Spaces:
Runtime error
Runtime error
Upload 126 files
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- .gitattributes +1 -0
- Control-Color/CtrlColor_environ.yaml +40 -0
- Control-Color/annotator/__pycache__/util.cpython-38.pyc +0 -0
- Control-Color/annotator/util.py +40 -0
- Control-Color/app.py +524 -0
- Control-Color/cldm/__pycache__/cldm.cpython-38.pyc +0 -0
- Control-Color/cldm/__pycache__/ddim_haced_sag_step.cpython-38.pyc +0 -0
- Control-Color/cldm/__pycache__/hack.cpython-310.pyc +0 -0
- Control-Color/cldm/__pycache__/hack.cpython-38.pyc +0 -0
- Control-Color/cldm/__pycache__/model.cpython-38.pyc +0 -0
- Control-Color/cldm/cldm.py +547 -0
- Control-Color/cldm/ddim_haced_sag_step.py +494 -0
- Control-Color/cldm/ddim_hacked_sag.py +543 -0
- Control-Color/cldm/hack.py +111 -0
- Control-Color/cldm/model.py +28 -0
- Control-Color/config.py +1 -0
- Control-Color/ldm/__pycache__/util.cpython-38.pyc +0 -0
- Control-Color/ldm/models/__pycache__/autoencoder.cpython-38.pyc +0 -0
- Control-Color/ldm/models/__pycache__/autoencoder_train.cpython-38.pyc +0 -0
- Control-Color/ldm/models/autoencoder.py +220 -0
- Control-Color/ldm/models/autoencoder_train.py +299 -0
- Control-Color/ldm/models/diffusion/__init__.py +0 -0
- Control-Color/ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
- Control-Color/ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc +0 -0
- Control-Color/ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc +0 -0
- Control-Color/ldm/models/diffusion/__pycache__/ddpm_nonoise.cpython-38.pyc +0 -0
- Control-Color/ldm/models/diffusion/ddim.py +337 -0
- Control-Color/ldm/models/diffusion/ddpm.py +1911 -0
- Control-Color/ldm/models/diffusion/dpm_solver/__init__.py +1 -0
- Control-Color/ldm/models/diffusion/dpm_solver/dpm_solver.py +1154 -0
- Control-Color/ldm/models/diffusion/dpm_solver/sampler.py +87 -0
- Control-Color/ldm/models/diffusion/plms.py +244 -0
- Control-Color/ldm/models/diffusion/sampling_util.py +22 -0
- Control-Color/ldm/models/logger.py +93 -0
- Control-Color/ldm/modules/__pycache__/attention.cpython-38.pyc +0 -0
- Control-Color/ldm/modules/__pycache__/attention_dcn_control.cpython-38.pyc +0 -0
- Control-Color/ldm/modules/__pycache__/ema.cpython-38.pyc +0 -0
- Control-Color/ldm/modules/attention.py +653 -0
- Control-Color/ldm/modules/attention_dcn_control.py +854 -0
- Control-Color/ldm/modules/diffusionmodules/__init__.py +0 -0
- Control-Color/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-38.pyc +0 -0
- Control-Color/ldm/modules/diffusionmodules/__pycache__/model.cpython-38.pyc +0 -0
- Control-Color/ldm/modules/diffusionmodules/__pycache__/model_brefore_dcn.cpython-38.pyc +0 -0
- Control-Color/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-38.pyc +0 -0
- Control-Color/ldm/modules/diffusionmodules/__pycache__/util.cpython-38.pyc +0 -0
- Control-Color/ldm/modules/diffusionmodules/model.py +1107 -0
- Control-Color/ldm/modules/diffusionmodules/model_brefore_dcn.py +852 -0
- Control-Color/ldm/modules/diffusionmodules/openaimodel.py +853 -0
- Control-Color/ldm/modules/diffusionmodules/util.py +270 -0
- Control-Color/ldm/modules/distributions/__init__.py +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
Control-Color/ldm/modules/image_degradation/utils/test.png filter=lfs diff=lfs merge=lfs -text
|
Control-Color/CtrlColor_environ.yaml
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: CtrlColor
|
| 2 |
+
channels:
|
| 3 |
+
- pytorch
|
| 4 |
+
- defaults
|
| 5 |
+
dependencies:
|
| 6 |
+
- python=3.8.5
|
| 7 |
+
- pip=20.3
|
| 8 |
+
- cudatoolkit=11.3
|
| 9 |
+
- pytorch=1.12.1
|
| 10 |
+
- torchvision=0.13.1
|
| 11 |
+
- numpy=1.23.1
|
| 12 |
+
- pip:
|
| 13 |
+
- gradio==3.31.0
|
| 14 |
+
- gradio-client==0.2.5
|
| 15 |
+
- albumentations==1.3.0
|
| 16 |
+
- opencv-python==4.9.0.80
|
| 17 |
+
- opencv-python-headless==4.5.5.64
|
| 18 |
+
- imageio==2.9.0
|
| 19 |
+
- imageio-ffmpeg==0.4.2
|
| 20 |
+
- pytorch-lightning==1.5.0
|
| 21 |
+
- omegaconf==2.1.1
|
| 22 |
+
- test-tube>=0.7.5
|
| 23 |
+
- streamlit==1.12.1
|
| 24 |
+
- webdataset==0.2.5
|
| 25 |
+
- kornia==0.6
|
| 26 |
+
- open_clip_torch==2.0.2
|
| 27 |
+
- invisible-watermark>=0.1.5
|
| 28 |
+
- streamlit-drawable-canvas==0.8.0
|
| 29 |
+
- torchmetrics==0.6.0
|
| 30 |
+
- addict==2.4.0
|
| 31 |
+
- yapf==0.32.0
|
| 32 |
+
- prettytable==3.6.0
|
| 33 |
+
- basicsr==1.4.2
|
| 34 |
+
- salesforce-lavis==1.0.2
|
| 35 |
+
- grpcio==1.60
|
| 36 |
+
- pydantic==1.10.5
|
| 37 |
+
- spacy==3.5.1
|
| 38 |
+
- typer==0.7.0
|
| 39 |
+
- typing-extensions==4.4.0
|
| 40 |
+
- fastapi==0.92.0
|
Control-Color/annotator/__pycache__/util.cpython-38.pyc
ADDED
|
Binary file (1.35 kB). View file
|
|
|
Control-Color/annotator/util.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts')
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def HWC3(x):
|
| 10 |
+
assert x.dtype == np.uint8
|
| 11 |
+
if x.ndim == 2:
|
| 12 |
+
x = x[:, :, None]
|
| 13 |
+
assert x.ndim == 3
|
| 14 |
+
H, W, C = x.shape
|
| 15 |
+
assert C == 1 or C == 3 or C == 4
|
| 16 |
+
if C == 3:
|
| 17 |
+
return x
|
| 18 |
+
if C == 1:
|
| 19 |
+
return np.concatenate([x, x, x], axis=2)
|
| 20 |
+
if C == 4:
|
| 21 |
+
color = x[:, :, 0:3].astype(np.float32)
|
| 22 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
| 23 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
| 24 |
+
y = y.clip(0, 255).astype(np.uint8)
|
| 25 |
+
return y
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def resize_image(input_image, resolution):
|
| 29 |
+
H, W, C = input_image.shape
|
| 30 |
+
H = float(H)
|
| 31 |
+
W = float(W)
|
| 32 |
+
k = float(resolution) / min(H, W)#min(H,W)
|
| 33 |
+
H *= k
|
| 34 |
+
W *= k
|
| 35 |
+
H_new = int(np.round(H / 64.0)) * 64
|
| 36 |
+
W_new = int(np.round(W / 64.0)) * 64
|
| 37 |
+
H = H_new if H_new<800 else int(np.round(800 / 64.0)) * 64#1024->896
|
| 38 |
+
W=W_new if W_new<800 else int(np.round(800 / 64.0)) * 64
|
| 39 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
| 40 |
+
return img
|
Control-Color/app.py
ADDED
|
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from share import *
|
| 3 |
+
import config
|
| 4 |
+
|
| 5 |
+
import cv2
|
| 6 |
+
import einops
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
import random
|
| 11 |
+
|
| 12 |
+
from pytorch_lightning import seed_everything
|
| 13 |
+
from annotator.util import resize_image
|
| 14 |
+
from cldm.model import create_model, load_state_dict
|
| 15 |
+
from cldm.ddim_haced_sag_step import DDIMSampler
|
| 16 |
+
from lavis.models import load_model_and_preprocess
|
| 17 |
+
from PIL import Image
|
| 18 |
+
import tqdm
|
| 19 |
+
|
| 20 |
+
from ldm.models.autoencoder_train import AutoencoderKL
|
| 21 |
+
|
| 22 |
+
ckpt_path="./pretrained_models/main_model.ckpt"
|
| 23 |
+
|
| 24 |
+
model = create_model('./models/cldm_v15_inpainting_infer1.yaml').cpu()
|
| 25 |
+
model.load_state_dict(load_state_dict(ckpt_path, location='cuda'),strict=False)
|
| 26 |
+
model = model.cuda()
|
| 27 |
+
|
| 28 |
+
ddim_sampler = DDIMSampler(model)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 32 |
+
BLIP_model, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=device)
|
| 33 |
+
|
| 34 |
+
vae_model_ckpt_path="./pretrained_models/content-guided_deformable_vae.ckpt"
|
| 35 |
+
|
| 36 |
+
def load_vae():
|
| 37 |
+
init_config = {
|
| 38 |
+
"embed_dim": 4,
|
| 39 |
+
"monitor": "val/rec_loss",
|
| 40 |
+
"ddconfig":{
|
| 41 |
+
"double_z": True,
|
| 42 |
+
"z_channels": 4,
|
| 43 |
+
"resolution": 256,
|
| 44 |
+
"in_channels": 3,
|
| 45 |
+
"out_ch": 3,
|
| 46 |
+
"ch": 128,
|
| 47 |
+
"ch_mult":[1,2,4,4],
|
| 48 |
+
"num_res_blocks": 2,
|
| 49 |
+
"attn_resolutions": [],
|
| 50 |
+
"dropout": 0.0,
|
| 51 |
+
},
|
| 52 |
+
"lossconfig":{
|
| 53 |
+
"target": "ldm.modules.losses.LPIPSWithDiscriminator",
|
| 54 |
+
"params":{
|
| 55 |
+
"disc_start": 501,
|
| 56 |
+
"kl_weight": 0,
|
| 57 |
+
"disc_weight": 0.025,
|
| 58 |
+
"disc_factor": 1.0
|
| 59 |
+
}
|
| 60 |
+
}
|
| 61 |
+
}
|
| 62 |
+
vae = AutoencoderKL(**init_config)
|
| 63 |
+
vae.load_state_dict(load_state_dict(vae_model_ckpt_path, location='cuda'))
|
| 64 |
+
vae = vae.cuda()
|
| 65 |
+
return vae
|
| 66 |
+
|
| 67 |
+
vae_model=load_vae()
|
| 68 |
+
|
| 69 |
+
def encode_mask(mask,masked_image):
|
| 70 |
+
mask = torch.nn.functional.interpolate(mask, size=(mask.shape[2] // 8, mask.shape[3] // 8))
|
| 71 |
+
# mask=torch.cat([mask] * 2) #if do_classifier_free_guidance else mask
|
| 72 |
+
mask = mask.to(device="cuda")
|
| 73 |
+
# do_classifier_free_guidance=False
|
| 74 |
+
masked_image_latents = model.get_first_stage_encoding(model.encode_first_stage(masked_image.cuda())).detach()
|
| 75 |
+
return mask,masked_image_latents
|
| 76 |
+
|
| 77 |
+
def get_mask(input_image,hint_image):
|
| 78 |
+
mask=input_image.copy()
|
| 79 |
+
H,W,C=input_image.shape
|
| 80 |
+
for i in range(H):
|
| 81 |
+
for j in range(W):
|
| 82 |
+
if input_image[i,j,0]==hint_image[i,j,0]:
|
| 83 |
+
# print(input_image[i,j,0])
|
| 84 |
+
mask[i,j,:]=255.
|
| 85 |
+
else:
|
| 86 |
+
mask[i,j,:]=0. #input_image[i,j,:]
|
| 87 |
+
kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
|
| 88 |
+
mask=cv2.morphologyEx(np.array(mask),cv2.MORPH_OPEN,kernel,iterations=1)
|
| 89 |
+
return mask
|
| 90 |
+
|
| 91 |
+
def prepare_mask_and_masked_image(image, mask):
|
| 92 |
+
"""
|
| 93 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
| 94 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
| 95 |
+
``image`` and ``1`` for the ``mask``.
|
| 96 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
| 97 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
| 98 |
+
Args:
|
| 99 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
| 100 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
| 101 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
| 102 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
| 103 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
| 104 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
| 105 |
+
Raises:
|
| 106 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
| 107 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
| 108 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
| 109 |
+
(ot the other way around).
|
| 110 |
+
Returns:
|
| 111 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
| 112 |
+
dimensions: ``batch x channels x height x width``.
|
| 113 |
+
"""
|
| 114 |
+
if isinstance(image, torch.Tensor):
|
| 115 |
+
if not isinstance(mask, torch.Tensor):
|
| 116 |
+
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
|
| 117 |
+
|
| 118 |
+
# Batch single image
|
| 119 |
+
if image.ndim == 3:
|
| 120 |
+
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
| 121 |
+
image = image.unsqueeze(0)
|
| 122 |
+
|
| 123 |
+
# Batch and add channel dim for single mask
|
| 124 |
+
if mask.ndim == 2:
|
| 125 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
| 126 |
+
|
| 127 |
+
# Batch single mask or add channel dim
|
| 128 |
+
if mask.ndim == 3:
|
| 129 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
| 130 |
+
if mask.shape[0] == 1:
|
| 131 |
+
mask = mask.unsqueeze(0)
|
| 132 |
+
|
| 133 |
+
# Batched masks no channel dim
|
| 134 |
+
else:
|
| 135 |
+
mask = mask.unsqueeze(1)
|
| 136 |
+
|
| 137 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
| 138 |
+
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
| 139 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
| 140 |
+
|
| 141 |
+
# Check image is in [-1, 1]
|
| 142 |
+
if image.min() < -1 or image.max() > 1:
|
| 143 |
+
raise ValueError("Image should be in [-1, 1] range")
|
| 144 |
+
|
| 145 |
+
# Check mask is in [0, 1]
|
| 146 |
+
if mask.min() < 0 or mask.max() > 1:
|
| 147 |
+
raise ValueError("Mask should be in [0, 1] range")
|
| 148 |
+
|
| 149 |
+
# Binarize mask
|
| 150 |
+
mask[mask < 0.5] = 0
|
| 151 |
+
mask[mask >= 0.5] = 1
|
| 152 |
+
|
| 153 |
+
# Image as float32
|
| 154 |
+
image = image.to(dtype=torch.float32)
|
| 155 |
+
elif isinstance(mask, torch.Tensor):
|
| 156 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
| 157 |
+
else:
|
| 158 |
+
# preprocess image
|
| 159 |
+
if isinstance(image, (Image.Image, np.ndarray)):
|
| 160 |
+
image = [image]
|
| 161 |
+
|
| 162 |
+
if isinstance(image, list) and isinstance(image[0], Image.Image):
|
| 163 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
| 164 |
+
image = np.concatenate(image, axis=0)
|
| 165 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
| 166 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
| 167 |
+
|
| 168 |
+
image = image.transpose(0, 3, 1, 2)
|
| 169 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
| 170 |
+
|
| 171 |
+
# preprocess mask
|
| 172 |
+
if isinstance(mask, (Image.Image, np.ndarray)):
|
| 173 |
+
mask = [mask]
|
| 174 |
+
|
| 175 |
+
if isinstance(mask, list) and isinstance(mask[0], Image.Image):
|
| 176 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
| 177 |
+
mask = mask.astype(np.float32) / 255.0
|
| 178 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
| 179 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
| 180 |
+
|
| 181 |
+
mask[mask < 0.5] = 0
|
| 182 |
+
mask[mask >= 0.5] = 1
|
| 183 |
+
mask = torch.from_numpy(mask)
|
| 184 |
+
|
| 185 |
+
masked_image = image * (mask < 0.5)
|
| 186 |
+
|
| 187 |
+
return mask, masked_image
|
| 188 |
+
|
| 189 |
+
# generate image
|
| 190 |
+
generator = torch.manual_seed(859311133)#0
|
| 191 |
+
def path2L(img_path):
|
| 192 |
+
raw_image = cv2.imread(img_path)
|
| 193 |
+
raw_image = cv2.cvtColor(raw_image,cv2.COLOR_BGR2LAB)
|
| 194 |
+
raw_image_input = cv2.merge([raw_image[:,:,0],raw_image[:,:,0],raw_image[:,:,0]])
|
| 195 |
+
return raw_image_input
|
| 196 |
+
|
| 197 |
+
def is_gray_scale(img, threshold=10):
|
| 198 |
+
img = Image.fromarray(img)
|
| 199 |
+
if len(img.getbands()) == 1:
|
| 200 |
+
return True
|
| 201 |
+
img1 = np.asarray(img.getchannel(channel=0), dtype=np.int16)
|
| 202 |
+
img2 = np.asarray(img.getchannel(channel=1), dtype=np.int16)
|
| 203 |
+
img3 = np.asarray(img.getchannel(channel=2), dtype=np.int16)
|
| 204 |
+
diff1 = (img1 - img2).var()
|
| 205 |
+
diff2 = (img2 - img3).var()
|
| 206 |
+
diff3 = (img3 - img1).var()
|
| 207 |
+
diff_sum = (diff1 + diff2 + diff3) / 3.0
|
| 208 |
+
if diff_sum <= threshold:
|
| 209 |
+
return True
|
| 210 |
+
else:
|
| 211 |
+
return False
|
| 212 |
+
|
| 213 |
+
def randn_tensor(
|
| 214 |
+
shape,
|
| 215 |
+
generator= None,
|
| 216 |
+
device= None,
|
| 217 |
+
dtype=None,
|
| 218 |
+
layout= None,
|
| 219 |
+
):
|
| 220 |
+
"""A helper function to create random tensors on the desired `device` with the desired `dtype`. When
|
| 221 |
+
passing a list of generators, you can seed each batch size individually. If CPU generators are passed, the tensor
|
| 222 |
+
is always created on the CPU.
|
| 223 |
+
"""
|
| 224 |
+
# device on which tensor is created defaults to device
|
| 225 |
+
rand_device = device
|
| 226 |
+
batch_size = shape[0]
|
| 227 |
+
|
| 228 |
+
layout = layout or torch.strided
|
| 229 |
+
device = device or torch.device("cpu")
|
| 230 |
+
|
| 231 |
+
if generator is not None:
|
| 232 |
+
gen_device_type = generator.device.type if not isinstance(generator, list) else generator[0].device.type
|
| 233 |
+
if gen_device_type != device.type and gen_device_type == "cpu":
|
| 234 |
+
rand_device = "cpu"
|
| 235 |
+
if device != "mps":
|
| 236 |
+
print("The passed generator was created on 'cpu' even though a tensor on {device} was expected.")
|
| 237 |
+
# logger.info(
|
| 238 |
+
# f"The passed generator was created on 'cpu' even though a tensor on {device} was expected."
|
| 239 |
+
# f" Tensors will be created on 'cpu' and then moved to {device}. Note that one can probably"
|
| 240 |
+
# f" slighly speed up this function by passing a generator that was created on the {device} device."
|
| 241 |
+
# )
|
| 242 |
+
elif gen_device_type != device.type and gen_device_type == "cuda":
|
| 243 |
+
raise ValueError(f"Cannot generate a {device} tensor from a generator of type {gen_device_type}.")
|
| 244 |
+
|
| 245 |
+
# make sure generator list of length 1 is treated like a non-list
|
| 246 |
+
if isinstance(generator, list) and len(generator) == 1:
|
| 247 |
+
generator = generator[0]
|
| 248 |
+
|
| 249 |
+
if isinstance(generator, list):
|
| 250 |
+
shape = (1,) + shape[1:]
|
| 251 |
+
latents = [
|
| 252 |
+
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype, layout=layout)
|
| 253 |
+
for i in range(batch_size)
|
| 254 |
+
]
|
| 255 |
+
latents = torch.cat(latents, dim=0).to(device)
|
| 256 |
+
else:
|
| 257 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device)
|
| 258 |
+
|
| 259 |
+
return latents
|
| 260 |
+
|
| 261 |
+
def add_noise(
|
| 262 |
+
original_samples: torch.FloatTensor,
|
| 263 |
+
noise: torch.FloatTensor,
|
| 264 |
+
timesteps: torch.IntTensor,
|
| 265 |
+
) -> torch.FloatTensor:
|
| 266 |
+
betas = torch.linspace(0.00085, 0.0120, 1000, dtype=torch.float32)
|
| 267 |
+
alphas = 1.0 - betas
|
| 268 |
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
| 269 |
+
alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
| 270 |
+
timesteps = timesteps.to(original_samples.device)
|
| 271 |
+
|
| 272 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
| 273 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
| 274 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
| 275 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
| 276 |
+
|
| 277 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
| 278 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
| 279 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
| 280 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
| 281 |
+
|
| 282 |
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
| 283 |
+
|
| 284 |
+
return noisy_samples
|
| 285 |
+
|
| 286 |
+
def set_timesteps(num_inference_steps: int, timestep_spacing="leading",device=None):
|
| 287 |
+
"""
|
| 288 |
+
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
| 289 |
+
|
| 290 |
+
Args:
|
| 291 |
+
num_inference_steps (`int`):
|
| 292 |
+
the number of diffusion steps used when generating samples with a pre-trained model.
|
| 293 |
+
"""
|
| 294 |
+
num_train_timesteps=1000
|
| 295 |
+
if num_inference_steps > num_train_timesteps:
|
| 296 |
+
raise ValueError(
|
| 297 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
| 298 |
+
f" {num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
| 299 |
+
f" maximal {num_train_timesteps} timesteps."
