test = LoRAExtractor(show_reconstruction_errors=True, rank=128)
lora_tensors_test = extractor_test.extract_lora_from_state_dicts(
original_state_dict,
finetuned_state_dict,
device='cuda',
show_progress=True
)
print("\nTest mode tensor keys (first 10):")
for i, key in enumerate(sorted(lora_tensors_test.keys())):
if i < 10:
print(f" {key}: {lora_tensors_test[key].shape}")
elif i == 10:
print(f" ... and {len(lora_tensors_test) - 10} more")
break
# Always save as extracted_lora.safetensors for easier testing
save_lora_safetensors(lora_tensors_test, "extracted_lora.safetensors")