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
num_inference_steps = num_inference_steps
|
| 303 |
+
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
|
| 304 |
+
if timestep_spacing == "linspace":
|
| 305 |
+
timesteps = (
|
| 306 |
+
np.linspace(0, num_train_timesteps - 1, num_inference_steps)
|
| 307 |
+
.round()[::-1]
|
| 308 |
+
.copy()
|
| 309 |
+
.astype(np.int64)
|
| 310 |
+
)
|
| 311 |
+
elif timestep_spacing == "leading":
|
| 312 |
+
step_ratio = num_train_timesteps // num_inference_steps
|
| 313 |
+
# creates integer timesteps by multiplying by ratio
|
| 314 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
| 315 |
+
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
| 316 |
+
# timesteps += steps_offset
|
| 317 |
+
elif timestep_spacing == "trailing":
|
| 318 |
+
step_ratio = num_train_timesteps / num_inference_steps
|
| 319 |
+
# creates integer timesteps by multiplying by ratio
|
| 320 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
| 321 |
+
timesteps = np.round(np.arange(num_train_timesteps, 0, -step_ratio)).astype(np.int64)
|
| 322 |
+
timesteps -= 1
|
| 323 |
+
else:
|
| 324 |
+
raise ValueError(
|
| 325 |
+
f"{timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
timesteps = torch.from_numpy(timesteps).to(device)
|
| 329 |
+
return timesteps
|
| 330 |
+
|
| 331 |
+
def get_timesteps(num_inference_steps, timesteps_set, strength, device):
|
| 332 |
+
# get the original timestep using init_timestep
|
| 333 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
| 334 |
+
|
| 335 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
| 336 |
+
timesteps = timesteps_set[t_start * 1 :]
|
| 337 |
+
|
| 338 |
+
return timesteps, num_inference_steps - t_start
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
def get_noised_image_latents(img,W,H,ddim_steps,strength,seed,device):
|
| 342 |
+
img1 = [cv2.resize(img,(W,H))]
|
| 343 |
+
img1 = np.concatenate([i[None, :] for i in img1], axis=0)
|
| 344 |
+
img1 = img1.transpose(0, 3, 1, 2)
|
| 345 |
+
img1 = torch.from_numpy(img1).to(dtype=torch.float32) /127.5 - 1.0
|
| 346 |
+
|
| 347 |
+
image_latents=model.get_first_stage_encoding(model.encode_first_stage(img1.cuda())).detach()
|
| 348 |
+
shape=image_latents.shape
|
| 349 |
+
generator = torch.manual_seed(seed)
|
| 350 |
+
|
| 351 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
|
| 352 |
+
|
| 353 |
+
timesteps_set=set_timesteps(ddim_steps,timestep_spacing="linspace", device=device)
|
| 354 |
+
timesteps, num_inference_steps = get_timesteps(ddim_steps, timesteps_set, strength, device)
|
| 355 |
+
latent_timestep = timesteps[1].repeat(1 * 1)
|
| 356 |
+
|
| 357 |
+
init_latents = add_noise(image_latents, noise, torch.tensor(latent_timestep))
|
| 358 |
+
for j in range(0, 1000, 100):
|
| 359 |
+
|
| 360 |
+
x_samples=model.decode_first_stage(add_noise(image_latents, noise, torch.tensor(j)))
|
| 361 |
+
init_image=(einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 362 |
+
|
| 363 |
+
cv2.imwrite("./initlatents1/"+str(j)+"init_image.png",cv2.cvtColor(init_image[0],cv2.COLOR_RGB2BGR))
|
| 364 |
+
return init_latents
|
| 365 |
+
|
| 366 |
+
def process(using_deformable_vae,change_according_to_strokes,iterative_editing,input_image,hint_image,prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, sag_scale,SAG_influence_step, seed, eta):
|
| 367 |
+
torch.cuda.empty_cache()
|
| 368 |
+
with torch.no_grad():
|
| 369 |
+
ref_flag=True
|
| 370 |
+
input_image_ori=input_image
|
| 371 |
+
if is_gray_scale(input_image):
|
| 372 |
+
print("It is a greyscale image.")
|
| 373 |
+
# mask=get_mask(input_image,hint_image)
|
| 374 |
+
else:
|
| 375 |
+
print("It is a color image.")
|
| 376 |
+
input_image_ori=input_image
|
| 377 |
+
input_image=cv2.cvtColor(input_image,cv2.COLOR_RGB2LAB)[:,:,0]
|
| 378 |
+
input_image=cv2.merge([input_image,input_image,input_image])
|
| 379 |
+
mask=get_mask(input_image_ori,hint_image)
|
| 380 |
+
cv2.imwrite("gradio_mask1.png",mask)
|
| 381 |
+
|
| 382 |
+
if iterative_editing:
|
| 383 |
+
mask=255-mask
|
| 384 |
+
if change_according_to_strokes:
|
| 385 |
+
hint_image=mask/255.*hint_image+(1-mask/255.)*input_image_ori
|
| 386 |
+
else:
|
| 387 |
+
hint_image=mask/255.*input_image+(1-mask/255.)*input_image_ori
|
| 388 |
+
else:
|
| 389 |
+
hint_image=mask/255.*input_image+(1-mask/255.)*hint_image
|
| 390 |
+
hint_image=hint_image.astype(np.uint8)
|
| 391 |
+
if len(prompt)==0:
|
| 392 |
+
image = Image.fromarray(input_image)
|
| 393 |
+
image = vis_processors["eval"](image).unsqueeze(0).to(device)
|
| 394 |
+
prompt = BLIP_model.generate({"image": image})[0]
|
| 395 |
+
if "a black and white photo of" in prompt or "black and white photograph of" in prompt:
|
| 396 |
+
prompt=prompt.replace(prompt[:prompt.find("of")+3],"")
|
| 397 |
+
print(prompt)
|
| 398 |
+
H_ori,W_ori,C_ori=input_image.shape
|
| 399 |
+
img = resize_image(input_image, image_resolution)
|
| 400 |
+
mask = resize_image(mask, image_resolution)
|
| 401 |
+
hint_image =resize_image(hint_image,image_resolution)
|
| 402 |
+
mask,masked_image=prepare_mask_and_masked_image(Image.fromarray(hint_image),Image.fromarray(mask))
|
| 403 |
+
mask,masked_image_latents=encode_mask(mask,masked_image)
|
| 404 |
+
H, W, C = img.shape
|
| 405 |
+
|
| 406 |
+
# if ref_image is None:
|
| 407 |
+
ref_image=np.array([[[0]*C]*W]*H).astype(np.float32)
|
| 408 |
+
# print(ref_image.shape)
|
| 409 |
+
# ref_flag=False
|
| 410 |
+
ref_image=resize_image(ref_image,image_resolution)
|
| 411 |
+
|
| 412 |
+
# cv2.imwrite("exemplar_image.png",cv2.cvtColor(ref_image,cv2.COLOR_RGB2BGR))
|
| 413 |
+
|
| 414 |
+
# ddim_steps=1
|
| 415 |
+
control = torch.from_numpy(img.copy()).float().cuda() / 255.0
|
| 416 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 417 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 418 |
+
|
| 419 |
+
if seed == -1:
|
| 420 |
+
seed = random.randint(0, 65535)
|
| 421 |
+
seed_everything(seed)
|
| 422 |
+
|
| 423 |
+
ref_image=cv2.resize(ref_image,(W,H))
|
| 424 |
+
|
| 425 |
+
ref_image=torch.from_numpy(ref_image).cuda().unsqueeze(0)
|
| 426 |
+
|
| 427 |
+
init_latents=None
|
| 428 |
+
|
| 429 |
+
if config.save_memory:
|
| 430 |
+
model.low_vram_shift(is_diffusing=False)
|
| 431 |
+
|
| 432 |
+
print("no reference images, using Frozen encoder")
|
| 433 |
+
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 434 |
+
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 435 |
+
shape = (4, H // 8, W // 8)
|
| 436 |
+
|
| 437 |
+
if config.save_memory:
|
| 438 |
+
model.low_vram_shift(is_diffusing=True)
|
| 439 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
|
| 440 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
|
| 441 |
+
samples, intermediates = ddim_sampler.sample(model,ddim_steps, num_samples,
|
| 442 |
+
shape, cond, mask=mask, masked_image_latents=masked_image_latents,verbose=False, eta=eta,
|
| 443 |
+
# x_T=image_latents,
|
| 444 |
+
x_T=init_latents,
|
| 445 |
+
unconditional_guidance_scale=scale,
|
| 446 |
+
sag_scale = sag_scale,
|
| 447 |
+
SAG_influence_step=SAG_influence_step,
|
| 448 |
+
noise = noise,
|
| 449 |
+
unconditional_conditioning=un_cond)
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
if config.save_memory:
|
| 453 |
+
model.low_vram_shift(is_diffusing=False)
|
| 454 |
+
|
| 455 |
+
if not using_deformable_vae:
|
| 456 |
+
x_samples = model.decode_first_stage(samples)
|
| 457 |
+
else:
|
| 458 |
+
samples = model.decode_first_stage_before_vae(samples)
|
| 459 |
+
gray_content_z=vae_model.get_gray_content_z(torch.from_numpy(img.copy()).float().cuda() / 255.0)
|
| 460 |
+
# print(gray_content_z.shape)
|
| 461 |
+
x_samples = vae_model.decode(samples,gray_content_z)
|
| 462 |
+
|
| 463 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 464 |
+
|
| 465 |
+
#single image replace L channel
|
| 466 |
+
results_ori = [x_samples[i] for i in range(num_samples)]
|
| 467 |
+
results_ori=[cv2.resize(i,(W_ori,H_ori),interpolation=cv2.INTER_LANCZOS4) for i in results_ori]
|
| 468 |
+
|
| 469 |
+
cv2.imwrite("result_ori.png",cv2.cvtColor(results_ori[0],cv2.COLOR_RGB2BGR))
|
| 470 |
+
|
| 471 |
+
results_tmp=[cv2.cvtColor(np.array(i),cv2.COLOR_RGB2LAB) for i in results_ori]
|
| 472 |
+
results=[cv2.merge([input_image[:,:,0],tmp[:,:,1],tmp[:,:,2]]) for tmp in results_tmp]
|
| 473 |
+
results_mergeL=[cv2.cvtColor(np.asarray(i),cv2.COLOR_LAB2RGB) for i in results]#cv2.COLOR_LAB2BGR)
|
| 474 |
+
cv2.imwrite("output.png",cv2.cvtColor(results_mergeL[0],cv2.COLOR_RGB2BGR))
|
| 475 |
+
return results_mergeL
|
| 476 |
+
|
| 477 |
+
def get_grayscale_img(img, progress=gr.Progress(track_tqdm=True)):
|
| 478 |
+
torch.cuda.empty_cache()
|
| 479 |
+
for j in tqdm.tqdm(range(1),desc="Uploading input..."):
|
| 480 |
+
return img,"Uploading input image done."
|
| 481 |
+
|
| 482 |
+
block = gr.Blocks().queue()
|
| 483 |
+
with block:
|
| 484 |
+
with gr.Row():
|
| 485 |
+
gr.Markdown("## Control-Color")#("## Color-Anything")#Control Stable Diffusion with L channel
|
| 486 |
+
with gr.Row():
|
| 487 |
+
with gr.Column():
|
| 488 |
+
# input_image = gr.Image(source='upload', type="numpy")
|
| 489 |
+
grayscale_img = gr.Image(visible=False, type="numpy")
|
| 490 |
+
input_image = gr.Image(source='upload',tool='color-sketch',interactive=True)
|
| 491 |
+
Grayscale_button = gr.Button(value="Upload input image")
|
| 492 |
+
text_out = gr.Textbox(value="Please upload input image first, then draw the strokes or input text prompts or give reference images as you wish.")
|
| 493 |
+
prompt = gr.Textbox(label="Prompt")
|
| 494 |
+
change_according_to_strokes = gr.Checkbox(label='Change according to strokes\' color', value=True)
|
| 495 |
+
iterative_editing = gr.Checkbox(label='Only change the strokes\' area', value=False)
|
| 496 |
+
using_deformable_vae = gr.Checkbox(label='Using deformable vae. (Less color overflow)', value=False)
|
| 497 |
+
# with gr.Accordion("Input Reference", open=False):
|
| 498 |
+
# ref_image = gr.Image(source='upload', type="numpy")
|
| 499 |
+
run_button = gr.Button(label="Upload prompts/strokes (optional) and Run",value="Upload prompts/strokes (optional) and Run")
|
| 500 |
+
with gr.Accordion("Advanced options", open=False):
|
| 501 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 502 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
|
| 503 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 504 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 505 |
+
#detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, step=1)
|
| 506 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 507 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.0, step=0.1)#value=9.0
|
| 508 |
+
sag_scale = gr.Slider(label="SAG Scale", minimum=0.0, maximum=1.0, value=0.05, step=0.01)#0.08
|
| 509 |
+
SAG_influence_step = gr.Slider(label="1000-SAG influence step", minimum=0, maximum=900, value=600, step=50)
|
| 510 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)#94433242802
|
| 511 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 512 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, detailed, real')#extremely detailed
|
| 513 |
+
n_prompt = gr.Textbox(label="Negative Prompt",
|
| 514 |
+
value='a black and white photo, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
| 515 |
+
with gr.Column():
|
| 516 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
| 517 |
+
# grayscale_img = gr.Image(interactive=False,visible=False)
|
| 518 |
+
|
| 519 |
+
Grayscale_button.click(fn=get_grayscale_img,inputs=input_image,outputs=[grayscale_img,text_out])
|
| 520 |
+
ips = [using_deformable_vae,change_according_to_strokes,iterative_editing,grayscale_img,input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale,sag_scale,SAG_influence_step, seed, eta]
|
| 521 |
+
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
block.launch(server_name='0.0.0.0',share=True)
|
Control-Color/cldm/__pycache__/cldm.cpython-38.pyc
ADDED
|
Binary file (12 kB). View file
|
|
|
Control-Color/cldm/__pycache__/ddim_haced_sag_step.cpython-38.pyc
ADDED
|
Binary file (13.3 kB). View file
|
|
|
Control-Color/cldm/__pycache__/hack.cpython-310.pyc
ADDED
|
Binary file (3.88 kB). View file
|
|
|
Control-Color/cldm/__pycache__/hack.cpython-38.pyc
ADDED
|
Binary file (3.89 kB). View file
|
|
|
Control-Color/cldm/__pycache__/model.cpython-38.pyc
ADDED
|
Binary file (1.09 kB). View file
|
|
|
Control-Color/cldm/cldm.py
ADDED
|
@@ -0,0 +1,547 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import einops
|
| 2 |
+
import torch
|
| 3 |
+
import torch as th
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
from ldm.modules.diffusionmodules.util import (
|
| 7 |
+
conv_nd,
|
| 8 |
+
linear,
|
| 9 |
+
zero_module,
|
| 10 |
+
timestep_embedding,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
from einops import rearrange, repeat
|
| 14 |
+
from torchvision.utils import make_grid
|
| 15 |
+
from ldm.modules.attention import SpatialTransformer
|
| 16 |
+
from ldm.modules.attention_dcn_control import SpatialTransformer_dcn
|
| 17 |
+
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
|
| 18 |
+
from ldm.models.diffusion.ddpm import LatentDiffusion
|
| 19 |
+
from ldm.util import log_txt_as_img, exists, instantiate_from_config
|
| 20 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class ControlledUnetModel(UNetModel):
|
| 24 |
+
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
|
| 25 |
+
hs = []
|
| 26 |
+
# print("timestep",timesteps)
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
| 29 |
+
# print("t_emb",t_emb)
|
| 30 |
+
emb = self.time_embed(t_emb)
|
| 31 |
+
h = x.type(self.dtype)
|
| 32 |
+
for module in self.input_blocks:
|
| 33 |
+
h = module(h, emb, context)#,timestep=timesteps)
|
| 34 |
+
hs.append(h)
|
| 35 |
+
h = self.middle_block(h, emb, context)#,timestep=timesteps)
|
| 36 |
+
|
| 37 |
+
if control is not None:
|
| 38 |
+
h += control.pop()
|
| 39 |
+
|
| 40 |
+
for i, module in enumerate(self.output_blocks):
|
| 41 |
+
# print("output_blocks0",h.shape)
|
| 42 |
+
if only_mid_control or control is None:
|
| 43 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
| 44 |
+
else:
|
| 45 |
+
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
|
| 46 |
+
h = module(h, emb, context)#,timestep=timesteps)
|
| 47 |
+
|
| 48 |
+
# print("output_blocks",h.shape)
|
| 49 |
+
|
| 50 |
+
h = h.type(x.dtype)
|
| 51 |
+
h=self.out(h)
|
| 52 |
+
# print("self.ot",h.shape)
|
| 53 |
+
return h
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class ControlNet(nn.Module):
|
| 57 |
+
def __init__(
|
| 58 |
+
self,
|
| 59 |
+
image_size,
|
| 60 |
+
in_channels,
|
| 61 |
+
model_channels,
|
| 62 |
+
hint_channels,
|
| 63 |
+
num_res_blocks,
|
| 64 |
+
attention_resolutions,
|
| 65 |
+
dropout=0,
|
| 66 |
+
channel_mult=(1, 2, 4, 8),
|
| 67 |
+
conv_resample=True,
|
| 68 |
+
dims=2,
|
| 69 |
+
use_checkpoint=False,
|
| 70 |
+
use_fp16=False,
|
| 71 |
+
num_heads=-1,
|
| 72 |
+
num_head_channels=-1,
|
| 73 |
+
num_heads_upsample=-1,
|
| 74 |
+
use_scale_shift_norm=False,
|
| 75 |
+
resblock_updown=False,
|
| 76 |
+
use_new_attention_order=False,
|
| 77 |
+
use_spatial_transformer=False, # custom transformer support
|
| 78 |
+
transformer_depth=1, # custom transformer support
|
| 79 |
+
context_dim=None, # custom transformer support
|
| 80 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 81 |
+
legacy=True,
|
| 82 |
+
disable_self_attentions=None,
|
| 83 |
+
num_attention_blocks=None,
|
| 84 |
+
disable_middle_self_attn=False,
|
| 85 |
+
use_linear_in_transformer=False,
|
| 86 |
+
):
|
| 87 |
+
super().__init__()
|
| 88 |
+
if use_spatial_transformer:
|
| 89 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
| 90 |
+
|
| 91 |
+
if context_dim is not None:
|
| 92 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
| 93 |
+
from omegaconf.listconfig import ListConfig
|
| 94 |
+
if type(context_dim) == ListConfig:
|
| 95 |
+
context_dim = list(context_dim)
|
| 96 |
+
|
| 97 |
+
if num_heads_upsample == -1:
|
| 98 |
+
num_heads_upsample = num_heads
|
| 99 |
+
|
| 100 |
+
if num_heads == -1:
|
| 101 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
| 102 |
+
|
| 103 |
+
if num_head_channels == -1:
|
| 104 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
| 105 |
+
|
| 106 |
+
self.dims = dims
|
| 107 |
+
self.image_size = image_size
|
| 108 |
+
self.in_channels = in_channels
|
| 109 |
+
self.model_channels = model_channels
|
| 110 |
+
if isinstance(num_res_blocks, int):
|
| 111 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 112 |
+
else:
|
| 113 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 114 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
| 115 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
| 116 |
+
self.num_res_blocks = num_res_blocks
|
| 117 |
+
if disable_self_attentions is not None:
|
| 118 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 119 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 120 |
+
if num_attention_blocks is not None:
|
| 121 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 122 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
| 123 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
| 124 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
| 125 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
| 126 |
+
f"attention will still not be set.")
|
| 127 |
+
|
| 128 |
+
self.attention_resolutions = attention_resolutions
|
| 129 |
+
self.dropout = dropout
|
| 130 |
+
self.channel_mult = channel_mult
|
| 131 |
+
self.conv_resample = conv_resample
|
| 132 |
+
self.use_checkpoint = use_checkpoint
|
| 133 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
| 134 |
+
self.num_heads = num_heads
|
| 135 |
+
self.num_head_channels = num_head_channels
|
| 136 |
+
self.num_heads_upsample = num_heads_upsample
|
| 137 |
+
self.predict_codebook_ids = n_embed is not None
|
| 138 |
+
|
| 139 |
+
time_embed_dim = model_channels * 4
|
| 140 |
+
self.time_embed = nn.Sequential(
|
| 141 |
+
linear(model_channels, time_embed_dim),
|
| 142 |
+
nn.SiLU(),
|
| 143 |
+
linear(time_embed_dim, time_embed_dim),
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
self.input_blocks = nn.ModuleList(
|
| 147 |
+
[
|
| 148 |
+
TimestepEmbedSequential(
|
| 149 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 150 |
+
)
|
| 151 |
+
]
|
| 152 |
+
)
|
| 153 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
|
| 154 |
+
|
| 155 |
+
self.input_hint_block = TimestepEmbedSequential(
|
| 156 |
+
conv_nd(dims, hint_channels, 16, 3, padding=1),
|
| 157 |
+
nn.SiLU(),
|
| 158 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
| 159 |
+
nn.SiLU(),
|
| 160 |
+
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
| 161 |
+
nn.SiLU(),
|
| 162 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
| 163 |
+
nn.SiLU(),
|
| 164 |
+
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
| 165 |
+
nn.SiLU(),
|
| 166 |
+
conv_nd(dims, 96, 96, 3, padding=1),
|
| 167 |
+
nn.SiLU(),
|
| 168 |
+
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
| 169 |
+
nn.SiLU(),
|
| 170 |
+
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
self._feature_size = model_channels
|
| 174 |
+
input_block_chans = [model_channels]
|
| 175 |
+
ch = model_channels
|
| 176 |
+
ds = 1
|
| 177 |
+
for level, mult in enumerate(channel_mult):
|
| 178 |
+
for nr in range(self.num_res_blocks[level]):
|
| 179 |
+
layers = [
|
| 180 |
+
ResBlock(
|
| 181 |
+
ch,
|
| 182 |
+
time_embed_dim,
|
| 183 |
+
dropout,
|
| 184 |
+
out_channels=mult * model_channels,
|
| 185 |
+
dims=dims,
|
| 186 |
+
use_checkpoint=use_checkpoint,
|
| 187 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 188 |
+
)
|
| 189 |
+
]
|
| 190 |
+
ch = mult * model_channels
|
| 191 |
+
if ds in attention_resolutions:
|
| 192 |
+
if num_head_channels == -1:
|
| 193 |
+
dim_head = ch // num_heads
|
| 194 |
+
else:
|
| 195 |
+
num_heads = ch // num_head_channels
|
| 196 |
+
dim_head = num_head_channels
|
| 197 |
+
if legacy:
|
| 198 |
+
# num_heads = 1
|
| 199 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 200 |
+
if exists(disable_self_attentions):
|
| 201 |
+
disabled_sa = disable_self_attentions[level]
|
| 202 |
+
else:
|
| 203 |
+
disabled_sa = False
|
| 204 |
+
|
| 205 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
| 206 |
+
layers.append(
|
| 207 |
+
AttentionBlock(
|
| 208 |
+
ch,
|
| 209 |
+
use_checkpoint=use_checkpoint,
|
| 210 |
+
num_heads=num_heads,
|
| 211 |
+
num_head_channels=dim_head,
|
| 212 |
+
use_new_attention_order=use_new_attention_order,
|
| 213 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
| 214 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
| 215 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
| 216 |
+
use_checkpoint=use_checkpoint
|
| 217 |
+
)
|
| 218 |
+
)
|
| 219 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 220 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
| 221 |
+
self._feature_size += ch
|
| 222 |
+
input_block_chans.append(ch)
|
| 223 |
+
if level != len(channel_mult) - 1:
|
| 224 |
+
out_ch = ch
|
| 225 |
+
self.input_blocks.append(
|
| 226 |
+
TimestepEmbedSequential(
|
| 227 |
+
ResBlock(
|
| 228 |
+
ch,
|
| 229 |
+
time_embed_dim,
|
| 230 |
+
dropout,
|
| 231 |
+
out_channels=out_ch,
|
| 232 |
+
dims=dims,
|
| 233 |
+
use_checkpoint=use_checkpoint,
|
| 234 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 235 |
+
down=True,
|
| 236 |
+
)
|
| 237 |
+
if resblock_updown
|
| 238 |
+
else Downsample(
|
| 239 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 240 |
+
)
|
| 241 |
+
)
|
| 242 |
+
)
|
| 243 |
+
ch = out_ch
|
| 244 |
+
input_block_chans.append(ch)
|
| 245 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
| 246 |
+
ds *= 2
|
| 247 |
+
self._feature_size += ch
|
| 248 |
+
|
| 249 |
+
if num_head_channels == -1:
|
| 250 |
+
dim_head = ch // num_heads
|
| 251 |
+
else:
|
| 252 |
+
num_heads = ch // num_head_channels
|
| 253 |
+
dim_head = num_head_channels
|
| 254 |
+
if legacy:
|
| 255 |
+
# num_heads = 1
|
| 256 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 257 |
+
self.middle_block = TimestepEmbedSequential(
|
| 258 |
+
ResBlock(
|
| 259 |
+
ch,
|
| 260 |
+
time_embed_dim,
|
| 261 |
+
dropout,
|
| 262 |
+
dims=dims,
|
| 263 |
+
use_checkpoint=use_checkpoint,
|
| 264 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 265 |
+
),
|
| 266 |
+
AttentionBlock(
|
| 267 |
+
ch,
|
| 268 |
+
use_checkpoint=use_checkpoint,
|
| 269 |
+
num_heads=num_heads,
|
| 270 |
+
num_head_channels=dim_head,
|
| 271 |
+
use_new_attention_order=use_new_attention_order,
|
| 272 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
| 273 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
| 274 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
| 275 |
+
use_checkpoint=use_checkpoint
|
| 276 |
+
),
|
| 277 |
+
ResBlock(
|
| 278 |
+
ch,
|
| 279 |
+
time_embed_dim,
|
| 280 |
+
dropout,
|
| 281 |
+
dims=dims,
|
| 282 |
+
use_checkpoint=use_checkpoint,
|
| 283 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 284 |
+
),
|
| 285 |
+
)
|
| 286 |
+
self.middle_block_out = self.make_zero_conv(ch)
|
| 287 |
+
self._feature_size += ch
|
| 288 |
+
|
| 289 |
+
def make_zero_conv(self, channels):
|
| 290 |
+
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
|
| 291 |
+
|
| 292 |
+
def forward(self, x, hint, timesteps, context, **kwargs):
|
| 293 |
+
# print("cldm",hint.shape,x.shape)
|
| 294 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
| 295 |
+
emb = self.time_embed(t_emb)
|
| 296 |
+
|
| 297 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
| 298 |
+
|
| 299 |
+
outs = []
|
| 300 |
+
|
| 301 |
+
h = x.type(self.dtype)
|
| 302 |
+
# h_in=h
|
| 303 |
+
|
| 304 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
| 305 |
+
if guided_hint is not None:
|
| 306 |
+
h = module(h, emb, context)#,dcn_guide=h_in)
|
| 307 |
+
h += guided_hint
|
| 308 |
+
guided_hint = None
|
| 309 |
+
else:
|
| 310 |
+
# print("dcn_guide")
|
| 311 |
+
h = module(h, emb, context)#,dcn_guide=h_in)
|
| 312 |
+
outs.append(zero_conv(h, emb, context))
|
| 313 |
+
|
| 314 |
+
h = self.middle_block(h, emb, context)#,dcn_guide=h_in)
|
| 315 |
+
outs.append(self.middle_block_out(h, emb, context))
|
| 316 |
+
|
| 317 |
+
return outs
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
class ControlLDM(LatentDiffusion):
|
| 321 |
+
|
| 322 |
+
def __init__(self, control_stage_config, control_key, only_mid_control, *args, **kwargs): #freeze
|
| 323 |
+
# print(control_stage_config)
|
| 324 |
+
super().__init__(*args, **kwargs)
|
| 325 |
+
self.control_model = instantiate_from_config(control_stage_config)
|
| 326 |
+
self.control_key = control_key
|
| 327 |
+
self.only_mid_control = only_mid_control
|
| 328 |
+
self.control_scales = [1.0] * 13
|
| 329 |
+
# if freeze==True:
|
| 330 |
+
# self.freeze()
|
| 331 |
+
|
| 332 |
+
# def freeze(self):
|
| 333 |
+
# #self.train = disabled_train
|
| 334 |
+
# for param in self.parameters():
|
| 335 |
+
# param.requires_grad = False
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
@torch.no_grad()
|
| 340 |
+
def get_input(self, batch, k, bs=None, *args, **kwargs):
|
| 341 |
+
x,mask,masked_image_latents, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
|
| 342 |
+
control = batch[self.control_key]
|
| 343 |
+
if bs is not None:
|
| 344 |
+
control = control[:bs]
|
| 345 |
+
control = control.to(self.device)
|
| 346 |
+
control = einops.rearrange(control, 'b h w c -> b c h w')
|
| 347 |
+
control = control.to(memory_format=torch.contiguous_format).float()
|
| 348 |
+
return x,mask,masked_image_latents, dict(c_crossattn=[c], c_concat=[control])
|
| 349 |
+
|
| 350 |
+
def apply_model(self, x_noisy,mask,masked_image_latents, t, cond, *args, **kwargs):
|
| 351 |
+
assert isinstance(cond, dict)
|
| 352 |
+
diffusion_model = self.model.diffusion_model
|
| 353 |
+
|
| 354 |
+
cond_txt = torch.cat(cond['c_crossattn'], 1)
|
| 355 |
+
# print(cond_txt.shape,cond['c_crossattn'].shape)
|
| 356 |
+
if cond['c_concat'] is None:
|
| 357 |
+
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control)
|
| 358 |
+
else:
|
| 359 |
+
control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt)
|
| 360 |
+
control = [c * scale for c, scale in zip(control, self.control_scales)]
|
| 361 |
+
mask=torch.cat([mask] * x_noisy.shape[0])
|
| 362 |
+
masked_image_latents=torch.cat([masked_image_latents] * x_noisy.shape[0])
|
| 363 |
+
x_noisy = torch.cat([x_noisy,mask,masked_image_latents], dim=1)
|
| 364 |
+
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)
|
| 365 |
+
|
| 366 |
+
return eps
|
| 367 |
+
|
| 368 |
+
def apply_model_addhint(self, x_noisy,mask,masked_image_latents, t, cond, *args, **kwargs):
|
| 369 |
+
assert isinstance(cond, dict)
|
| 370 |
+
diffusion_model = self.model.diffusion_model
|
| 371 |
+
|
| 372 |
+
cond_txt = torch.cat(cond['c_crossattn'], 1)
|
| 373 |
+
# print(cond_txt.shape,cond['c_crossattn'].shape)
|
| 374 |
+
if cond['c_concat'] is None:
|
| 375 |
+
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control)
|
| 376 |
+
else:
|
| 377 |
+
control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt)
|
| 378 |
+
control = [c * scale for c, scale in zip(control, self.control_scales)]
|
| 379 |
+
# print(x_noisy.shape,mask.shape,masked_image_latents.shape)
|
| 380 |
+
x_noisy = torch.cat([x_noisy,mask,masked_image_latents], dim=1)
|
| 381 |
+
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)
|
| 382 |
+
|
| 383 |
+
return eps
|
| 384 |
+
|
| 385 |
+
@torch.no_grad()
|
| 386 |
+
def get_unconditional_conditioning(self, N):
|
| 387 |
+
return self.get_learned_conditioning([""] * N)
|
| 388 |
+
# def get_unconditional_conditioning(self, N,hint_image):
|
| 389 |
+
# hint_image[:,:,:,:]=0
|
| 390 |
+
# return self.get_learned_conditioning(([""] * N,hint_image))
|
| 391 |
+
|
| 392 |
+
# @torch.no_grad()
|
| 393 |
+
# def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
|
| 394 |
+
# quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
| 395 |
+
# plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
|
| 396 |
+
# use_ema_scope=True,
|
| 397 |
+
# **kwargs):
|
| 398 |
+
# use_ddim = ddim_steps is not None
|
| 399 |
+
|
| 400 |
+
# log = dict()
|
| 401 |
+
# z,mask,masked_image_latents, c = self.get_input(batch, self.first_stage_key, bs=N)
|
| 402 |
+
# c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N]
|
| 403 |
+
# N = min(z.shape[0], N)
|
| 404 |
+
# n_row = min(z.shape[0], n_row)
|
| 405 |
+
# log["reconstruction"] = self.decode_first_stage(z)
|
| 406 |
+
# log["control"] = c_cat * 2.0 - 1.0
|
| 407 |
+
# log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16)
|
| 408 |
+
# txt,hint_image=batch[self.cond_stage_key]
|
| 409 |
+
# if plot_diffusion_rows:
|
| 410 |
+
# # get diffusion row
|
| 411 |
+
# diffusion_row = list()
|
| 412 |
+
# z_start = z[:n_row]
|
| 413 |
+
# for t in range(self.num_timesteps):
|
| 414 |
+
# if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 415 |
+
# t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 416 |
+
# t = t.to(self.device).long()
|
| 417 |
+
# noise = torch.randn_like(z_start)
|
| 418 |
+
# z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
| 419 |
+
# diffusion_row.append(self.decode_first_stage(z_noisy))
|
| 420 |
+
|
| 421 |
+
# diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
| 422 |
+
# diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
| 423 |
+
# diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
| 424 |
+
# diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
| 425 |
+
# log["diffusion_row"] = diffusion_grid
|
| 426 |
+
|
| 427 |
+
# if sample:
|
| 428 |
+
# # get denoise row
|
| 429 |
+
# samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
| 430 |
+
# batch_size=N, ddim=use_ddim,
|
| 431 |
+
# ddim_steps=ddim_steps, eta=ddim_eta)
|
| 432 |
+
# x_samples = self.decode_first_stage(samples)
|
| 433 |
+
# log["samples"] = x_samples
|
| 434 |
+
# if plot_denoise_rows:
|
| 435 |
+
# denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
| 436 |
+
# log["denoise_row"] = denoise_grid
|
| 437 |
+
|
| 438 |
+
# if unconditional_guidance_scale > 1.0:
|
| 439 |
+
# uc_cross = self.get_unconditional_conditioning(N,hint_image)
|
| 440 |
+
# uc_cat = c_cat # torch.zeros_like(c_cat)
|
| 441 |
+
# uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
| 442 |
+
# samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
| 443 |
+
# batch_size=N, ddim=use_ddim,
|
| 444 |
+
# ddim_steps=ddim_steps, eta=ddim_eta,
|
| 445 |
+
# unconditional_guidance_scale=unconditional_guidance_scale,
|
| 446 |
+
# unconditional_conditioning=uc_full,
|
| 447 |
+
# )
|
| 448 |
+
# x_samples_cfg = self.decode_first_stage(samples_cfg)
|
| 449 |
+
# log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
| 450 |
+
|
| 451 |
+
# return log
|
| 452 |
+
|
| 453 |
+
@torch.no_grad()
|
| 454 |
+
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
|
| 455 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
| 456 |
+
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
|
| 457 |
+
use_ema_scope=True,
|
| 458 |
+
**kwargs):
|
| 459 |
+
use_ddim = ddim_steps is not None
|
| 460 |
+
|
| 461 |
+
log = dict()
|
| 462 |
+
z,mask,masked_image_latents, c = self.get_input(batch, self.first_stage_key, bs=N, )
|
| 463 |
+
c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N]
|
| 464 |
+
N = min(z.shape[0], N)
|
| 465 |
+
n_row = min(z.shape[0], n_row)
|
| 466 |
+
log["reconstruction"] = self.decode_first_stage(z)
|
| 467 |
+
log["control"] = c_cat * 2.0 - 1.0
|
| 468 |
+
log["conditioning"] = log_txt_as_img((512, 512),batch[self.masked_image], batch[self.cond_stage_key], size=16)
|
| 469 |
+
|
| 470 |
+
if plot_diffusion_rows:
|
| 471 |
+
# get diffusion row
|
| 472 |
+
diffusion_row = list()
|
| 473 |
+
z_start = z[:n_row]
|
| 474 |
+
for t in range(self.num_timesteps):
|
| 475 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 476 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 477 |
+
t = t.to(self.device).long()
|
| 478 |
+
noise = torch.randn_like(z_start)
|
| 479 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
| 480 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
| 481 |
+
|
| 482 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
| 483 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
| 484 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
| 485 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
| 486 |
+
log["diffusion_row"] = diffusion_grid
|
| 487 |
+
|
| 488 |
+
if sample:
|
| 489 |
+
# get denoise row
|
| 490 |
+
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},mask=mask,masked_image_latents=masked_image_latents,
|
| 491 |
+
batch_size=N, ddim=use_ddim,
|
| 492 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
| 493 |
+
x_samples = self.decode_first_stage(samples)
|
| 494 |
+
log["samples"] = x_samples
|
| 495 |
+
if plot_denoise_rows:
|
| 496 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
| 497 |
+
log["denoise_row"] = denoise_grid
|
| 498 |
+
|
| 499 |
+
if unconditional_guidance_scale > 1.0:
|
| 500 |
+
uc_cross = self.get_unconditional_conditioning(N)
|
| 501 |
+
uc_cat = c_cat # torch.zeros_like(c_cat)
|
| 502 |
+
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
| 503 |
+
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},mask=mask,masked_image_latents=masked_image_latents,
|
| 504 |
+
batch_size=N, ddim=use_ddim,
|
| 505 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
| 506 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 507 |
+
unconditional_conditioning=uc_full,
|
| 508 |
+
)
|
| 509 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
| 510 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
| 511 |
+
|
| 512 |
+
return log
|
| 513 |
+
@torch.no_grad()
|
| 514 |
+
def sample_log(self, cond,mask,masked_image_latents, batch_size, ddim, ddim_steps, **kwargs):
|
| 515 |
+
ddim_sampler = DDIMSampler(self)
|
| 516 |
+
b, c, h, w = cond["c_concat"][0].shape
|
| 517 |
+
shape = (self.channels, h // 8, w // 8)
|
| 518 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond,mask=mask,masked_image_latents=masked_image_latents, verbose=False, **kwargs)
|
| 519 |
+
return samples, intermediates
|
| 520 |
+
|
| 521 |
+
def configure_optimizers(self):
|
| 522 |
+
lr = self.learning_rate
|
| 523 |
+
params = list(self.control_model.parameters())
|
| 524 |
+
# head_params=list()
|
| 525 |
+
# for name,param in self.control_model.named_parameters(): #self.model.named_parameters():
|
| 526 |
+
# if "dcn" in name:
|
| 527 |
+
# # print(name)
|
| 528 |
+
# head_params.append(param)
|
| 529 |
+
# # params = list(self.control_model.parameters())+head_params
|
| 530 |
+
# params = head_params
|
| 531 |
+
if not self.sd_locked:
|
| 532 |
+
params += list(self.model.diffusion_model.output_blocks.parameters())
|
| 533 |
+
params += list(self.model.diffusion_model.out.parameters())
|
| 534 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
| 535 |
+
return opt
|
| 536 |
+
|
| 537 |
+
def low_vram_shift(self, is_diffusing):
|
| 538 |
+
if is_diffusing:
|
| 539 |
+
self.model = self.model.cuda()
|
| 540 |
+
self.control_model = self.control_model.cuda()
|
| 541 |
+
self.first_stage_model = self.first_stage_model.cpu()
|
| 542 |
+
self.cond_stage_model = self.cond_stage_model.cpu()
|
| 543 |
+
else:
|
| 544 |
+
self.model = self.model.cpu()
|
| 545 |
+
self.control_model = self.control_model.cpu()
|
| 546 |
+
self.first_stage_model = self.first_stage_model.cuda()
|
| 547 |
+
self.cond_stage_model = self.cond_stage_model.cuda()
|
Control-Color/cldm/ddim_haced_sag_step.py
ADDED
|
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
import cv2
|
| 11 |
+
|
| 12 |
+
import einops
|
| 13 |
+
# Gaussian blur
|
| 14 |
+
def gaussian_blur_2d(img, kernel_size, sigma):
|
| 15 |
+
ksize_half = (kernel_size - 1) * 0.5
|
| 16 |
+
|
| 17 |
+
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
|
| 18 |
+
|
| 19 |
+
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
|
| 20 |
+
|
| 21 |
+
x_kernel = pdf / pdf.sum()
|
| 22 |
+
x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)
|
| 23 |
+
|
| 24 |
+
kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
|
| 25 |
+
kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])
|
| 26 |
+
|
| 27 |
+
padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
|
| 28 |
+
|
| 29 |
+
img = F.pad(img, padding, mode="reflect")
|
| 30 |
+
img = F.conv2d(img, kernel2d, groups=img.shape[-3])
|
| 31 |
+
|
| 32 |
+
return img
|
| 33 |
+
|
| 34 |
+
# processes and stores attention probabilities
|
| 35 |
+
class CrossAttnStoreProcessor:
|
| 36 |
+
def __init__(self):
|
| 37 |
+
self.attention_probs = None
|
| 38 |
+
|
| 39 |
+
def __call__(
|
| 40 |
+
self,
|
| 41 |
+
attn,
|
| 42 |
+
hidden_states,
|
| 43 |
+
encoder_hidden_states=None,
|
| 44 |
+
attention_mask=None,
|
| 45 |
+
):
|
| 46 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
| 47 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 48 |
+
query = attn.to_q(hidden_states)
|
| 49 |
+
|
| 50 |
+
if encoder_hidden_states is None:
|
| 51 |
+
encoder_hidden_states = hidden_states
|
| 52 |
+
elif attn.norm_cross:
|
| 53 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 54 |
+
|
| 55 |
+
key = attn.to_k(encoder_hidden_states)
|
| 56 |
+
value = attn.to_v(encoder_hidden_states)
|
| 57 |
+
|
| 58 |
+
query = attn.head_to_batch_dim(query)
|
| 59 |
+
key = attn.head_to_batch_dim(key)
|
| 60 |
+
value = attn.head_to_batch_dim(value)
|
| 61 |
+
|
| 62 |
+
self.attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 63 |
+
hidden_states = torch.bmm(self.attention_probs, value)
|
| 64 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 65 |
+
|
| 66 |
+
# linear proj
|
| 67 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 68 |
+
# dropout
|
| 69 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 70 |
+
|
| 71 |
+
return hidden_states
|
| 72 |
+
|
| 73 |
+
class DDIMSampler(object):
|
| 74 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
| 75 |
+
super().__init__()
|
| 76 |
+
self.model = model
|
| 77 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
| 78 |
+
self.schedule = schedule
|
| 79 |
+
|
| 80 |
+
def register_buffer(self, name, attr):
|
| 81 |
+
if type(attr) == torch.Tensor:
|
| 82 |
+
if attr.device != torch.device("cuda"):
|
| 83 |
+
attr = attr.to(torch.device("cuda"))
|
| 84 |
+
setattr(self, name, attr)
|
| 85 |
+
|
| 86 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
| 87 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
| 88 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
| 89 |
+
alphas_cumprod = self.model.alphas_cumprod
|
| 90 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
| 91 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
| 92 |
+
|
| 93 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
| 94 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 95 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
| 96 |
+
|
| 97 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 98 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
| 99 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
| 100 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
| 101 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
| 102 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
| 103 |
+
|
| 104 |
+
# ddim sampling parameters
|
| 105 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
| 106 |
+
ddim_timesteps=self.ddim_timesteps,
|
| 107 |
+
eta=ddim_eta,verbose=verbose)
|
| 108 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
| 109 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
| 110 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
| 111 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
| 112 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
| 113 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
| 114 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
| 115 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
| 116 |
+
|
| 117 |
+
@torch.no_grad()
|
| 118 |
+
def sample(self,
|
| 119 |
+
model,
|
| 120 |
+
S,
|
| 121 |
+
batch_size,
|
| 122 |
+
shape,
|
| 123 |
+
conditioning=None,
|
| 124 |
+
callback=None,
|
| 125 |
+
normals_sequence=None,
|
| 126 |
+
img_callback=None,
|
| 127 |
+
quantize_x0=False,
|
| 128 |
+
eta=0.,
|
| 129 |
+
mask=None,
|
| 130 |
+
masked_image_latents=None,
|
| 131 |
+
x0=None,
|
| 132 |
+
temperature=1.,
|
| 133 |
+
noise_dropout=0.,
|
| 134 |
+
score_corrector=None,
|
| 135 |
+
corrector_kwargs=None,
|
| 136 |
+
verbose=True,
|
| 137 |
+
x_T=None,
|
| 138 |
+
log_every_t=100,
|
| 139 |
+
unconditional_guidance_scale=1.,
|
| 140 |
+
sag_scale=0.75,
|
| 141 |
+
SAG_influence_step=600,
|
| 142 |
+
noise = None,
|
| 143 |
+
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 144 |
+
dynamic_threshold=None,
|
| 145 |
+
ucg_schedule=None,
|
| 146 |
+
**kwargs
|
| 147 |
+
):
|
| 148 |
+
if conditioning is not None:
|
| 149 |
+
if isinstance(conditioning, dict):
|
| 150 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
| 151 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
| 152 |
+
cbs = ctmp.shape[0]
|
| 153 |
+
if cbs != batch_size:
|
| 154 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 155 |
+
|
| 156 |
+
elif isinstance(conditioning, list):
|
| 157 |
+
for ctmp in conditioning:
|
| 158 |
+
if ctmp.shape[0] != batch_size:
|
| 159 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 160 |
+
|
| 161 |
+
else:
|
| 162 |
+
if conditioning.shape[0] != batch_size:
|
| 163 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 164 |
+
|
| 165 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
| 166 |
+
# sampling
|
| 167 |
+
# print(shape)
|
| 168 |
+
C, H, W = shape
|
| 169 |
+
size = (batch_size, C, H, W)
|
| 170 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
| 171 |
+
|
| 172 |
+
samples, intermediates = self.ddim_sampling(model,conditioning, size,
|
| 173 |
+
callback=callback,
|
| 174 |
+
img_callback=img_callback,
|
| 175 |
+
quantize_denoised=quantize_x0,
|
| 176 |
+
mask=mask,masked_image_latents=masked_image_latents, x0=x0,
|
| 177 |
+
ddim_use_original_steps=False,
|
| 178 |
+
noise_dropout=noise_dropout,
|
| 179 |
+
temperature=temperature,
|
| 180 |
+
score_corrector=score_corrector,
|
| 181 |
+
corrector_kwargs=corrector_kwargs,
|
| 182 |
+
x_T=x_T,
|
| 183 |
+
log_every_t=log_every_t,
|
| 184 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 185 |
+
sag_scale = sag_scale,
|
| 186 |
+
SAG_influence_step = SAG_influence_step,
|
| 187 |
+
noise = noise,
|
| 188 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 189 |
+
dynamic_threshold=dynamic_threshold,
|
| 190 |
+
ucg_schedule=ucg_schedule
|
| 191 |
+
)
|
| 192 |
+
return samples, intermediates
|
| 193 |
+
|
| 194 |
+
def add_noise(self,
|
| 195 |
+
original_samples: torch.FloatTensor,
|
| 196 |
+
noise: torch.FloatTensor,
|
| 197 |
+
timesteps: torch.IntTensor,
|
| 198 |
+
) -> torch.FloatTensor:
|
| 199 |
+
betas = torch.linspace(0.00085, 0.0120, 1000, dtype=torch.float32)
|
| 200 |
+
alphas = 1.0 - betas
|
| 201 |
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
| 202 |
+
alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
| 203 |
+
timesteps = timesteps.to(original_samples.device)
|
| 204 |
+
|
| 205 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
| 206 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
| 207 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
| 208 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
| 209 |
+
|
| 210 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
| 211 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
| 212 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
| 213 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
| 214 |
+
|
| 215 |
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
| 216 |
+
|
| 217 |
+
return noisy_samples
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def sag_masking(self, original_latents,model_output,x, attn_map, map_size, t, eps):
|
| 221 |
+
# Same masking process as in SAG paper: https://arxiv.org/pdf/2210.00939.pdf
|
| 222 |
+
bh, hw1, hw2 = attn_map.shape
|
| 223 |
+
b, latent_channel, latent_h, latent_w = original_latents.shape
|
| 224 |
+
h = 4 #self.unet.config.attention_head_dim
|
| 225 |
+
if isinstance(h, list):
|
| 226 |
+
h = h[-1]
|
| 227 |
+
attn_map = attn_map.reshape(b, h, hw1, hw2)
|
| 228 |
+
attn_mask = attn_map.mean(1, keepdim=False).sum(1, keepdim=False) > 1.0
|
| 229 |
+
attn_mask = (
|
| 230 |
+
attn_mask.reshape(b, map_size[0], map_size[1])
|
| 231 |
+
.unsqueeze(1)
|
| 232 |
+
.repeat(1, latent_channel, 1, 1)
|
| 233 |
+
.type(attn_map.dtype)
|
| 234 |
+
)
|
| 235 |
+
attn_mask = F.interpolate(attn_mask, (latent_h, latent_w))
|
| 236 |
+
degraded_latents = gaussian_blur_2d(original_latents, kernel_size=9, sigma=1.0)
|
| 237 |
+
degraded_latents = degraded_latents * attn_mask + original_latents * (1 - attn_mask) #x#original_latents
|
| 238 |
+
|
| 239 |
+
return degraded_latents
|
| 240 |
+
|
| 241 |
+
def pred_epsilon(self, sample, model_output, timestep):
|
| 242 |
+
alpha_prod_t = timestep
|
| 243 |
+
|
| 244 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 245 |
+
# print(self.model.parameterization)#eps
|
| 246 |
+
if self.model.parameterization == "eps":
|
| 247 |
+
pred_eps = model_output
|
| 248 |
+
elif self.model.parameterization == "sample":
|
| 249 |
+
pred_eps = (sample - (alpha_prod_t**0.5) * model_output) / (beta_prod_t**0.5)
|
| 250 |
+
elif self.model.parameterization == "v":
|
| 251 |
+
pred_eps = (beta_prod_t**0.5) * sample + (alpha_prod_t**0.5) * model_output
|
| 252 |
+
else:
|
| 253 |
+
raise ValueError(
|
| 254 |
+
f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `eps`, `sample`,"
|
| 255 |
+
" or `v`"
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
return pred_eps
|
| 259 |
+
|
| 260 |
+
@torch.no_grad()
|
| 261 |
+
def ddim_sampling(self,model, cond, shape,
|
| 262 |
+
x_T=None, ddim_use_original_steps=False,
|
| 263 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
| 264 |
+
mask=None,masked_image_latents=None, x0=None, img_callback=None, log_every_t=100,
|
| 265 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 266 |
+
unconditional_guidance_scale=1.,sag_scale = 0.75, SAG_influence_step=600, sag_enable = True, noise = None, unconditional_conditioning=None, dynamic_threshold=None,
|
| 267 |
+
ucg_schedule=None):
|
| 268 |
+
device = self.model.betas.device
|
| 269 |
+
b = shape[0]
|
| 270 |
+
if x_T is None:
|
| 271 |
+
img = torch.randn(shape, device=device)
|
| 272 |
+
else:
|
| 273 |
+
img = x_T
|
| 274 |
+
# timesteps =100
|
| 275 |
+
if timesteps is None:
|
| 276 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
| 277 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
| 278 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
| 279 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
| 280 |
+
# timesteps=timesteps[:-3]
|
| 281 |
+
# print("timesteps",timesteps)
|
| 282 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
| 283 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
| 284 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
| 285 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 286 |
+
|
| 287 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
| 288 |
+
|
| 289 |
+
for i, step in enumerate(iterator):
|
| 290 |
+
# print(step)
|
| 291 |
+
if step > SAG_influence_step:
|
| 292 |
+
sag_enable_t=True
|
| 293 |
+
else:
|
| 294 |
+
sag_enable_t=False
|
| 295 |
+
index = total_steps - i - 1
|
| 296 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
| 297 |
+
|
| 298 |
+
if ucg_schedule is not None:
|
| 299 |
+
assert len(ucg_schedule) == len(time_range)
|
| 300 |
+
unconditional_guidance_scale = ucg_schedule[i]
|
| 301 |
+
|
| 302 |
+
outs = self.p_sample_ddim(img,mask,masked_image_latents, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
| 303 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
| 304 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
| 305 |
+
corrector_kwargs=corrector_kwargs,
|
| 306 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 307 |
+
sag_scale = sag_scale,
|
| 308 |
+
sag_enable=sag_enable_t,
|
| 309 |
+
noise =noise,
|
| 310 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 311 |
+
dynamic_threshold=dynamic_threshold)
|
| 312 |
+
img, pred_x0 = outs
|
| 313 |
+
if callback: callback(i)
|
| 314 |
+
if img_callback: img_callback(pred_x0, i)
|
| 315 |
+
|
| 316 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
| 317 |
+
intermediates['x_inter'].append(img)
|
| 318 |
+
intermediates['pred_x0'].append(pred_x0)
|
| 319 |
+
x_samples = model.decode_first_stage(img)
|
| 320 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 321 |
+
|
| 322 |
+
#single image replace L channel
|
| 323 |
+
results_ori = [x_samples[i] for i in range(1)]
|
| 324 |
+
# results_ori=[i for i in results_ori]
|
| 325 |
+
|
| 326 |
+
# cv2.imwrite("result_ori"+str(step)+".png",cv2.cvtColor(results_ori[0],cv2.COLOR_RGB2BGR))
|
| 327 |
+
return img, intermediates
|
| 328 |
+
|
| 329 |
+
@torch.no_grad()
|
| 330 |
+
def p_sample_ddim(self, x,mask,masked_image_latents, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 331 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 332 |
+
unconditional_guidance_scale=1.,sag_scale = 0.75, sag_enable=True, noise=None, unconditional_conditioning=None,
|
| 333 |
+
dynamic_threshold=None):
|
| 334 |
+
b, *_, device = *x.shape, x.device
|
| 335 |
+
|
| 336 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 337 |
+
model_output = self.model.apply_model(x,mask,masked_image_latents, t, c)
|
| 338 |
+
else:
|
| 339 |
+
model_t = self.model.apply_model(x,mask,masked_image_latents, t, c)
|
| 340 |
+
model_uncond = self.model.apply_model(x,mask,masked_image_latents, t, unconditional_conditioning)
|
| 341 |
+
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
| 342 |
+
|
| 343 |
+
if self.model.parameterization == "v":
|
| 344 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
| 345 |
+
else:
|
| 346 |
+
e_t = model_output
|
| 347 |
+
|
| 348 |
+
if score_corrector is not None:
|
| 349 |
+
assert self.model.parameterization == "eps", 'not implemented'
|
| 350 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
| 351 |
+
|
| 352 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
| 353 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
| 354 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
| 355 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
| 356 |
+
# select parameters corresponding to the currently considered timestep
|
| 357 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
| 358 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
| 359 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
| 360 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
| 361 |
+
|
| 362 |
+
# current prediction for x_0
|
| 363 |
+
if self.model.parameterization != "v":
|
| 364 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 365 |
+
else:
|
| 366 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
| 367 |
+
|
| 368 |
+
if quantize_denoised:
|
| 369 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 370 |
+
|
| 371 |
+
if dynamic_threshold is not None:
|
| 372 |
+
raise NotImplementedError()
|
| 373 |
+
if sag_enable == True:
|
| 374 |
+
uncond_attn, cond_attn = self.model.model.diffusion_model.middle_block[1].transformer_blocks[0].attn1.attention_probs.chunk(2)
|
| 375 |
+
# self-attention-based degrading of latents
|
| 376 |
+
map_size = self.model.model.diffusion_model.middle_block[1].map_size
|
| 377 |
+
degraded_latents = self.sag_masking(
|
| 378 |
+
pred_x0,model_output,x,uncond_attn, map_size, t, eps = noise, #self.pred_epsilon(x, model_uncond, self.model.alphas_cumprod[t]),#noise
|
| 379 |
+
)
|
| 380 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 381 |
+
degraded_model_output = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, c)
|
| 382 |
+
else:
|
| 383 |
+
degraded_model_t = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, c)
|
| 384 |
+
degraded_model_uncond = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, unconditional_conditioning)
|
| 385 |
+
degraded_model_output = degraded_model_uncond + unconditional_guidance_scale * (degraded_model_t - degraded_model_uncond)
|
| 386 |
+
# print("sag_scale",sag_scale)
|
| 387 |
+
model_output += sag_scale * (model_output - degraded_model_output)
|
| 388 |
+
# model_output = (1-sag_scale) * model_output + sag_scale * degraded_model_output
|
| 389 |
+
|
| 390 |
+
# current prediction for x_0
|
| 391 |
+
if self.model.parameterization != "v":
|
| 392 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 393 |
+
else:
|
| 394 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
| 395 |
+
|
| 396 |
+
if quantize_denoised:
|
| 397 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 398 |
+
|
| 399 |
+
if dynamic_threshold is not None:
|
| 400 |
+
raise NotImplementedError()
|
| 401 |
+
|
| 402 |
+
# direction pointing to x_t
|
| 403 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
| 404 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
| 405 |
+
if noise_dropout > 0.:
|
| 406 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 407 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
| 408 |
+
return x_prev, pred_x0
|
| 409 |
+
|
| 410 |
+
@torch.no_grad()
|
| 411 |
+
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
| 412 |
+
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
| 413 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
| 414 |
+
num_reference_steps = timesteps.shape[0]
|
| 415 |
+
|
| 416 |
+
assert t_enc <= num_reference_steps
|
| 417 |
+
num_steps = t_enc
|
| 418 |
+
|
| 419 |
+
if use_original_steps:
|
| 420 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
| 421 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
| 422 |
+
else:
|
| 423 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
| 424 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
| 425 |
+
|
| 426 |
+
x_next = x0
|
| 427 |
+
intermediates = []
|
| 428 |
+
inter_steps = []
|
| 429 |
+
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
| 430 |
+
t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long)
|
| 431 |
+
if unconditional_guidance_scale == 1.:
|
| 432 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
| 433 |
+
else:
|
| 434 |
+
assert unconditional_conditioning is not None
|
| 435 |
+
e_t_uncond, noise_pred = torch.chunk(
|
| 436 |
+
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
| 437 |
+
torch.cat((unconditional_conditioning, c))), 2)
|
| 438 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
| 439 |
+
|
| 440 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
| 441 |
+
weighted_noise_pred = alphas_next[i].sqrt() * (
|
| 442 |
+
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
| 443 |
+
x_next = xt_weighted + weighted_noise_pred
|
| 444 |
+
if return_intermediates and i % (
|
| 445 |
+
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
| 446 |
+
intermediates.append(x_next)
|
| 447 |
+
inter_steps.append(i)
|
| 448 |
+
elif return_intermediates and i >= num_steps - 2:
|
| 449 |
+
intermediates.append(x_next)
|
| 450 |
+
inter_steps.append(i)
|
| 451 |
+
if callback: callback(i)
|
| 452 |
+
|
| 453 |
+
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
| 454 |
+
if return_intermediates:
|
| 455 |
+
out.update({'intermediates': intermediates})
|
| 456 |
+
return x_next, out
|
| 457 |
+
|
| 458 |
+
@torch.no_grad()
|
| 459 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
| 460 |
+
# fast, but does not allow for exact reconstruction
|
| 461 |
+
# t serves as an index to gather the correct alphas
|
| 462 |
+
if use_original_steps:
|
| 463 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
| 464 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
| 465 |
+
else:
|
| 466 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
| 467 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
| 468 |
+
|
| 469 |
+
if noise is None:
|
| 470 |
+
noise = torch.randn_like(x0)
|
| 471 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
| 472 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
| 473 |
+
|
| 474 |
+
@torch.no_grad()
|
| 475 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
| 476 |
+
use_original_steps=False, callback=None):
|
| 477 |
+
|
| 478 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
| 479 |
+
timesteps = timesteps[:t_start]
|
| 480 |
+
|
| 481 |
+
time_range = np.flip(timesteps)
|
| 482 |
+
total_steps = timesteps.shape[0]
|
| 483 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 484 |
+
|
| 485 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
| 486 |
+
x_dec = x_latent
|
| 487 |
+
for i, step in enumerate(iterator):
|
| 488 |
+
index = total_steps - i - 1
|
| 489 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
| 490 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
| 491 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 492 |
+
unconditional_conditioning=unconditional_conditioning)
|
| 493 |
+
if callback: callback(i)
|
| 494 |
+
return x_dec
|
Control-Color/cldm/ddim_hacked_sag.py
ADDED
|
@@ -0,0 +1,543 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
import cv2
|
| 11 |
+
# Gaussian blur
|
| 12 |
+
def gaussian_blur_2d(img, kernel_size, sigma):
|
| 13 |
+
ksize_half = (kernel_size - 1) * 0.5
|
| 14 |
+
|
| 15 |
+
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
|
| 16 |
+
|
| 17 |
+
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
|
| 18 |
+
|
| 19 |
+
x_kernel = pdf / pdf.sum()
|
| 20 |
+
x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)
|
| 21 |
+
|
| 22 |
+
kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
|
| 23 |
+
kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])
|
| 24 |
+
|
| 25 |
+
padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
|
| 26 |
+
|
| 27 |
+
img = F.pad(img, padding, mode="reflect")
|
| 28 |
+
img = F.conv2d(img, kernel2d, groups=img.shape[-3])
|
| 29 |
+
|
| 30 |
+
return img
|
| 31 |
+
|
| 32 |
+
# processes and stores attention probabilities
|
| 33 |
+
class CrossAttnStoreProcessor:
|
| 34 |
+
def __init__(self):
|
| 35 |
+
self.attention_probs = None
|
| 36 |
+
|
| 37 |
+
def __call__(
|
| 38 |
+
self,
|
| 39 |
+
attn,
|
| 40 |
+
hidden_states,
|
| 41 |
+
encoder_hidden_states=None,
|
| 42 |
+
attention_mask=None,
|
| 43 |
+
):
|
| 44 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
| 45 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 46 |
+
query = attn.to_q(hidden_states)
|
| 47 |
+
|
| 48 |
+
if encoder_hidden_states is None:
|
| 49 |
+
encoder_hidden_states = hidden_states
|
| 50 |
+
elif attn.norm_cross:
|
| 51 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 52 |
+
|
| 53 |
+
key = attn.to_k(encoder_hidden_states)
|
| 54 |
+
value = attn.to_v(encoder_hidden_states)
|
| 55 |
+
|
| 56 |
+
query = attn.head_to_batch_dim(query)
|
| 57 |
+
key = attn.head_to_batch_dim(key)
|
| 58 |
+
value = attn.head_to_batch_dim(value)
|
| 59 |
+
|
| 60 |
+
self.attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 61 |
+
hidden_states = torch.bmm(self.attention_probs, value)
|
| 62 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 63 |
+
|
| 64 |
+
# linear proj
|
| 65 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 66 |
+
# dropout
|
| 67 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 68 |
+
|
| 69 |
+
return hidden_states
|
| 70 |
+
|
| 71 |
+
class DDIMSampler(object):
|
| 72 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
| 73 |
+
super().__init__()
|
| 74 |
+
self.model = model
|
| 75 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
| 76 |
+
self.schedule = schedule
|
| 77 |
+
|
| 78 |
+
def register_buffer(self, name, attr):
|
| 79 |
+
if type(attr) == torch.Tensor:
|
| 80 |
+
if attr.device != torch.device("cuda"):
|
| 81 |
+
attr = attr.to(torch.device("cuda"))
|
| 82 |
+
setattr(self, name, attr)
|
| 83 |
+
|
| 84 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
| 85 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
| 86 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
| 87 |
+
alphas_cumprod = self.model.alphas_cumprod
|
| 88 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
| 89 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
| 90 |
+
|
| 91 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
| 92 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 93 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
| 94 |
+
|
| 95 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 96 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
| 97 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
| 98 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
| 99 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
| 100 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
| 101 |
+
|
| 102 |
+
# ddim sampling parameters
|
| 103 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
| 104 |
+
ddim_timesteps=self.ddim_timesteps,
|
| 105 |
+
eta=ddim_eta,verbose=verbose)
|
| 106 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
| 107 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
| 108 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
| 109 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
| 110 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
| 111 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
| 112 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
| 113 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
| 114 |
+
|
| 115 |
+
@torch.no_grad()
|
| 116 |
+
def sample(self,
|
| 117 |
+
S,
|
| 118 |
+
batch_size,
|
| 119 |
+
shape,
|
| 120 |
+
conditioning=None,
|
| 121 |
+
callback=None,
|
| 122 |
+
normals_sequence=None,
|
| 123 |
+
img_callback=None,
|
| 124 |
+
quantize_x0=False,
|
| 125 |
+
eta=0.,
|
| 126 |
+
mask=None,
|
| 127 |
+
masked_image_latents=None,
|
| 128 |
+
x0=None,
|
| 129 |
+
temperature=1.,
|
| 130 |
+
noise_dropout=0.,
|
| 131 |
+
score_corrector=None,
|
| 132 |
+
corrector_kwargs=None,
|
| 133 |
+
verbose=True,
|
| 134 |
+
x_T=None,
|
| 135 |
+
log_every_t=100,
|
| 136 |
+
unconditional_guidance_scale=1.,
|
| 137 |
+
sag_scale=0.75,
|
| 138 |
+
SAG_influence_step=600,
|
| 139 |
+
noise = None,
|
| 140 |
+
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 141 |
+
dynamic_threshold=None,
|
| 142 |
+
ucg_schedule=None,
|
| 143 |
+
**kwargs
|
| 144 |
+
):
|
| 145 |
+
if conditioning is not None:
|
| 146 |
+
if isinstance(conditioning, dict):
|
| 147 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
| 148 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
| 149 |
+
cbs = ctmp.shape[0]
|
| 150 |
+
if cbs != batch_size:
|
| 151 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 152 |
+
|
| 153 |
+
elif isinstance(conditioning, list):
|
| 154 |
+
for ctmp in conditioning:
|
| 155 |
+
if ctmp.shape[0] != batch_size:
|
| 156 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 157 |
+
|
| 158 |
+
else:
|
| 159 |
+
if conditioning.shape[0] != batch_size:
|
| 160 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 161 |
+
|
| 162 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
| 163 |
+
# sampling
|
| 164 |
+
C, H, W = shape
|
| 165 |
+
size = (batch_size, C, H, W)
|
| 166 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
| 167 |
+
|
| 168 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
| 169 |
+
callback=callback,
|
| 170 |
+
img_callback=img_callback,
|
| 171 |
+
quantize_denoised=quantize_x0,
|
| 172 |
+
mask=mask,masked_image_latents=masked_image_latents, x0=x0,
|
| 173 |
+
ddim_use_original_steps=False,
|
| 174 |
+
noise_dropout=noise_dropout,
|
| 175 |
+
temperature=temperature,
|
| 176 |
+
score_corrector=score_corrector,
|
| 177 |
+
corrector_kwargs=corrector_kwargs,
|
| 178 |
+
x_T=x_T,
|
| 179 |
+
log_every_t=log_every_t,
|
| 180 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 181 |
+
sag_scale = sag_scale,
|
| 182 |
+
SAG_influence_step = SAG_influence_step,
|
| 183 |
+
noise = noise,
|
| 184 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 185 |
+
dynamic_threshold=dynamic_threshold,
|
| 186 |
+
ucg_schedule=ucg_schedule
|
| 187 |
+
)
|
| 188 |
+
return samples, intermediates
|
| 189 |
+
|
| 190 |
+
def add_noise(self,
|
| 191 |
+
original_samples: torch.FloatTensor,
|
| 192 |
+
noise: torch.FloatTensor,
|
| 193 |
+
timesteps: torch.IntTensor,
|
| 194 |
+
) -> torch.FloatTensor:
|
| 195 |
+
betas = torch.linspace(0.00085, 0.0120, 1000, dtype=torch.float32)
|
| 196 |
+
alphas = 1.0 - betas
|
| 197 |
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
| 198 |
+
alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
| 199 |
+
timesteps = timesteps.to(original_samples.device)
|
| 200 |
+
|
| 201 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
| 202 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
| 203 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
| 204 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
| 205 |
+
|
| 206 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
| 207 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
| 208 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
| 209 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
| 210 |
+
|
| 211 |
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
| 212 |
+
|
| 213 |
+
return noisy_samples
|
| 214 |
+
# def add_noise(
|
| 215 |
+
# self,
|
| 216 |
+
# original_samples: torch.FloatTensor,
|
| 217 |
+
# noise: torch.FloatTensor,
|
| 218 |
+
# timesteps: torch.FloatTensor,
|
| 219 |
+
# sigma_t,
|
| 220 |
+
# ) -> torch.FloatTensor:
|
| 221 |
+
|
| 222 |
+
# # Make sure sigmas and timesteps have the same device and dtype as original_samples
|
| 223 |
+
|
| 224 |
+
# sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
| 225 |
+
# if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
| 226 |
+
# # mps does not support float64
|
| 227 |
+
# schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
| 228 |
+
# timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
| 229 |
+
# else:
|
| 230 |
+
# schedule_timesteps = self.timesteps.to(original_samples.device)
|
| 231 |
+
# timesteps = timesteps.to(original_samples.device)
|
| 232 |
+
|
| 233 |
+
# step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
| 234 |
+
|
| 235 |
+
# sigma = sigmas[step_indices].flatten()
|
| 236 |
+
# while len(sigma.shape) < len(original_samples.shape):
|
| 237 |
+
# sigma = sigma.unsqueeze(-1)
|
| 238 |
+
# # print(sigma_t)
|
| 239 |
+
# noisy_samples = original_samples + noise * sigma_t
|
| 240 |
+
# return noisy_samples
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def sag_masking(self, original_latents,model_output,x, attn_map, map_size, t, eps):
|
| 244 |
+
# Same masking process as in SAG paper: https://arxiv.org/pdf/2210.00939.pdf
|
| 245 |
+
bh, hw1, hw2 = attn_map.shape
|
| 246 |
+
b, latent_channel, latent_h, latent_w = original_latents.shape
|
| 247 |
+
h = 4 #self.unet.config.attention_head_dim
|
| 248 |
+
if isinstance(h, list):
|
| 249 |
+
h = h[-1]
|
| 250 |
+
# print(attn_map.shape)
|
| 251 |
+
# print(original_latents.shape)
|
| 252 |
+
# print(map_size)
|
| 253 |
+
# Produce attention mask
|
| 254 |
+
attn_map = attn_map.reshape(b, h, hw1, hw2)
|
| 255 |
+
attn_mask = attn_map.mean(1, keepdim=False).sum(1, keepdim=False) > 1.0
|
| 256 |
+
# print(attn_mask.shape)
|
| 257 |
+
attn_mask = (
|
| 258 |
+
attn_mask.reshape(b, map_size[0], map_size[1])
|
| 259 |
+
.unsqueeze(1)
|
| 260 |
+
.repeat(1, latent_channel, 1, 1)
|
| 261 |
+
.type(attn_map.dtype)
|
| 262 |
+
)
|
| 263 |
+
attn_mask = F.interpolate(attn_mask, (latent_h, latent_w))
|
| 264 |
+
# print(attn_mask.shape)
|
| 265 |
+
# cv2.imwrite("attn_mask.png",attn_mask)
|
| 266 |
+
# Blur according to the self-attention mask
|
| 267 |
+
degraded_latents = gaussian_blur_2d(original_latents, kernel_size=9, sigma=1.0)
|
| 268 |
+
# degraded_latents = self.add_noise(degraded_latents, noise=eps, timesteps=t)#,sigma_t=sigma_t)
|
| 269 |
+
degraded_latents = degraded_latents * attn_mask + original_latents * (1 - attn_mask) #x#original_latents
|
| 270 |
+
# degraded_latents = self.model.get_x_t_from_start_and_t(degraded_latents,t,model_output)
|
| 271 |
+
# print(original_latents.shape)
|
| 272 |
+
# print(eps.shape)
|
| 273 |
+
# Noise it again to match the noise level
|
| 274 |
+
# print("t",t)
|
| 275 |
+
# degraded_latents = self.add_noise(degraded_latents, noise=eps, timesteps=t)#,sigma_t=sigma_t)
|
| 276 |
+
|
| 277 |
+
return degraded_latents
|
| 278 |
+
|
| 279 |
+
def pred_epsilon(self, sample, model_output, timestep):
|
| 280 |
+
alpha_prod_t = timestep
|
| 281 |
+
|
| 282 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 283 |
+
# print(self.model.parameterization)#eps
|
| 284 |
+
if self.model.parameterization == "eps":
|
| 285 |
+
pred_eps = model_output
|
| 286 |
+
elif self.model.parameterization == "sample":
|
| 287 |
+
pred_eps = (sample - (alpha_prod_t**0.5) * model_output) / (beta_prod_t**0.5)
|
| 288 |
+
elif self.model.parameterization == "v":
|
| 289 |
+
pred_eps = (beta_prod_t**0.5) * sample + (alpha_prod_t**0.5) * model_output
|
| 290 |
+
else:
|
| 291 |
+
raise ValueError(
|
| 292 |
+
f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `eps`, `sample`,"
|
| 293 |
+
" or `v`"
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
return pred_eps
|
| 297 |
+
|
| 298 |
+
@torch.no_grad()
|
| 299 |
+
def ddim_sampling(self, cond, shape,
|
| 300 |
+
x_T=None, ddim_use_original_steps=False,
|
| 301 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
| 302 |
+
mask=None,masked_image_latents=None, x0=None, img_callback=None, log_every_t=100,
|
| 303 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 304 |
+
unconditional_guidance_scale=1.,sag_scale = 0.75, SAG_influence_step=600, sag_enable = True, noise = None, unconditional_conditioning=None, dynamic_threshold=None,
|
| 305 |
+
ucg_schedule=None):
|
| 306 |
+
device = self.model.betas.device
|
| 307 |
+
b = shape[0]
|
| 308 |
+
if x_T is None:
|
| 309 |
+
img = torch.randn(shape, device=device)
|
| 310 |
+
else:
|
| 311 |
+
img = x_T
|
| 312 |
+
# timesteps =100
|
| 313 |
+
if timesteps is None:
|
| 314 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
| 315 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
| 316 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
| 317 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
| 318 |
+
# timesteps=timesteps[:-3]
|
| 319 |
+
# print("timesteps",timesteps)
|
| 320 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
| 321 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
| 322 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
| 323 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 324 |
+
|
| 325 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
| 326 |
+
|
| 327 |
+
for i, step in enumerate(iterator):
|
| 328 |
+
print(step)
|
| 329 |
+
if step > SAG_influence_step:
|
| 330 |
+
sag_enable_t=True
|
| 331 |
+
else:
|
| 332 |
+
sag_enable_t=False
|
| 333 |
+
index = total_steps - i - 1
|
| 334 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
| 335 |
+
|
| 336 |
+
# if mask is not None:
|
| 337 |
+
# assert x0 is not None
|
| 338 |
+
# img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
| 339 |
+
# img = img_orig * mask + (1. - mask) * img
|
| 340 |
+
|
| 341 |
+
if ucg_schedule is not None:
|
| 342 |
+
assert len(ucg_schedule) == len(time_range)
|
| 343 |
+
unconditional_guidance_scale = ucg_schedule[i]
|
| 344 |
+
|
| 345 |
+
outs = self.p_sample_ddim(img,mask,masked_image_latents, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
| 346 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
| 347 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
| 348 |
+
corrector_kwargs=corrector_kwargs,
|
| 349 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 350 |
+
sag_scale = sag_scale,
|
| 351 |
+
sag_enable=sag_enable_t,
|
| 352 |
+
noise =noise,
|
| 353 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 354 |
+
dynamic_threshold=dynamic_threshold)
|
| 355 |
+
img, pred_x0 = outs
|
| 356 |
+
if callback: callback(i)
|
| 357 |
+
if img_callback: img_callback(pred_x0, i)
|
| 358 |
+
|
| 359 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
| 360 |
+
intermediates['x_inter'].append(img)
|
| 361 |
+
intermediates['pred_x0'].append(pred_x0)
|
| 362 |
+
|
| 363 |
+
return img, intermediates
|
| 364 |
+
|
| 365 |
+
@torch.no_grad()
|
| 366 |
+
def p_sample_ddim(self, x,mask,masked_image_latents, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 367 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 368 |
+
unconditional_guidance_scale=1.,sag_scale = 0.75, sag_enable=True, noise=None, unconditional_conditioning=None,
|
| 369 |
+
dynamic_threshold=None):
|
| 370 |
+
b, *_, device = *x.shape, x.device
|
| 371 |
+
|
| 372 |
+
# map_size = None
|
| 373 |
+
# def get_map_size(module, input, output):
|
| 374 |
+
# nonlocal map_size
|
| 375 |
+
# map_size = output.shape[-2:]
|
| 376 |
+
|
| 377 |
+
# store_processor = CrossAttnStoreProcessor()
|
| 378 |
+
# for name, param in self.model.model.diffusion_model.named_parameters():
|
| 379 |
+
# print(name)
|
| 380 |
+
# self.model.control_model.middle_block[1].transformer_blocks[0].attn1.processor = store_processor
|
| 381 |
+
# print(self.model.model.diffusion_model.middle_block[1].transformer_blocks[0].attn1)
|
| 382 |
+
# self.model.model.diffusion_model.middle_block[1].transformer_blocks[0].attn1 = store_processor
|
| 383 |
+
|
| 384 |
+
# with self.model.model.diffusion_model.middle_block[1].register_forward_hook(get_map_size):
|
| 385 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 386 |
+
model_output = self.model.apply_model(x,mask,masked_image_latents, t, c)
|
| 387 |
+
else:
|
| 388 |
+
model_t = self.model.apply_model(x,mask,masked_image_latents, t, c)
|
| 389 |
+
model_uncond = self.model.apply_model(x,mask,masked_image_latents, t, unconditional_conditioning)
|
| 390 |
+
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
| 391 |
+
|
| 392 |
+
if self.model.parameterization == "v":
|
| 393 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
| 394 |
+
else:
|
| 395 |
+
e_t = model_output
|
| 396 |
+
|
| 397 |
+
if score_corrector is not None:
|
| 398 |
+
assert self.model.parameterization == "eps", 'not implemented'
|
| 399 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
| 400 |
+
|
| 401 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
| 402 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
| 403 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
| 404 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
| 405 |
+
# select parameters corresponding to the currently considered timestep
|
| 406 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
| 407 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
| 408 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
| 409 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
| 410 |
+
|
| 411 |
+
# current prediction for x_0
|
| 412 |
+
if self.model.parameterization != "v":
|
| 413 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 414 |
+
else:
|
| 415 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
| 416 |
+
|
| 417 |
+
if quantize_denoised:
|
| 418 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 419 |
+
|
| 420 |
+
if dynamic_threshold is not None:
|
| 421 |
+
raise NotImplementedError()
|
| 422 |
+
if sag_enable == True:
|
| 423 |
+
uncond_attn, cond_attn = self.model.model.diffusion_model.middle_block[1].transformer_blocks[0].attn1.attention_probs.chunk(2)
|
| 424 |
+
# self-attention-based degrading of latents
|
| 425 |
+
map_size = self.model.model.diffusion_model.middle_block[1].map_size
|
| 426 |
+
degraded_latents = self.sag_masking(
|
| 427 |
+
pred_x0,model_output,x,uncond_attn, map_size, t, eps = noise, #self.pred_epsilon(x, model_uncond, self.model.alphas_cumprod[t]),#noise
|
| 428 |
+
)
|
| 429 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 430 |
+
degraded_model_output = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, c)
|
| 431 |
+
else:
|
| 432 |
+
degraded_model_t = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, c)
|
| 433 |
+
degraded_model_uncond = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, unconditional_conditioning)
|
| 434 |
+
degraded_model_output = degraded_model_uncond + unconditional_guidance_scale * (degraded_model_t - degraded_model_uncond)
|
| 435 |
+
# print("sag_scale",sag_scale)
|
| 436 |
+
model_output += sag_scale * (model_output - degraded_model_output)
|
| 437 |
+
# model_output = (1-sag_scale) * model_output + sag_scale * degraded_model_output
|
| 438 |
+
|
| 439 |
+
# current prediction for x_0
|
| 440 |
+
if self.model.parameterization != "v":
|
| 441 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 442 |
+
else:
|
| 443 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
| 444 |
+
|
| 445 |
+
if quantize_denoised:
|
| 446 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 447 |
+
|
| 448 |
+
if dynamic_threshold is not None:
|
| 449 |
+
raise NotImplementedError()
|
| 450 |
+
|
| 451 |
+
# direction pointing to x_t
|
| 452 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
| 453 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
| 454 |
+
if noise_dropout > 0.:
|
| 455 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 456 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
| 457 |
+
return x_prev, pred_x0
|
| 458 |
+
|
| 459 |
+
@torch.no_grad()
|
| 460 |
+
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
| 461 |
+
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
| 462 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
| 463 |
+
num_reference_steps = timesteps.shape[0]
|
| 464 |
+
|
| 465 |
+
assert t_enc <= num_reference_steps
|
| 466 |
+
num_steps = t_enc
|
| 467 |
+
|
| 468 |
+
if use_original_steps:
|
| 469 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
| 470 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
| 471 |
+
else:
|
| 472 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
| 473 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
| 474 |
+
|
| 475 |
+
x_next = x0
|
| 476 |
+
intermediates = []
|
| 477 |
+
inter_steps = []
|
| 478 |
+
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
| 479 |
+
t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long)
|
| 480 |
+
if unconditional_guidance_scale == 1.:
|
| 481 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
| 482 |
+
else:
|
| 483 |
+
assert unconditional_conditioning is not None
|
| 484 |
+
e_t_uncond, noise_pred = torch.chunk(
|
| 485 |
+
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
| 486 |
+
torch.cat((unconditional_conditioning, c))), 2)
|
| 487 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
| 488 |
+
|
| 489 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
| 490 |
+
weighted_noise_pred = alphas_next[i].sqrt() * (
|
| 491 |
+
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
| 492 |
+
x_next = xt_weighted + weighted_noise_pred
|
| 493 |
+
if return_intermediates and i % (
|
| 494 |
+
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
| 495 |
+
intermediates.append(x_next)
|
| 496 |
+
inter_steps.append(i)
|
| 497 |
+
elif return_intermediates and i >= num_steps - 2:
|
| 498 |
+
intermediates.append(x_next)
|
| 499 |
+
inter_steps.append(i)
|
| 500 |
+
if callback: callback(i)
|
| 501 |
+
|
| 502 |
+
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
| 503 |
+
if return_intermediates:
|
| 504 |
+
out.update({'intermediates': intermediates})
|
| 505 |
+
return x_next, out
|
| 506 |
+
|
| 507 |
+
@torch.no_grad()
|
| 508 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
| 509 |
+
# fast, but does not allow for exact reconstruction
|
| 510 |
+
# t serves as an index to gather the correct alphas
|
| 511 |
+
if use_original_steps:
|
| 512 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
| 513 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
| 514 |
+
else:
|
| 515 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
| 516 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
| 517 |
+
|
| 518 |
+
if noise is None:
|
| 519 |
+
noise = torch.randn_like(x0)
|
| 520 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
| 521 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
| 522 |
+
|
| 523 |
+
@torch.no_grad()
|
| 524 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
| 525 |
+
use_original_steps=False, callback=None):
|
| 526 |
+
|
| 527 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
| 528 |
+
timesteps = timesteps[:t_start]
|
| 529 |
+
|
| 530 |
+
time_range = np.flip(timesteps)
|
| 531 |
+
total_steps = timesteps.shape[0]
|
| 532 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 533 |
+
|
| 534 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
| 535 |
+
x_dec = x_latent
|
| 536 |
+
for i, step in enumerate(iterator):
|
| 537 |
+
index = total_steps - i - 1
|
| 538 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
| 539 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
| 540 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 541 |
+
unconditional_conditioning=unconditional_conditioning)
|
| 542 |
+
if callback: callback(i)
|
| 543 |
+
return x_dec
|
Control-Color/cldm/hack.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import einops
|
| 3 |
+
|
| 4 |
+
import ldm.modules.encoders.modules
|
| 5 |
+
import ldm.modules.attention
|
| 6 |
+
|
| 7 |
+
from transformers import logging
|
| 8 |
+
from ldm.modules.attention import default
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def disable_verbosity():
|
| 12 |
+
logging.set_verbosity_error()
|
| 13 |
+
print('logging improved.')
|
| 14 |
+
return
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def enable_sliced_attention():
|
| 18 |
+
ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
|
| 19 |
+
print('Enabled sliced_attention.')
|
| 20 |
+
return
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def hack_everything(clip_skip=0):
|
| 24 |
+
disable_verbosity()
|
| 25 |
+
ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
|
| 26 |
+
ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
|
| 27 |
+
print('Enabled clip hacks.')
|
| 28 |
+
return
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# Written by Lvmin
|
| 32 |
+
def _hacked_clip_forward(self, text):
|
| 33 |
+
PAD = self.tokenizer.pad_token_id
|
| 34 |
+
EOS = self.tokenizer.eos_token_id
|
| 35 |
+
BOS = self.tokenizer.bos_token_id
|
| 36 |
+
|
| 37 |
+
def tokenize(t):
|
| 38 |
+
return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
|
| 39 |
+
|
| 40 |
+
def transformer_encode(t):
|
| 41 |
+
if self.clip_skip > 1:
|
| 42 |
+
rt = self.transformer(input_ids=t, output_hidden_states=True)
|
| 43 |
+
return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
|
| 44 |
+
else:
|
| 45 |
+
return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
|
| 46 |
+
|
| 47 |
+
def split(x):
|
| 48 |
+
return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
|
| 49 |
+
|
| 50 |
+
def pad(x, p, i):
|
| 51 |
+
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
|
| 52 |
+
|
| 53 |
+
raw_tokens_list = tokenize(text)
|
| 54 |
+
tokens_list = []
|
| 55 |
+
|
| 56 |
+
for raw_tokens in raw_tokens_list:
|
| 57 |
+
raw_tokens_123 = split(raw_tokens)
|
| 58 |
+
raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
|
| 59 |
+
raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
|
| 60 |
+
tokens_list.append(raw_tokens_123)
|
| 61 |
+
|
| 62 |
+
tokens_list = torch.IntTensor(tokens_list).to(self.device)
|
| 63 |
+
|
| 64 |
+
feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
|
| 65 |
+
y = transformer_encode(feed)
|
| 66 |
+
z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
|
| 67 |
+
|
| 68 |
+
return z
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
|
| 72 |
+
def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
|
| 73 |
+
h = self.heads
|
| 74 |
+
|
| 75 |
+
q = self.to_q(x)
|
| 76 |
+
context = default(context, x)
|
| 77 |
+
k = self.to_k(context)
|
| 78 |
+
v = self.to_v(context)
|
| 79 |
+
del context, x
|
| 80 |
+
|
| 81 |
+
q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
| 82 |
+
|
| 83 |
+
limit = k.shape[0]
|
| 84 |
+
att_step = 1
|
| 85 |
+
q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
|
| 86 |
+
k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
|
| 87 |
+
v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
|
| 88 |
+
|
| 89 |
+
q_chunks.reverse()
|
| 90 |
+
k_chunks.reverse()
|
| 91 |
+
v_chunks.reverse()
|
| 92 |
+
sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
| 93 |
+
del k, q, v
|
| 94 |
+
for i in range(0, limit, att_step):
|
| 95 |
+
q_buffer = q_chunks.pop()
|
| 96 |
+
k_buffer = k_chunks.pop()
|
| 97 |
+
v_buffer = v_chunks.pop()
|
| 98 |
+
sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
|
| 99 |
+
|
| 100 |
+
del k_buffer, q_buffer
|
| 101 |
+
# attention, what we cannot get enough of, by chunks
|
| 102 |
+
|
| 103 |
+
sim_buffer = sim_buffer.softmax(dim=-1)
|
| 104 |
+
|
| 105 |
+
sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
|
| 106 |
+
del v_buffer
|
| 107 |
+
sim[i:i + att_step, :, :] = sim_buffer
|
| 108 |
+
|
| 109 |
+
del sim_buffer
|
| 110 |
+
sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
|
| 111 |
+
return self.to_out(sim)
|
Control-Color/cldm/model.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
from omegaconf import OmegaConf
|
| 5 |
+
from ldm.util import instantiate_from_config
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_state_dict(d):
|
| 9 |
+
return d.get('state_dict', d)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def load_state_dict(ckpt_path, location='cpu'):
|
| 13 |
+
_, extension = os.path.splitext(ckpt_path)
|
| 14 |
+
if extension.lower() == ".safetensors":
|
| 15 |
+
import safetensors.torch
|
| 16 |
+
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
|
| 17 |
+
else:
|
| 18 |
+
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
|
| 19 |
+
state_dict = get_state_dict(state_dict)
|
| 20 |
+
print(f'Loaded state_dict from [{ckpt_path}]')
|
| 21 |
+
return state_dict
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def create_model(config_path):
|
| 25 |
+
config = OmegaConf.load(config_path)
|
| 26 |
+
model = instantiate_from_config(config.model).cpu()
|
| 27 |
+
print(f'Loaded model config from [{config_path}]')
|
| 28 |
+
return model
|
Control-Color/config.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
save_memory = False
|
Control-Color/ldm/__pycache__/util.cpython-38.pyc
ADDED
|
Binary file (6.63 kB). View file
|
|
|
Control-Color/ldm/models/__pycache__/autoencoder.cpython-38.pyc
ADDED
|
Binary file (7.63 kB). View file
|
|
|
Control-Color/ldm/models/__pycache__/autoencoder_train.cpython-38.pyc
ADDED
|
Binary file (8.58 kB). View file
|
|
|
Control-Color/ldm/models/autoencoder.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import pytorch_lightning as pl
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from contextlib import contextmanager
|
| 5 |
+
|
| 6 |
+
# from ldm.modules.diffusionmodules.model_window import Encoder, Decoder
|
| 7 |
+
from ldm.modules.diffusionmodules.model_brefore_dcn import Encoder, Decoder
|
| 8 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
| 9 |
+
|
| 10 |
+
from ldm.util import instantiate_from_config
|
| 11 |
+
from ldm.modules.ema import LitEma
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class AutoencoderKL(pl.LightningModule):
|
| 15 |
+
def __init__(self,
|
| 16 |
+
ddconfig,
|
| 17 |
+
lossconfig,
|
| 18 |
+
embed_dim,
|
| 19 |
+
ckpt_path=None,
|
| 20 |
+
ignore_keys=[],
|
| 21 |
+
image_key="image",
|
| 22 |
+
colorize_nlabels=None,
|
| 23 |
+
monitor=None,
|
| 24 |
+
ema_decay=None,
|
| 25 |
+
learn_logvar=False
|
| 26 |
+
):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.learn_logvar = learn_logvar
|
| 29 |
+
self.image_key = image_key
|
| 30 |
+
self.encoder = Encoder(**ddconfig)
|
| 31 |
+
self.decoder = Decoder(**ddconfig)
|
| 32 |
+
self.loss = instantiate_from_config(lossconfig)
|
| 33 |
+
assert ddconfig["double_z"]
|
| 34 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
| 35 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 36 |
+
self.embed_dim = embed_dim
|
| 37 |
+
if colorize_nlabels is not None:
|
| 38 |
+
assert type(colorize_nlabels)==int
|
| 39 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
| 40 |
+
if monitor is not None:
|
| 41 |
+
self.monitor = monitor
|
| 42 |
+
|
| 43 |
+
self.use_ema = ema_decay is not None
|
| 44 |
+
if self.use_ema:
|
| 45 |
+
self.ema_decay = ema_decay
|
| 46 |
+
assert 0. < ema_decay < 1.
|
| 47 |
+
self.model_ema = LitEma(self, decay=ema_decay)
|
| 48 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 49 |
+
|
| 50 |
+
if ckpt_path is not None:
|
| 51 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 52 |
+
|
| 53 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
| 54 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
| 55 |
+
keys = list(sd.keys())
|
| 56 |
+
for k in keys:
|
| 57 |
+
for ik in ignore_keys:
|
| 58 |
+
if k.startswith(ik):
|
| 59 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 60 |
+
del sd[k]
|
| 61 |
+
self.load_state_dict(sd, strict=False)
|
| 62 |
+
print(f"Restored from {path}")
|
| 63 |
+
|
| 64 |
+
@contextmanager
|
| 65 |
+
def ema_scope(self, context=None):
|
| 66 |
+
if self.use_ema:
|
| 67 |
+
self.model_ema.store(self.parameters())
|
| 68 |
+
self.model_ema.copy_to(self)
|
| 69 |
+
if context is not None:
|
| 70 |
+
print(f"{context}: Switched to EMA weights")
|
| 71 |
+
try:
|
| 72 |
+
yield None
|
| 73 |
+
finally:
|
| 74 |
+
if self.use_ema:
|
| 75 |
+
self.model_ema.restore(self.parameters())
|
| 76 |
+
if context is not None:
|
| 77 |
+
print(f"{context}: Restored training weights")
|
| 78 |
+
|
| 79 |
+
def on_train_batch_end(self, *args, **kwargs):
|
| 80 |
+
if self.use_ema:
|
| 81 |
+
self.model_ema(self)
|
| 82 |
+
|
| 83 |
+
def encode(self, x):
|
| 84 |
+
h = self.encoder(x)
|
| 85 |
+
moments = self.quant_conv(h)
|
| 86 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 87 |
+
return posterior
|
| 88 |
+
|
| 89 |
+
def decode(self, z):
|
| 90 |
+
z = self.post_quant_conv(z)
|
| 91 |
+
dec = self.decoder(z)
|
| 92 |
+
return dec
|
| 93 |
+
|
| 94 |
+
def forward(self, input, sample_posterior=True):
|
| 95 |
+
posterior = self.encode(input)
|
| 96 |
+
if sample_posterior:
|
| 97 |
+
z = posterior.sample()
|
| 98 |
+
else:
|
| 99 |
+
z = posterior.mode()
|
| 100 |
+
dec = self.decode(z)
|
| 101 |
+
return dec, posterior
|
| 102 |
+
|
| 103 |
+
def get_input(self, batch, k):
|
| 104 |
+
x = batch[k]
|
| 105 |
+
if len(x.shape) == 3:
|
| 106 |
+
x = x[..., None]
|
| 107 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 108 |
+
return x
|
| 109 |
+
|
| 110 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
| 111 |
+
inputs = self.get_input(batch, self.image_key)
|
| 112 |
+
reconstructions, posterior = self(inputs)
|
| 113 |
+
|
| 114 |
+
if optimizer_idx == 0:
|
| 115 |
+
# train encoder+decoder+logvar
|
| 116 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 117 |
+
last_layer=self.get_last_layer(), split="train")
|
| 118 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 119 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 120 |
+
return aeloss
|
| 121 |
+
|
| 122 |
+
if optimizer_idx == 1:
|
| 123 |
+
# train the discriminator
|
| 124 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 125 |
+
last_layer=self.get_last_layer(), split="train")
|
| 126 |
+
|
| 127 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 128 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 129 |
+
return discloss
|
| 130 |
+
|
| 131 |
+
def validation_step(self, batch, batch_idx):
|
| 132 |
+
log_dict = self._validation_step(batch, batch_idx)
|
| 133 |
+
with self.ema_scope():
|
| 134 |
+
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
|
| 135 |
+
return log_dict
|
| 136 |
+
|
| 137 |
+
def _validation_step(self, batch, batch_idx, postfix=""):
|
| 138 |
+
inputs = self.get_input(batch, self.image_key)
|
| 139 |
+
reconstructions, posterior = self(inputs)
|
| 140 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
| 141 |
+
last_layer=self.get_last_layer(), split="val"+postfix)
|
| 142 |
+
|
| 143 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
| 144 |
+
last_layer=self.get_last_layer(), split="val"+postfix)
|
| 145 |
+
|
| 146 |
+
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
| 147 |
+
self.log_dict(log_dict_ae)
|
| 148 |
+
self.log_dict(log_dict_disc)
|
| 149 |
+
return self.log_dict
|
| 150 |
+
|
| 151 |
+
def configure_optimizers(self):
|
| 152 |
+
lr = self.learning_rate
|
| 153 |
+
ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
|
| 154 |
+
self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
|
| 155 |
+
if self.learn_logvar:
|
| 156 |
+
print(f"{self.__class__.__name__}: Learning logvar")
|
| 157 |
+
ae_params_list.append(self.loss.logvar)
|
| 158 |
+
opt_ae = torch.optim.Adam(ae_params_list,
|
| 159 |
+
lr=lr, betas=(0.5, 0.9))
|
| 160 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
| 161 |
+
lr=lr, betas=(0.5, 0.9))
|
| 162 |
+
return [opt_ae, opt_disc], []
|
| 163 |
+
|
| 164 |
+
def get_last_layer(self):
|
| 165 |
+
return self.decoder.conv_out.weight
|
| 166 |
+
|
| 167 |
+
@torch.no_grad()
|
| 168 |
+
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
|
| 169 |
+
log = dict()
|
| 170 |
+
x = self.get_input(batch, self.image_key)
|
| 171 |
+
x = x.to(self.device)
|
| 172 |
+
if not only_inputs:
|
| 173 |
+
xrec, posterior = self(x)
|
| 174 |
+
if x.shape[1] > 3:
|
| 175 |
+
# colorize with random projection
|
| 176 |
+
assert xrec.shape[1] > 3
|
| 177 |
+
x = self.to_rgb(x)
|
| 178 |
+
xrec = self.to_rgb(xrec)
|
| 179 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
| 180 |
+
log["reconstructions"] = xrec
|
| 181 |
+
if log_ema or self.use_ema:
|
| 182 |
+
with self.ema_scope():
|
| 183 |
+
xrec_ema, posterior_ema = self(x)
|
| 184 |
+
if x.shape[1] > 3:
|
| 185 |
+
# colorize with random projection
|
| 186 |
+
assert xrec_ema.shape[1] > 3
|
| 187 |
+
xrec_ema = self.to_rgb(xrec_ema)
|
| 188 |
+
log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
|
| 189 |
+
log["reconstructions_ema"] = xrec_ema
|
| 190 |
+
log["inputs"] = x
|
| 191 |
+
return log
|
| 192 |
+
|
| 193 |
+
def to_rgb(self, x):
|
| 194 |
+
assert self.image_key == "segmentation"
|
| 195 |
+
if not hasattr(self, "colorize"):
|
| 196 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
| 197 |
+
x = F.conv2d(x, weight=self.colorize)
|
| 198 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
| 199 |
+
return x
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
class IdentityFirstStage(torch.nn.Module):
|
| 203 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
| 204 |
+
self.vq_interface = vq_interface
|
| 205 |
+
super().__init__()
|
| 206 |
+
|
| 207 |
+
def encode(self, x, *args, **kwargs):
|
| 208 |
+
return x
|
| 209 |
+
|
| 210 |
+
def decode(self, x, *args, **kwargs):
|
| 211 |
+
return x
|
| 212 |
+
|
| 213 |
+
def quantize(self, x, *args, **kwargs):
|
| 214 |
+
if self.vq_interface:
|
| 215 |
+
return x, None, [None, None, None]
|
| 216 |
+
return x
|
| 217 |
+
|
| 218 |
+
def forward(self, x, *args, **kwargs):
|
| 219 |
+
return x
|
| 220 |
+
|
Control-Color/ldm/models/autoencoder_train.py
ADDED
|
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import pytorch_lightning as pl
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from contextlib import contextmanager
|
| 5 |
+
|
| 6 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
| 7 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
| 8 |
+
|
| 9 |
+
from ldm.util import instantiate_from_config
|
| 10 |
+
from ldm.modules.ema import LitEma
|
| 11 |
+
|
| 12 |
+
import random
|
| 13 |
+
import cv2
|
| 14 |
+
|
| 15 |
+
# from cldm.model import create_model, load_state_dict
|
| 16 |
+
# model = create_model('./models/cldm_v15_inpainting.yaml')
|
| 17 |
+
# resume_path = "/data/2023text2edit/ControlNet/ckpt_inpainting_from5625+5625/epoch0_global-step3750.ckpt"
|
| 18 |
+
# model.load_state_dict(load_state_dict(resume_path, location='cpu'),strict=True)
|
| 19 |
+
# model.half()
|
| 20 |
+
# model.cuda()
|
| 21 |
+
|
| 22 |
+
class AutoencoderKL(pl.LightningModule):
|
| 23 |
+
def __init__(self,
|
| 24 |
+
ddconfig,
|
| 25 |
+
lossconfig,
|
| 26 |
+
embed_dim,
|
| 27 |
+
ckpt_path=None,
|
| 28 |
+
ignore_keys=[],
|
| 29 |
+
image_key="input",
|
| 30 |
+
output_key="jpg",
|
| 31 |
+
gray_image_key="gray",
|
| 32 |
+
colorize_nlabels=None,
|
| 33 |
+
monitor=None,
|
| 34 |
+
ema_decay=None,
|
| 35 |
+
learn_logvar=False
|
| 36 |
+
):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.learn_logvar = learn_logvar
|
| 39 |
+
self.image_key = image_key
|
| 40 |
+
self.gray_image_key = gray_image_key
|
| 41 |
+
self.output_key=output_key
|
| 42 |
+
self.encoder = Encoder(**ddconfig)
|
| 43 |
+
self.decoder = Decoder(**ddconfig)
|
| 44 |
+
self.loss = instantiate_from_config(lossconfig)
|
| 45 |
+
assert ddconfig["double_z"]
|
| 46 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
| 47 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 48 |
+
self.embed_dim = embed_dim
|
| 49 |
+
|
| 50 |
+
# model = create_model('./models/cldm_v15_inpainting.yaml')
|
| 51 |
+
# resume_path = "/data/2023text2edit/ControlNet/ckpt_inpainting_from5625+5625/epoch0_global-step3750.ckpt"
|
| 52 |
+
# model.load_state_dict(load_state_dict(resume_path, location='cpu'),strict=True)
|
| 53 |
+
# model.half()
|
| 54 |
+
# self.model=model.cuda()
|
| 55 |
+
# # self.model=model.eval()
|
| 56 |
+
# for param in self.model.parameters():
|
| 57 |
+
# param.requires_grad = False
|
| 58 |
+
|
| 59 |
+
if colorize_nlabels is not None:
|
| 60 |
+
assert type(colorize_nlabels)==int
|
| 61 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
| 62 |
+
if monitor is not None:
|
| 63 |
+
self.monitor = monitor
|
| 64 |
+
|
| 65 |
+
self.use_ema = ema_decay is not None
|
| 66 |
+
if self.use_ema:
|
| 67 |
+
self.ema_decay = ema_decay
|
| 68 |
+
assert 0. < ema_decay < 1.
|
| 69 |
+
self.model_ema = LitEma(self, decay=ema_decay)
|
| 70 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 71 |
+
|
| 72 |
+
if ckpt_path is not None:
|
| 73 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 74 |
+
|
| 75 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
| 76 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
| 77 |
+
keys = list(sd.keys())
|
| 78 |
+
for k in keys:
|
| 79 |
+
for ik in ignore_keys:
|
| 80 |
+
if k.startswith(ik):
|
| 81 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 82 |
+
del sd[k]
|
| 83 |
+
self.load_state_dict(sd, strict=False)
|
| 84 |
+
print(f"Restored from {path}")
|
| 85 |
+
|
| 86 |
+
@contextmanager
|
| 87 |
+
def ema_scope(self, context=None):
|
| 88 |
+
if self.use_ema:
|
| 89 |
+
self.model_ema.store(self.parameters())
|
| 90 |
+
self.model_ema.copy_to(self)
|
| 91 |
+
if context is not None:
|
| 92 |
+
print(f"{context}: Switched to EMA weights")
|
| 93 |
+
try:
|
| 94 |
+
yield None
|
| 95 |
+
finally:
|
| 96 |
+
if self.use_ema:
|
| 97 |
+
self.model_ema.restore(self.parameters())
|
| 98 |
+
if context is not None:
|
| 99 |
+
print(f"{context}: Restored training weights")
|
| 100 |
+
|
| 101 |
+
def on_train_batch_end(self, *args, **kwargs):
|
| 102 |
+
if self.use_ema:
|
| 103 |
+
self.model_ema(self)
|
| 104 |
+
|
| 105 |
+
def encode(self, x):
|
| 106 |
+
h = self.encoder(x)
|
| 107 |
+
moments = self.quant_conv(h)
|
| 108 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 109 |
+
return posterior
|
| 110 |
+
|
| 111 |
+
def decode(self, z,gray_content_z):
|
| 112 |
+
z = self.post_quant_conv(z)
|
| 113 |
+
gray_content_z = self.post_quant_conv(gray_content_z)
|
| 114 |
+
dec = self.decoder(z,gray_content_z)
|
| 115 |
+
return dec
|
| 116 |
+
|
| 117 |
+
def forward(self, input,gray_image, sample_posterior=True):
|
| 118 |
+
posterior = self.encode(input)
|
| 119 |
+
if sample_posterior:
|
| 120 |
+
z = posterior.sample()
|
| 121 |
+
else:
|
| 122 |
+
z = posterior.mode()
|
| 123 |
+
gray_posterior = self.encode(gray_image)
|
| 124 |
+
if sample_posterior:
|
| 125 |
+
gray_content_z = gray_posterior.sample()
|
| 126 |
+
else:
|
| 127 |
+
gray_content_z = gray_posterior.mode()
|
| 128 |
+
dec = self.decode(z,gray_content_z)
|
| 129 |
+
return dec, posterior
|
| 130 |
+
|
| 131 |
+
def get_input(self, batch,k0, k1,k2):
|
| 132 |
+
# print(batch)
|
| 133 |
+
# print(k)
|
| 134 |
+
# x = batch[k]
|
| 135 |
+
# if len(x.shape) == 3:
|
| 136 |
+
# x = x[..., None]
|
| 137 |
+
# x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 138 |
+
gray_image = batch[k2]
|
| 139 |
+
if len(gray_image.shape) == 3:
|
| 140 |
+
gray_image = gray_image[..., None]
|
| 141 |
+
gray_image = gray_image.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# t=random.randint(1,100)#120
|
| 145 |
+
# print(t)
|
| 146 |
+
# model=model.cuda()
|
| 147 |
+
x = batch[k0]#self.model.get_noised_images(((gt.squeeze(0)+1.0)/2.0).permute(2,0,1).to(memory_format=torch.contiguous_format).type(torch.HalfTensor).cuda(),t=torch.Tensor([t]).long().cuda())
|
| 148 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 149 |
+
# x = x.float()
|
| 150 |
+
# torch.cuda.empty_cache()
|
| 151 |
+
# print(input.shape)
|
| 152 |
+
# cv2.imwrite("tttt.png",cv2.cvtColor(x.squeeze(0).permute(1,2,0).cpu().numpy()*255.0, cv2.COLOR_RGB2BGR))
|
| 153 |
+
# x = x*2.0-1.0
|
| 154 |
+
# x = x.squeeze(0).permute(1,2,0).cpu().numpy()*2.0-1.0
|
| 155 |
+
# if len(x.shape) == 3:
|
| 156 |
+
# x = x[..., None]
|
| 157 |
+
# x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
|
| 158 |
+
gt = batch[k1]
|
| 159 |
+
if len(gt.shape) == 3:
|
| 160 |
+
gt = gt[..., None]
|
| 161 |
+
gt = gt.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 162 |
+
|
| 163 |
+
return gt,x,gray_image
|
| 164 |
+
|
| 165 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
| 166 |
+
with torch.no_grad():
|
| 167 |
+
outputs,inputs,gray_images = self.get_input(batch, self.image_key,self.output_key,self.gray_image_key)
|
| 168 |
+
reconstructions, posterior = self(inputs,gray_images)
|
| 169 |
+
|
| 170 |
+
if optimizer_idx == 0:
|
| 171 |
+
# train encoder+decoder+logvar
|
| 172 |
+
aeloss, log_dict_ae = self.loss(outputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 173 |
+
last_layer=self.get_last_layer(), split="train")
|
| 174 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 175 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 176 |
+
# print(aeloss)
|
| 177 |
+
return aeloss
|
| 178 |
+
|
| 179 |
+
if optimizer_idx == 1:
|
| 180 |
+
# train the discriminator
|
| 181 |
+
discloss, log_dict_disc = self.loss(outputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 182 |
+
last_layer=self.get_last_layer(), split="train")
|
| 183 |
+
|
| 184 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 185 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 186 |
+
# print(discloss)
|
| 187 |
+
return discloss
|
| 188 |
+
|
| 189 |
+
def validation_step(self, batch, batch_idx):
|
| 190 |
+
log_dict = self._validation_step(batch, batch_idx)
|
| 191 |
+
with self.ema_scope():
|
| 192 |
+
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
|
| 193 |
+
return log_dict
|
| 194 |
+
|
| 195 |
+
def _validation_step(self, batch, batch_idx, postfix=""):
|
| 196 |
+
outputs,inputs,gray_images = self.get_input(batch, self.image_key,self.output_key,self.gray_image_key)
|
| 197 |
+
reconstructions, posterior = self(inputs,gray_images)
|
| 198 |
+
aeloss, log_dict_ae = self.loss(outputs, reconstructions, posterior, 0, self.global_step,
|
| 199 |
+
last_layer=self.get_last_layer(), split="val"+postfix)
|
| 200 |
+
|
| 201 |
+
discloss, log_dict_disc = self.loss(outputs, reconstructions, posterior, 1, self.global_step,
|
| 202 |
+
last_layer=self.get_last_layer(), split="val"+postfix)
|
| 203 |
+
|
| 204 |
+
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
| 205 |
+
self.log_dict(log_dict_ae)
|
| 206 |
+
self.log_dict(log_dict_disc)
|
| 207 |
+
return self.log_dict
|
| 208 |
+
|
| 209 |
+
def configure_optimizers(self):
|
| 210 |
+
lr = self.learning_rate
|
| 211 |
+
# ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
|
| 212 |
+
# self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
|
| 213 |
+
# for name,param in self.decoder.named_parameters():
|
| 214 |
+
# if "dcn" in name:
|
| 215 |
+
# print(name)
|
| 216 |
+
ae_params_list = list(self.decoder.dcn_in.parameters())+list(self.decoder.mid.block_1.dcn1.parameters())+list(self.decoder.mid.block_1.dcn2.parameters())+list(self.decoder.mid.block_2.dcn1.parameters())+list(self.decoder.mid.block_2.dcn2.parameters())
|
| 217 |
+
# print(ae_params_list)
|
| 218 |
+
# for i in ae_params_list:
|
| 219 |
+
# print(i)
|
| 220 |
+
if self.learn_logvar:
|
| 221 |
+
print(f"{self.__class__.__name__}: Learning logvar")
|
| 222 |
+
ae_params_list.append(self.loss.logvar)
|
| 223 |
+
opt_ae = torch.optim.Adam(ae_params_list,
|
| 224 |
+
lr=lr, betas=(0.5, 0.9))
|
| 225 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
| 226 |
+
lr=lr, betas=(0.5, 0.9))
|
| 227 |
+
return [opt_ae, opt_disc], []
|
| 228 |
+
|
| 229 |
+
def get_last_layer(self):
|
| 230 |
+
return self.decoder.conv_out.weight
|
| 231 |
+
|
| 232 |
+
@torch.no_grad()
|
| 233 |
+
def get_gray_content_z(self,gray_image):
|
| 234 |
+
# if len(gray_image.shape) == 3:
|
| 235 |
+
# gray_image = gray_image[..., None]
|
| 236 |
+
gray_image = gray_image.unsqueeze(0).permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 237 |
+
gray_content_z=self.encode(gray_image)
|
| 238 |
+
gray_content_z = gray_content_z.sample()
|
| 239 |
+
return gray_content_z
|
| 240 |
+
|
| 241 |
+
@torch.no_grad()
|
| 242 |
+
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
|
| 243 |
+
log = dict()
|
| 244 |
+
gt,x,gray_image = self.get_input(batch, self.image_key,self.output_key,self.gray_image_key)
|
| 245 |
+
log['gt']=gt
|
| 246 |
+
x = x.to(self.device)
|
| 247 |
+
gray_image = gray_image.to(self.device)
|
| 248 |
+
if not only_inputs:
|
| 249 |
+
xrec, posterior = self(x,gray_image)
|
| 250 |
+
if x.shape[1] > 3:
|
| 251 |
+
# colorize with random projection
|
| 252 |
+
assert xrec.shape[1] > 3
|
| 253 |
+
x = self.to_rgb(x)
|
| 254 |
+
gray_image = self.to_rgb(gray_image)
|
| 255 |
+
xrec = self.to_rgb(xrec)
|
| 256 |
+
gray_content_z=self.encode(gray_image)
|
| 257 |
+
gray_content_z = gray_content_z.sample()
|
| 258 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()),gray_content_z)
|
| 259 |
+
log["reconstructions"] = xrec
|
| 260 |
+
if log_ema or self.use_ema:
|
| 261 |
+
with self.ema_scope():
|
| 262 |
+
xrec_ema, posterior_ema = self(x)
|
| 263 |
+
if x.shape[1] > 3:
|
| 264 |
+
# colorize with random projection
|
| 265 |
+
assert xrec_ema.shape[1] > 3
|
| 266 |
+
xrec_ema = self.to_rgb(xrec_ema)
|
| 267 |
+
log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
|
| 268 |
+
log["reconstructions_ema"] = xrec_ema
|
| 269 |
+
log["inputs"] = x
|
| 270 |
+
return log
|
| 271 |
+
|
| 272 |
+
def to_rgb(self, x):
|
| 273 |
+
assert self.image_key == "segmentation"
|
| 274 |
+
if not hasattr(self, "colorize"):
|
| 275 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
| 276 |
+
x = F.conv2d(x, weight=self.colorize)
|
| 277 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
| 278 |
+
return x
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
class IdentityFirstStage(torch.nn.Module):
|
| 282 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
| 283 |
+
self.vq_interface = vq_interface
|
| 284 |
+
super().__init__()
|
| 285 |
+
|
| 286 |
+
def encode(self, x, *args, **kwargs):
|
| 287 |
+
return x
|
| 288 |
+
|
| 289 |
+
def decode(self, x, *args, **kwargs):
|
| 290 |
+
return x
|
| 291 |
+
|
| 292 |
+
def quantize(self, x, *args, **kwargs):
|
| 293 |
+
if self.vq_interface:
|
| 294 |
+
return x, None, [None, None, None]
|
| 295 |
+
return x
|
| 296 |
+
|
| 297 |
+
def forward(self, x, *args, **kwargs):
|
| 298 |
+
return x
|
| 299 |
+
|
Control-Color/ldm/models/diffusion/__init__.py
ADDED
|
File without changes
|
Control-Color/ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (162 Bytes). View file
|
|
|
Control-Color/ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc
ADDED
|
Binary file (9.25 kB). View file
|
|
|
Control-Color/ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc
ADDED
|
Binary file (55.8 kB). View file
|
|
|
Control-Color/ldm/models/diffusion/__pycache__/ddpm_nonoise.cpython-38.pyc
ADDED
|
Binary file (54.9 kB). View file
|
|
|
Control-Color/ldm/models/diffusion/ddim.py
ADDED
|
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class DDIMSampler(object):
|
| 11 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.model = model
|
| 14 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
| 15 |
+
self.schedule = schedule
|
| 16 |
+
|
| 17 |
+
def register_buffer(self, name, attr):
|
| 18 |
+
if type(attr) == torch.Tensor:
|
| 19 |
+
if attr.device != torch.device("cuda"):
|
| 20 |
+
attr = attr.to(torch.device("cuda"))
|
| 21 |
+
setattr(self, name, attr)
|
| 22 |
+
|
| 23 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
| 24 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
| 25 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
| 26 |
+
alphas_cumprod = self.model.alphas_cumprod
|
| 27 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
| 28 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
| 29 |
+
|
| 30 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
| 31 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 32 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
| 33 |
+
|
| 34 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 35 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
| 36 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
| 37 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
| 38 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
| 39 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
| 40 |
+
|
| 41 |
+
# ddim sampling parameters
|
| 42 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
| 43 |
+
ddim_timesteps=self.ddim_timesteps,
|
| 44 |
+
eta=ddim_eta,verbose=verbose)
|
| 45 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
| 46 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
| 47 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
| 48 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
| 49 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
| 50 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
| 51 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
| 52 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
| 53 |
+
|
| 54 |
+
@torch.no_grad()
|
| 55 |
+
def sample(self,
|
| 56 |
+
S,
|
| 57 |
+
batch_size,
|
| 58 |
+
shape,
|
| 59 |
+
conditioning=None,
|
| 60 |
+
callback=None,
|
| 61 |
+
normals_sequence=None,
|
| 62 |
+
img_callback=None,
|
| 63 |
+
quantize_x0=False,
|
| 64 |
+
eta=0.,
|
| 65 |
+
mask=None,
|
| 66 |
+
masked_image_latents=None,
|
| 67 |
+
x0=None,
|
| 68 |
+
temperature=1.,
|
| 69 |
+
noise_dropout=0.,
|
| 70 |
+
score_corrector=None,
|
| 71 |
+
corrector_kwargs=None,
|
| 72 |
+
verbose=True,
|
| 73 |
+
x_T=None,
|
| 74 |
+
log_every_t=100,
|
| 75 |
+
unconditional_guidance_scale=1.,
|
| 76 |
+
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 77 |
+
dynamic_threshold=None,
|
| 78 |
+
ucg_schedule=None,
|
| 79 |
+
**kwargs
|
| 80 |
+
):
|
| 81 |
+
if conditioning is not None:
|
| 82 |
+
if isinstance(conditioning, dict):
|
| 83 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
| 84 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
| 85 |
+
cbs = ctmp.shape[0]
|
| 86 |
+
if cbs != batch_size:
|
| 87 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 88 |
+
|
| 89 |
+
elif isinstance(conditioning, list):
|
| 90 |
+
for ctmp in conditioning:
|
| 91 |
+
if ctmp.shape[0] != batch_size:
|
| 92 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 93 |
+
|
| 94 |
+
else:
|
| 95 |
+
if conditioning.shape[0] != batch_size:
|
| 96 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 97 |
+
|
| 98 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
| 99 |
+
# sampling
|
| 100 |
+
C, H, W = shape
|
| 101 |
+
size = (batch_size, C, H, W)
|
| 102 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
| 103 |
+
|
| 104 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
| 105 |
+
callback=callback,
|
| 106 |
+
img_callback=img_callback,
|
| 107 |
+
quantize_denoised=quantize_x0,
|
| 108 |
+
mask=mask,masked_image_latents=masked_image_latents, x0=x0,
|
| 109 |
+
ddim_use_original_steps=False,
|
| 110 |
+
noise_dropout=noise_dropout,
|
| 111 |
+
temperature=temperature,
|
| 112 |
+
score_corrector=score_corrector,
|
| 113 |
+
corrector_kwargs=corrector_kwargs,
|
| 114 |
+
x_T=x_T,
|
| 115 |
+
log_every_t=log_every_t,
|
| 116 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 117 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 118 |
+
dynamic_threshold=dynamic_threshold,
|
| 119 |
+
ucg_schedule=ucg_schedule
|
| 120 |
+
)
|
| 121 |
+
return samples, intermediates
|
| 122 |
+
|
| 123 |
+
@torch.no_grad()
|
| 124 |
+
def ddim_sampling(self, cond, shape,
|
| 125 |
+
x_T=None, ddim_use_original_steps=False,
|
| 126 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
| 127 |
+
mask=None,masked_image_latents=None, x0=None, img_callback=None, log_every_t=100,
|
| 128 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 129 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
| 130 |
+
ucg_schedule=None):
|
| 131 |
+
device = self.model.betas.device
|
| 132 |
+
b = shape[0]
|
| 133 |
+
if x_T is None:
|
| 134 |
+
img = torch.randn(shape, device=device)
|
| 135 |
+
else:
|
| 136 |
+
img = x_T
|
| 137 |
+
|
| 138 |
+
if timesteps is None:
|
| 139 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
| 140 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
| 141 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
| 142 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
| 143 |
+
|
| 144 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
| 145 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
| 146 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
| 147 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 148 |
+
|
| 149 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
| 150 |
+
|
| 151 |
+
for i, step in enumerate(iterator):
|
| 152 |
+
index = total_steps - i - 1
|
| 153 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
| 154 |
+
|
| 155 |
+
# if mask is not None:
|
| 156 |
+
# assert x0 is not None
|
| 157 |
+
# img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
| 158 |
+
# img = img_orig * mask + (1. - mask) * img
|
| 159 |
+
|
| 160 |
+
if ucg_schedule is not None:
|
| 161 |
+
assert len(ucg_schedule) == len(time_range)
|
| 162 |
+
unconditional_guidance_scale = ucg_schedule[i]
|
| 163 |
+
|
| 164 |
+
outs = self.p_sample_ddim(img,mask,masked_image_latents, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
| 165 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
| 166 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
| 167 |
+
corrector_kwargs=corrector_kwargs,
|
| 168 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 169 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 170 |
+
dynamic_threshold=dynamic_threshold)
|
| 171 |
+
img, pred_x0 = outs
|
| 172 |
+
if callback: callback(i)
|
| 173 |
+
if img_callback: img_callback(pred_x0, i)
|
| 174 |
+
|
| 175 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
| 176 |
+
intermediates['x_inter'].append(img)
|
| 177 |
+
intermediates['pred_x0'].append(pred_x0)
|
| 178 |
+
|
| 179 |
+
return img, intermediates
|
| 180 |
+
|
| 181 |
+
@torch.no_grad()
|
| 182 |
+
def p_sample_ddim(self, x,mask,masked_image_latents, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 183 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 184 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
| 185 |
+
dynamic_threshold=None):
|
| 186 |
+
b, *_, device = *x.shape, x.device
|
| 187 |
+
|
| 188 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 189 |
+
model_output = self.model.apply_model(x,mask,masked_image_latents, t, c)
|
| 190 |
+
else:
|
| 191 |
+
x_in = torch.cat([x] * 2)
|
| 192 |
+
t_in = torch.cat([t] * 2)
|
| 193 |
+
if isinstance(c, dict):
|
| 194 |
+
assert isinstance(unconditional_conditioning, dict)
|
| 195 |
+
c_in = dict()
|
| 196 |
+
for k in c:
|
| 197 |
+
if isinstance(c[k], list):
|
| 198 |
+
c_in[k] = [torch.cat([
|
| 199 |
+
unconditional_conditioning[k][i],
|
| 200 |
+
c[k][i]]) for i in range(len(c[k]))]
|
| 201 |
+
else:
|
| 202 |
+
c_in[k] = torch.cat([
|
| 203 |
+
unconditional_conditioning[k],
|
| 204 |
+
c[k]])
|
| 205 |
+
elif isinstance(c, list):
|
| 206 |
+
c_in = list()
|
| 207 |
+
assert isinstance(unconditional_conditioning, list)
|
| 208 |
+
for i in range(len(c)):
|
| 209 |
+
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
| 210 |
+
else:
|
| 211 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
| 212 |
+
model_uncond, model_t = self.model.apply_model(x_in,mask,masked_image_latents, t_in, c_in).chunk(2)
|
| 213 |
+
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
| 214 |
+
|
| 215 |
+
if self.model.parameterization == "v":
|
| 216 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
| 217 |
+
else:
|
| 218 |
+
e_t = model_output
|
| 219 |
+
|
| 220 |
+
if score_corrector is not None:
|
| 221 |
+
assert self.model.parameterization == "eps", 'not implemented'
|
| 222 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
| 223 |
+
|
| 224 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
| 225 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
| 226 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
| 227 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
| 228 |
+
# select parameters corresponding to the currently considered timestep
|
| 229 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
| 230 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
| 231 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
| 232 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
| 233 |
+
|
| 234 |
+
# current prediction for x_0
|
| 235 |
+
if self.model.parameterization != "v":
|
| 236 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 237 |
+
else:
|
| 238 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
| 239 |
+
|
| 240 |
+
if quantize_denoised:
|
| 241 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 242 |
+
|
| 243 |
+
if dynamic_threshold is not None:
|
| 244 |
+
raise NotImplementedError()
|
| 245 |
+
|
| 246 |
+
# direction pointing to x_t
|
| 247 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
| 248 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
| 249 |
+
if noise_dropout > 0.:
|
| 250 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 251 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
| 252 |
+
return x_prev, pred_x0
|
| 253 |
+
|
| 254 |
+
@torch.no_grad()
|
| 255 |
+
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
| 256 |
+
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
| 257 |
+
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
| 258 |
+
|
| 259 |
+
assert t_enc <= num_reference_steps
|
| 260 |
+
num_steps = t_enc
|
| 261 |
+
|
| 262 |
+
if use_original_steps:
|
| 263 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
| 264 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
| 265 |
+
else:
|
| 266 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
| 267 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
| 268 |
+
|
| 269 |
+
x_next = x0
|
| 270 |
+
intermediates = []
|
| 271 |
+
inter_steps = []
|
| 272 |
+
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
| 273 |
+
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
| 274 |
+
if unconditional_guidance_scale == 1.:
|
| 275 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
| 276 |
+
else:
|
| 277 |
+
assert unconditional_conditioning is not None
|
| 278 |
+
e_t_uncond, noise_pred = torch.chunk(
|
| 279 |
+
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
| 280 |
+
torch.cat((unconditional_conditioning, c))), 2)
|
| 281 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
| 282 |
+
|
| 283 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
| 284 |
+
weighted_noise_pred = alphas_next[i].sqrt() * (
|
| 285 |
+
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
| 286 |
+
x_next = xt_weighted + weighted_noise_pred
|
| 287 |
+
if return_intermediates and i % (
|
| 288 |
+
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
| 289 |
+
intermediates.append(x_next)
|
| 290 |
+
inter_steps.append(i)
|
| 291 |
+
elif return_intermediates and i >= num_steps - 2:
|
| 292 |
+
intermediates.append(x_next)
|
| 293 |
+
inter_steps.append(i)
|
| 294 |
+
if callback: callback(i)
|
| 295 |
+
|
| 296 |
+
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
| 297 |
+
if return_intermediates:
|
| 298 |
+
out.update({'intermediates': intermediates})
|
| 299 |
+
return x_next, out
|
| 300 |
+
|
| 301 |
+
@torch.no_grad()
|
| 302 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
| 303 |
+
# fast, but does not allow for exact reconstruction
|
| 304 |
+
# t serves as an index to gather the correct alphas
|
| 305 |
+
if use_original_steps:
|
| 306 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
| 307 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
| 308 |
+
else:
|
| 309 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
| 310 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
| 311 |
+
|
| 312 |
+
if noise is None:
|
| 313 |
+
noise = torch.randn_like(x0)
|
| 314 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
| 315 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
| 316 |
+
|
| 317 |
+
@torch.no_grad()
|
| 318 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
| 319 |
+
use_original_steps=False, callback=None):
|
| 320 |
+
|
| 321 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
| 322 |
+
timesteps = timesteps[:t_start]
|
| 323 |
+
|
| 324 |
+
time_range = np.flip(timesteps)
|
| 325 |
+
total_steps = timesteps.shape[0]
|
| 326 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 327 |
+
|
| 328 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
| 329 |
+
x_dec = x_latent
|
| 330 |
+
for i, step in enumerate(iterator):
|
| 331 |
+
index = total_steps - i - 1
|
| 332 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
| 333 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
| 334 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 335 |
+
unconditional_conditioning=unconditional_conditioning)
|
| 336 |
+
if callback: callback(i)
|
| 337 |
+
return x_dec
|
Control-Color/ldm/models/diffusion/ddpm.py
ADDED
|
@@ -0,0 +1,1911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
wild mixture of
|
| 3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
| 4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
| 5 |
+
https://github.com/CompVis/taming-transformers
|
| 6 |
+
-- merci
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import numpy as np
|
| 12 |
+
import pytorch_lightning as pl
|
| 13 |
+
from torch.optim.lr_scheduler import LambdaLR
|
| 14 |
+
from einops import rearrange, repeat
|
| 15 |
+
from contextlib import contextmanager, nullcontext
|
| 16 |
+
from functools import partial
|
| 17 |
+
import itertools
|
| 18 |
+
from tqdm import tqdm
|
| 19 |
+
from torchvision.utils import make_grid
|
| 20 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
| 21 |
+
from omegaconf import ListConfig
|
| 22 |
+
|
| 23 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
| 24 |
+
from ldm.modules.ema import LitEma
|
| 25 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
| 26 |
+
from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
|
| 27 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
| 28 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
| 32 |
+
'crossattn': 'c_crossattn',
|
| 33 |
+
'adm': 'y'}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def disabled_train(self, mode=True):
|
| 37 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 38 |
+
does not change anymore."""
|
| 39 |
+
return self
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def uniform_on_device(r1, r2, shape, device):
|
| 43 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
| 44 |
+
|
| 45 |
+
def prepare_mask_latents(
|
| 46 |
+
mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
| 47 |
+
):
|
| 48 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
| 49 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
| 50 |
+
# and half precision
|
| 51 |
+
mask = torch.nn.functional.interpolate(
|
| 52 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 53 |
+
)
|
| 54 |
+
mask = mask.to(device=device, dtype=dtype)
|
| 55 |
+
|
| 56 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
| 57 |
+
|
| 58 |
+
# encode the mask image into latents space so we can concatenate it to the latents
|
| 59 |
+
if isinstance(generator, list):
|
| 60 |
+
masked_image_latents = [
|
| 61 |
+
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
|
| 62 |
+
for i in range(batch_size)
|
| 63 |
+
]
|
| 64 |
+
masked_image_latents = torch.cat(masked_image_latents, dim=0)
|
| 65 |
+
else:
|
| 66 |
+
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
|
| 67 |
+
masked_image_latents = self.vae.config.scaling_factor * masked_image_latents
|
| 68 |
+
|
| 69 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
| 70 |
+
if mask.shape[0] < batch_size:
|
| 71 |
+
if not batch_size % mask.shape[0] == 0:
|
| 72 |
+
raise ValueError(
|
| 73 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
| 74 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
| 75 |
+
" of masks that you pass is divisible by the total requested batch size."
|
| 76 |
+
)
|
| 77 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
| 78 |
+
if masked_image_latents.shape[0] < batch_size:
|
| 79 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
| 80 |
+
raise ValueError(
|
| 81 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
| 82 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
| 83 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
| 84 |
+
)
|
| 85 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
| 86 |
+
|
| 87 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
| 88 |
+
masked_image_latents = (
|
| 89 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
| 93 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
| 94 |
+
return mask, masked_image_latents
|
| 95 |
+
|
| 96 |
+
class DDPM(pl.LightningModule):
|
| 97 |
+
# classic DDPM with Gaussian diffusion, in image space
|
| 98 |
+
def __init__(self,
|
| 99 |
+
unet_config,
|
| 100 |
+
timesteps=1000,
|
| 101 |
+
beta_schedule="linear",
|
| 102 |
+
loss_type="l2",
|
| 103 |
+
ckpt_path=None,
|
| 104 |
+
ignore_keys=[],
|
| 105 |
+
load_only_unet=False,
|
| 106 |
+
monitor="val/loss",
|
| 107 |
+
use_ema=True,
|
| 108 |
+
first_stage_key="image",
|
| 109 |
+
image_size=256,
|
| 110 |
+
channels=3,
|
| 111 |
+
log_every_t=100,
|
| 112 |
+
clip_denoised=True,
|
| 113 |
+
linear_start=1e-4,
|
| 114 |
+
linear_end=2e-2,
|
| 115 |
+
cosine_s=8e-3,
|
| 116 |
+
given_betas=None,
|
| 117 |
+
original_elbo_weight=0.,
|
| 118 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
| 119 |
+
l_simple_weight=1.,
|
| 120 |
+
conditioning_key=None,
|
| 121 |
+
parameterization="eps", # all assuming fixed variance schedules
|
| 122 |
+
scheduler_config=None,
|
| 123 |
+
use_positional_encodings=False,
|
| 124 |
+
learn_logvar=False,
|
| 125 |
+
logvar_init=0.,
|
| 126 |
+
make_it_fit=False,
|
| 127 |
+
ucg_training=None,
|
| 128 |
+
reset_ema=False,
|
| 129 |
+
reset_num_ema_updates=False,
|
| 130 |
+
):
|
| 131 |
+
super().__init__()
|
| 132 |
+
assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
|
| 133 |
+
self.parameterization = parameterization
|
| 134 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
| 135 |
+
self.cond_stage_model = None
|
| 136 |
+
self.clip_denoised = clip_denoised
|
| 137 |
+
self.log_every_t = log_every_t
|
| 138 |
+
self.first_stage_key = first_stage_key
|
| 139 |
+
self.image_size = image_size # try conv?
|
| 140 |
+
self.channels = channels
|
| 141 |
+
self.use_positional_encodings = use_positional_encodings
|
| 142 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
| 143 |
+
count_params(self.model, verbose=True)
|
| 144 |
+
self.use_ema = use_ema
|
| 145 |
+
if self.use_ema:
|
| 146 |
+
self.model_ema = LitEma(self.model)
|
| 147 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 148 |
+
|
| 149 |
+
self.use_scheduler = scheduler_config is not None
|
| 150 |
+
if self.use_scheduler:
|
| 151 |
+
self.scheduler_config = scheduler_config
|
| 152 |
+
|
| 153 |
+
self.v_posterior = v_posterior
|
| 154 |
+
self.original_elbo_weight = original_elbo_weight
|
| 155 |
+
self.l_simple_weight = l_simple_weight
|
| 156 |
+
|
| 157 |
+
if monitor is not None:
|
| 158 |
+
self.monitor = monitor
|
| 159 |
+
self.make_it_fit = make_it_fit
|
| 160 |
+
if reset_ema: assert exists(ckpt_path)
|
| 161 |
+
if ckpt_path is not None:
|
| 162 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
| 163 |
+
if reset_ema:
|
| 164 |
+
assert self.use_ema
|
| 165 |
+
print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
|
| 166 |
+
self.model_ema = LitEma(self.model)
|
| 167 |
+
if reset_num_ema_updates:
|
| 168 |
+
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
|
| 169 |
+
assert self.use_ema
|
| 170 |
+
self.model_ema.reset_num_updates()
|
| 171 |
+
|
| 172 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
| 173 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
| 174 |
+
|
| 175 |
+
self.loss_type = loss_type
|
| 176 |
+
|
| 177 |
+
self.learn_logvar = learn_logvar
|
| 178 |
+
logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
| 179 |
+
if self.learn_logvar:
|
| 180 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
| 181 |
+
else:
|
| 182 |
+
self.register_buffer('logvar', logvar)
|
| 183 |
+
|
| 184 |
+
self.ucg_training = ucg_training or dict()
|
| 185 |
+
if self.ucg_training:
|
| 186 |
+
self.ucg_prng = np.random.RandomState()
|
| 187 |
+
|
| 188 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
| 189 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 190 |
+
if exists(given_betas):
|
| 191 |
+
betas = given_betas
|
| 192 |
+
else:
|
| 193 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
| 194 |
+
cosine_s=cosine_s)
|
| 195 |
+
alphas = 1. - betas
|
| 196 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
| 197 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
| 198 |
+
|
| 199 |
+
timesteps, = betas.shape
|
| 200 |
+
self.num_timesteps = int(timesteps)
|
| 201 |
+
self.linear_start = linear_start
|
| 202 |
+
self.linear_end = linear_end
|
| 203 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
| 204 |
+
|
| 205 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
| 206 |
+
|
| 207 |
+
self.register_buffer('betas', to_torch(betas))
|
| 208 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 209 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
| 210 |
+
|
| 211 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 212 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
| 213 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
| 214 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
| 215 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
| 216 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
| 217 |
+
|
| 218 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
| 219 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
| 220 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
| 221 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
| 222 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
| 223 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
| 224 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
| 225 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
| 226 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
| 227 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
| 228 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
| 229 |
+
|
| 230 |
+
if self.parameterization == "eps":
|
| 231 |
+
lvlb_weights = self.betas ** 2 / (
|
| 232 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
| 233 |
+
elif self.parameterization == "x0":
|
| 234 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
| 235 |
+
elif self.parameterization == "v":
|
| 236 |
+
lvlb_weights = torch.ones_like(self.betas ** 2 / (
|
| 237 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
|
| 238 |
+
else:
|
| 239 |
+
raise NotImplementedError("mu not supported")
|
| 240 |
+
lvlb_weights[0] = lvlb_weights[1]
|
| 241 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
| 242 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
| 243 |
+
|
| 244 |
+
@contextmanager
|
| 245 |
+
def ema_scope(self, context=None):
|
| 246 |
+
if self.use_ema:
|
| 247 |
+
self.model_ema.store(self.model.parameters())
|
| 248 |
+
self.model_ema.copy_to(self.model)
|
| 249 |
+
if context is not None:
|
| 250 |
+
print(f"{context}: Switched to EMA weights")
|
| 251 |
+
try:
|
| 252 |
+
yield None
|
| 253 |
+
finally:
|
| 254 |
+
if self.use_ema:
|
| 255 |
+
self.model_ema.restore(self.model.parameters())
|
| 256 |
+
if context is not None:
|
| 257 |
+
print(f"{context}: Restored training weights")
|
| 258 |
+
|
| 259 |
+
@torch.no_grad()
|
| 260 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
| 261 |
+
sd = torch.load(path, map_location="cpu")
|
| 262 |
+
if "state_dict" in list(sd.keys()):
|
| 263 |
+
sd = sd["state_dict"]
|
| 264 |
+
keys = list(sd.keys())
|
| 265 |
+
for k in keys:
|
| 266 |
+
for ik in ignore_keys:
|
| 267 |
+
if k.startswith(ik):
|
| 268 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 269 |
+
del sd[k]
|
| 270 |
+
if self.make_it_fit:
|
| 271 |
+
n_params = len([name for name, _ in
|
| 272 |
+
itertools.chain(self.named_parameters(),
|
| 273 |
+
self.named_buffers())])
|
| 274 |
+
for name, param in tqdm(
|
| 275 |
+
itertools.chain(self.named_parameters(),
|
| 276 |
+
self.named_buffers()),
|
| 277 |
+
desc="Fitting old weights to new weights",
|
| 278 |
+
total=n_params
|
| 279 |
+
):
|
| 280 |
+
if not name in sd:
|
| 281 |
+
continue
|
| 282 |
+
old_shape = sd[name].shape
|
| 283 |
+
new_shape = param.shape
|
| 284 |
+
assert len(old_shape) == len(new_shape)
|
| 285 |
+
if len(new_shape) > 2:
|
| 286 |
+
# we only modify first two axes
|
| 287 |
+
assert new_shape[2:] == old_shape[2:]
|
| 288 |
+
# assumes first axis corresponds to output dim
|
| 289 |
+
if not new_shape == old_shape:
|
| 290 |
+
new_param = param.clone()
|
| 291 |
+
old_param = sd[name]
|
| 292 |
+
if len(new_shape) == 1:
|
| 293 |
+
for i in range(new_param.shape[0]):
|
| 294 |
+
new_param[i] = old_param[i % old_shape[0]]
|
| 295 |
+
elif len(new_shape) >= 2:
|
| 296 |
+
for i in range(new_param.shape[0]):
|
| 297 |
+
for j in range(new_param.shape[1]):
|
| 298 |
+
new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
|
| 299 |
+
|
| 300 |
+
n_used_old = torch.ones(old_shape[1])
|
| 301 |
+
for j in range(new_param.shape[1]):
|
| 302 |
+
n_used_old[j % old_shape[1]] += 1
|
| 303 |
+
n_used_new = torch.zeros(new_shape[1])
|
| 304 |
+
for j in range(new_param.shape[1]):
|
| 305 |
+
n_used_new[j] = n_used_old[j % old_shape[1]]
|
| 306 |
+
|
| 307 |
+
n_used_new = n_used_new[None, :]
|
| 308 |
+
while len(n_used_new.shape) < len(new_shape):
|
| 309 |
+
n_used_new = n_used_new.unsqueeze(-1)
|
| 310 |
+
new_param /= n_used_new
|
| 311 |
+
|
| 312 |
+
sd[name] = new_param
|
| 313 |
+
|
| 314 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
| 315 |
+
sd, strict=False)
|
| 316 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 317 |
+
if len(missing) > 0:
|
| 318 |
+
print(f"Missing Keys:\n {missing}")
|
| 319 |
+
if len(unexpected) > 0:
|
| 320 |
+
print(f"\nUnexpected Keys:\n {unexpected}")
|
| 321 |
+
|
| 322 |
+
def q_mean_variance(self, x_start, t):
|
| 323 |
+
"""
|
| 324 |
+
Get the distribution q(x_t | x_0).
|
| 325 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
| 326 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
| 327 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
| 328 |
+
"""
|
| 329 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
| 330 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
| 331 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
| 332 |
+
return mean, variance, log_variance
|
| 333 |
+
|
| 334 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
| 335 |
+
return (
|
| 336 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
| 337 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
def predict_start_from_z_and_v(self, x_t, t, v):
|
| 341 |
+
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
| 342 |
+
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
| 343 |
+
return (
|
| 344 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
|
| 345 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
# def get_x_t_from_start_and_t(self, start, t, v):
|
| 349 |
+
# return (
|
| 350 |
+
# (start+extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, start.shape) * v)/extract_into_tensor(self.sqrt_alphas_cumprod, t, start.shape)
|
| 351 |
+
# )
|
| 352 |
+
|
| 353 |
+
def predict_eps_from_z_and_v(self, x_t, t, v):
|
| 354 |
+
return (
|
| 355 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
|
| 356 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
def q_posterior(self, x_start, x_t, t):
|
| 360 |
+
posterior_mean = (
|
| 361 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
| 362 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
| 363 |
+
)
|
| 364 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
| 365 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
| 366 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
| 367 |
+
|
| 368 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
| 369 |
+
model_out = self.model(x, t)
|
| 370 |
+
if self.parameterization == "eps":
|
| 371 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 372 |
+
elif self.parameterization == "x0":
|
| 373 |
+
x_recon = model_out
|
| 374 |
+
if clip_denoised:
|
| 375 |
+
x_recon.clamp_(-1., 1.)
|
| 376 |
+
|
| 377 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
| 378 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 379 |
+
|
| 380 |
+
@torch.no_grad()
|
| 381 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
| 382 |
+
b, *_, device = *x.shape, x.device
|
| 383 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
| 384 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
| 385 |
+
# no noise when t == 0
|
| 386 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
| 387 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 388 |
+
|
| 389 |
+
@torch.no_grad()
|
| 390 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
| 391 |
+
device = self.betas.device
|
| 392 |
+
b = shape[0]
|
| 393 |
+
img = torch.randn(shape, device=device)
|
| 394 |
+
intermediates = [img]
|
| 395 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
| 396 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
| 397 |
+
clip_denoised=self.clip_denoised)
|
| 398 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
| 399 |
+
intermediates.append(img)
|
| 400 |
+
if return_intermediates:
|
| 401 |
+
return img, intermediates
|
| 402 |
+
return img
|
| 403 |
+
|
| 404 |
+
@torch.no_grad()
|
| 405 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
| 406 |
+
image_size = self.image_size
|
| 407 |
+
channels = self.channels
|
| 408 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
| 409 |
+
return_intermediates=return_intermediates)
|
| 410 |
+
|
| 411 |
+
def q_sample(self, x_start, t, noise=None):
|
| 412 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 413 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
| 414 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
| 415 |
+
|
| 416 |
+
def get_v(self, x, noise, t):
|
| 417 |
+
return (
|
| 418 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
|
| 419 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
def get_loss(self, pred, target, mean=True):
|
| 423 |
+
if self.loss_type == 'l1':
|
| 424 |
+
loss = (target - pred).abs()
|
| 425 |
+
if mean:
|
| 426 |
+
loss = loss.mean()
|
| 427 |
+
elif self.loss_type == 'l2':
|
| 428 |
+
if mean:
|
| 429 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
| 430 |
+
else:
|
| 431 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
| 432 |
+
else:
|
| 433 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
| 434 |
+
|
| 435 |
+
return loss
|
| 436 |
+
|
| 437 |
+
def p_losses(self, x_start, t, noise=None):
|
| 438 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 439 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 440 |
+
model_out = self.model(x_noisy, t)
|
| 441 |
+
|
| 442 |
+
loss_dict = {}
|
| 443 |
+
if self.parameterization == "eps":
|
| 444 |
+
target = noise
|
| 445 |
+
elif self.parameterization == "x0":
|
| 446 |
+
target = x_start
|
| 447 |
+
elif self.parameterization == "v":
|
| 448 |
+
target = self.get_v(x_start, noise, t)
|
| 449 |
+
else:
|
| 450 |
+
raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
|
| 451 |
+
|
| 452 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
| 453 |
+
|
| 454 |
+
log_prefix = 'train' if self.training else 'val'
|
| 455 |
+
|
| 456 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
| 457 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
| 458 |
+
|
| 459 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
| 460 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
| 461 |
+
|
| 462 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
| 463 |
+
|
| 464 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
| 465 |
+
|
| 466 |
+
return loss, loss_dict
|
| 467 |
+
|
| 468 |
+
def forward(self, x, *args, **kwargs):
|
| 469 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
| 470 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
| 471 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
| 472 |
+
return self.p_losses(x, t, *args, **kwargs)
|
| 473 |
+
|
| 474 |
+
def get_input(self, batch, k):
|
| 475 |
+
x = batch[k]
|
| 476 |
+
if len(x.shape) == 3:
|
| 477 |
+
x = x[..., None]
|
| 478 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
| 479 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
| 480 |
+
return x
|
| 481 |
+
|
| 482 |
+
def shared_step(self, batch):
|
| 483 |
+
x = self.get_input(batch, self.first_stage_key)
|
| 484 |
+
loss, loss_dict = self(x)
|
| 485 |
+
return loss, loss_dict
|
| 486 |
+
|
| 487 |
+
def training_step(self, batch, batch_idx):
|
| 488 |
+
for k in self.ucg_training:
|
| 489 |
+
p = self.ucg_training[k]["p"]
|
| 490 |
+
val = self.ucg_training[k]["val"]
|
| 491 |
+
if val is None:
|
| 492 |
+
val = ""
|
| 493 |
+
for i in range(len(batch[k])):
|
| 494 |
+
if self.ucg_prng.choice(2, p=[1 - p, p]):
|
| 495 |
+
batch[k][i] = val
|
| 496 |
+
|
| 497 |
+
loss, loss_dict = self.shared_step(batch)
|
| 498 |
+
|
| 499 |
+
self.log_dict(loss_dict, prog_bar=True,
|
| 500 |
+
logger=True, on_step=True, on_epoch=True)
|
| 501 |
+
|
| 502 |
+
self.log("global_step", self.global_step,
|
| 503 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 504 |
+
|
| 505 |
+
if self.use_scheduler:
|
| 506 |
+
lr = self.optimizers().param_groups[0]['lr']
|
| 507 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 508 |
+
|
| 509 |
+
return loss
|
| 510 |
+
|
| 511 |
+
@torch.no_grad()
|
| 512 |
+
def validation_step(self, batch, batch_idx):
|
| 513 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
| 514 |
+
with self.ema_scope():
|
| 515 |
+
_, loss_dict_ema = self.shared_step(batch)
|
| 516 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
| 517 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
| 518 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
| 519 |
+
|
| 520 |
+
def on_train_batch_end(self, *args, **kwargs):
|
| 521 |
+
if self.use_ema:
|
| 522 |
+
self.model_ema(self.model)
|
| 523 |
+
|
| 524 |
+
def _get_rows_from_list(self, samples):
|
| 525 |
+
n_imgs_per_row = len(samples)
|
| 526 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
| 527 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
| 528 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
| 529 |
+
return denoise_grid
|
| 530 |
+
|
| 531 |
+
@torch.no_grad()
|
| 532 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
| 533 |
+
log = dict()
|
| 534 |
+
x = self.get_input(batch, self.first_stage_key)
|
| 535 |
+
N = min(x.shape[0], N)
|
| 536 |
+
n_row = min(x.shape[0], n_row)
|
| 537 |
+
x = x.to(self.device)[:N]
|
| 538 |
+
log["inputs"] = x
|
| 539 |
+
|
| 540 |
+
# get diffusion row
|
| 541 |
+
diffusion_row = list()
|
| 542 |
+
x_start = x[:n_row]
|
| 543 |
+
|
| 544 |
+
for t in range(self.num_timesteps):
|
| 545 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 546 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 547 |
+
t = t.to(self.device).long()
|
| 548 |
+
noise = torch.randn_like(x_start)
|
| 549 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 550 |
+
diffusion_row.append(x_noisy)
|
| 551 |
+
|
| 552 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
| 553 |
+
|
| 554 |
+
if sample:
|
| 555 |
+
# get denoise row
|
| 556 |
+
with self.ema_scope("Plotting"):
|
| 557 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
| 558 |
+
|
| 559 |
+
log["samples"] = samples
|
| 560 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
| 561 |
+
|
| 562 |
+
if return_keys:
|
| 563 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
| 564 |
+
return log
|
| 565 |
+
else:
|
| 566 |
+
return {key: log[key] for key in return_keys}
|
| 567 |
+
return log
|
| 568 |
+
|
| 569 |
+
def configure_optimizers(self):
|
| 570 |
+
lr = self.learning_rate
|
| 571 |
+
params = list(self.model.parameters())
|
| 572 |
+
if self.learn_logvar:
|
| 573 |
+
params = params + [self.logvar]
|
| 574 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
| 575 |
+
return opt
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
class LatentDiffusion(DDPM):
|
| 579 |
+
"""main class"""
|
| 580 |
+
|
| 581 |
+
def __init__(self,
|
| 582 |
+
first_stage_config,
|
| 583 |
+
cond_stage_config,
|
| 584 |
+
contextual_stage_config,
|
| 585 |
+
num_timesteps_cond=None,
|
| 586 |
+
cond_stage_key="image",
|
| 587 |
+
cond_stage_trainable=False,
|
| 588 |
+
concat_mode=True,
|
| 589 |
+
cond_stage_forward=None,
|
| 590 |
+
conditioning_key=None,
|
| 591 |
+
scale_factor=1.0,
|
| 592 |
+
scale_by_std=False,
|
| 593 |
+
force_null_conditioning=False,
|
| 594 |
+
masked_image=None,
|
| 595 |
+
mask=None,
|
| 596 |
+
load_loss=False,
|
| 597 |
+
*args, **kwargs):
|
| 598 |
+
self.masked_image=masked_image
|
| 599 |
+
self.mask=mask
|
| 600 |
+
self.load_loss=load_loss
|
| 601 |
+
self.force_null_conditioning = force_null_conditioning
|
| 602 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
| 603 |
+
self.scale_by_std = scale_by_std
|
| 604 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
| 605 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
| 606 |
+
if conditioning_key is None:
|
| 607 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
| 608 |
+
if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
|
| 609 |
+
conditioning_key = None
|
| 610 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
| 611 |
+
reset_ema = kwargs.pop("reset_ema", False)
|
| 612 |
+
reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
|
| 613 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
| 614 |
+
# print(conditioning_key)
|
| 615 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
| 616 |
+
self.concat_mode = concat_mode
|
| 617 |
+
self.cond_stage_trainable = cond_stage_trainable
|
| 618 |
+
self.cond_stage_key = cond_stage_key
|
| 619 |
+
try:
|
| 620 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
| 621 |
+
except:
|
| 622 |
+
self.num_downs = 0
|
| 623 |
+
if not scale_by_std:
|
| 624 |
+
self.scale_factor = scale_factor
|
| 625 |
+
else:
|
| 626 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
| 627 |
+
self.instantiate_first_stage(first_stage_config)
|
| 628 |
+
self.instantiate_cond_stage(cond_stage_config)
|
| 629 |
+
self.instantiate_contextual_stage(contextual_stage_config)
|
| 630 |
+
self.cond_stage_forward = cond_stage_forward
|
| 631 |
+
self.clip_denoised = False
|
| 632 |
+
self.bbox_tokenizer = None
|
| 633 |
+
|
| 634 |
+
self.restarted_from_ckpt = False
|
| 635 |
+
if ckpt_path is not None:
|
| 636 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
| 637 |
+
self.restarted_from_ckpt = True
|
| 638 |
+
if reset_ema:
|
| 639 |
+
assert self.use_ema
|
| 640 |
+
print(
|
| 641 |
+
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
|
| 642 |
+
self.model_ema = LitEma(self.model)
|
| 643 |
+
if reset_num_ema_updates:
|
| 644 |
+
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
|
| 645 |
+
assert self.use_ema
|
| 646 |
+
self.model_ema.reset_num_updates()
|
| 647 |
+
|
| 648 |
+
def make_cond_schedule(self, ):
|
| 649 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
| 650 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
| 651 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
| 652 |
+
|
| 653 |
+
@rank_zero_only
|
| 654 |
+
@torch.no_grad()
|
| 655 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
| 656 |
+
# only for very first batch
|
| 657 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
| 658 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
| 659 |
+
# set rescale weight to 1./std of encodings
|
| 660 |
+
print("### USING STD-RESCALING ###")
|
| 661 |
+
x = super().get_input(batch, self.first_stage_key)
|
| 662 |
+
x = x.to(self.device)
|
| 663 |
+
encoder_posterior = self.encode_first_stage(x)
|
| 664 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 665 |
+
del self.scale_factor
|
| 666 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
| 667 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
| 668 |
+
print("### USING STD-RESCALING ###")
|
| 669 |
+
|
| 670 |
+
def register_schedule(self,
|
| 671 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
| 672 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 673 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
| 674 |
+
|
| 675 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
| 676 |
+
if self.shorten_cond_schedule:
|
| 677 |
+
self.make_cond_schedule()
|
| 678 |
+
|
| 679 |
+
def instantiate_first_stage(self, config):
|
| 680 |
+
model = instantiate_from_config(config)
|
| 681 |
+
self.first_stage_model = model.eval()
|
| 682 |
+
self.first_stage_model.train = disabled_train
|
| 683 |
+
for param in self.first_stage_model.parameters():
|
| 684 |
+
param.requires_grad = False
|
| 685 |
+
|
| 686 |
+
def instantiate_contextual_stage(self, config):
|
| 687 |
+
if self.load_loss==True:
|
| 688 |
+
model = instantiate_from_config(config)
|
| 689 |
+
model.load_state_dict(torch.load("/mnt/lustre/zxliang/zcli/data/vgg19_conv.pth"), strict=False)
|
| 690 |
+
print("vgg loaded")
|
| 691 |
+
self.contextual_stage_model = model.eval()
|
| 692 |
+
for param in self.contextual_stage_model.parameters():
|
| 693 |
+
param.requires_grad = False
|
| 694 |
+
self.contextual_loss = ContextualLoss().to(self.device)
|
| 695 |
+
elif self.load_loss==False:
|
| 696 |
+
self.contextual_stage_model = None
|
| 697 |
+
self.contextual_loss = None
|
| 698 |
+
else:
|
| 699 |
+
print("ERROR!!!!!self.load_loss should be either True or False!!!")
|
| 700 |
+
|
| 701 |
+
def instantiate_cond_stage(self, config):
|
| 702 |
+
if not self.cond_stage_trainable:
|
| 703 |
+
if config == "__is_first_stage__":
|
| 704 |
+
print("Using first stage also as cond stage.")
|
| 705 |
+
self.cond_stage_model = self.first_stage_model
|
| 706 |
+
elif config == "__is_unconditional__":
|
| 707 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
| 708 |
+
self.cond_stage_model = None
|
| 709 |
+
# self.be_unconditional = True
|
| 710 |
+
else:
|
| 711 |
+
model = instantiate_from_config(config)
|
| 712 |
+
self.cond_stage_model = model.eval()
|
| 713 |
+
self.cond_stage_model.train = disabled_train
|
| 714 |
+
for param in self.cond_stage_model.parameters():
|
| 715 |
+
param.requires_grad = False
|
| 716 |
+
else:
|
| 717 |
+
assert config != '__is_first_stage__'
|
| 718 |
+
assert config != '__is_unconditional__'
|
| 719 |
+
model = instantiate_from_config(config)
|
| 720 |
+
self.cond_stage_model = model
|
| 721 |
+
|
| 722 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
| 723 |
+
denoise_row = []
|
| 724 |
+
for zd in tqdm(samples, desc=desc):
|
| 725 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
| 726 |
+
force_not_quantize=force_no_decoder_quantization))
|
| 727 |
+
n_imgs_per_row = len(denoise_row)
|
| 728 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
| 729 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
| 730 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
| 731 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
| 732 |
+
return denoise_grid
|
| 733 |
+
|
| 734 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
| 735 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
| 736 |
+
z = encoder_posterior.sample()
|
| 737 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
| 738 |
+
z = encoder_posterior
|
| 739 |
+
else:
|
| 740 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
| 741 |
+
return self.scale_factor * z
|
| 742 |
+
|
| 743 |
+
def get_learned_conditioning(self, c):
|
| 744 |
+
if self.cond_stage_forward is None:
|
| 745 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
| 746 |
+
c = self.cond_stage_model.encode(c)
|
| 747 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
| 748 |
+
c = c.mode()
|
| 749 |
+
else:
|
| 750 |
+
c = self.cond_stage_model(c)
|
| 751 |
+
else:
|
| 752 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
| 753 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
| 754 |
+
return c
|
| 755 |
+
|
| 756 |
+
def meshgrid(self, h, w):
|
| 757 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
| 758 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
| 759 |
+
|
| 760 |
+
arr = torch.cat([y, x], dim=-1)
|
| 761 |
+
return arr
|
| 762 |
+
|
| 763 |
+
def delta_border(self, h, w):
|
| 764 |
+
"""
|
| 765 |
+
:param h: height
|
| 766 |
+
:param w: width
|
| 767 |
+
:return: normalized distance to image border,
|
| 768 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
| 769 |
+
"""
|
| 770 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
| 771 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
| 772 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
| 773 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
| 774 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
| 775 |
+
return edge_dist
|
| 776 |
+
|
| 777 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
| 778 |
+
weighting = self.delta_border(h, w)
|
| 779 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
| 780 |
+
self.split_input_params["clip_max_weight"], )
|
| 781 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
| 782 |
+
|
| 783 |
+
if self.split_input_params["tie_braker"]:
|
| 784 |
+
L_weighting = self.delta_border(Ly, Lx)
|
| 785 |
+
L_weighting = torch.clip(L_weighting,
|
| 786 |
+
self.split_input_params["clip_min_tie_weight"],
|
| 787 |
+
self.split_input_params["clip_max_tie_weight"])
|
| 788 |
+
|
| 789 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
| 790 |
+
weighting = weighting * L_weighting
|
| 791 |
+
return weighting
|
| 792 |
+
|
| 793 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
| 794 |
+
"""
|
| 795 |
+
:param x: img of size (bs, c, h, w)
|
| 796 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
| 797 |
+
"""
|
| 798 |
+
bs, nc, h, w = x.shape
|
| 799 |
+
|
| 800 |
+
# number of crops in image
|
| 801 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
| 802 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
| 803 |
+
|
| 804 |
+
if uf == 1 and df == 1:
|
| 805 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 806 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 807 |
+
|
| 808 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
| 809 |
+
|
| 810 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
| 811 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
| 812 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
| 813 |
+
|
| 814 |
+
elif uf > 1 and df == 1:
|
| 815 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 816 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 817 |
+
|
| 818 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
| 819 |
+
dilation=1, padding=0,
|
| 820 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
| 821 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
| 822 |
+
|
| 823 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
| 824 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
| 825 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
| 826 |
+
|
| 827 |
+
elif df > 1 and uf == 1:
|
| 828 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 829 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 830 |
+
|
| 831 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
| 832 |
+
dilation=1, padding=0,
|
| 833 |
+
stride=(stride[0] // df, stride[1] // df))
|
| 834 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
| 835 |
+
|
| 836 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
| 837 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
| 838 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
| 839 |
+
|
| 840 |
+
else:
|
| 841 |
+
raise NotImplementedError
|
| 842 |
+
|
| 843 |
+
return fold, unfold, normalization, weighting
|
| 844 |
+
|
| 845 |
+
@torch.no_grad()
|
| 846 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
| 847 |
+
cond_key=None, return_original_cond=False, bs=None, return_x=False):
|
| 848 |
+
# print("batch",batch)
|
| 849 |
+
# print("k",k)
|
| 850 |
+
x = super().get_input(batch, k)
|
| 851 |
+
masked_image=batch[self.masked_image]
|
| 852 |
+
mask=batch[self.mask]
|
| 853 |
+
# print(mask.shape,masked_image.shape)
|
| 854 |
+
mask = torch.nn.functional.interpolate(mask, size=(mask.shape[2] // 8, mask.shape[3] // 8))
|
| 855 |
+
# mask=torch.cat([mask] * 2) #if do_classifier_free_guidance else mask
|
| 856 |
+
mask = mask.to(device="cuda",dtype=x.dtype)
|
| 857 |
+
do_classifier_free_guidance=False
|
| 858 |
+
# mask, masked_image_latents = self.prepare_mask_latents(
|
| 859 |
+
# mask,
|
| 860 |
+
# masked_image,
|
| 861 |
+
# batch_size * num_images_per_prompt,
|
| 862 |
+
# mask.shape[0],
|
| 863 |
+
# mask.shape[1],
|
| 864 |
+
# mask.dtype,
|
| 865 |
+
# "cuda",
|
| 866 |
+
# torch.manual_seed(859311133),#generator
|
| 867 |
+
# do_classifier_free_guidance,
|
| 868 |
+
# )
|
| 869 |
+
# print("x",x)
|
| 870 |
+
if bs is not None:
|
| 871 |
+
x = x[:bs]
|
| 872 |
+
x = x.to(self.device)
|
| 873 |
+
|
| 874 |
+
encoder_posterior = self.encode_first_stage(x)
|
| 875 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 876 |
+
|
| 877 |
+
masked_image_latents = self.get_first_stage_encoding(self.encode_first_stage(masked_image)).detach()
|
| 878 |
+
|
| 879 |
+
if self.model.conditioning_key is not None and not self.force_null_conditioning:
|
| 880 |
+
if cond_key is None:
|
| 881 |
+
cond_key = self.cond_stage_key
|
| 882 |
+
if cond_key != self.first_stage_key:
|
| 883 |
+
if cond_key in ['caption', 'coordinates_bbox', "txt"]:
|
| 884 |
+
xc = batch[cond_key]
|
| 885 |
+
elif cond_key in ['class_label', 'cls']:
|
| 886 |
+
xc = batch
|
| 887 |
+
else:
|
| 888 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
| 889 |
+
else:
|
| 890 |
+
xc = x
|
| 891 |
+
if not self.cond_stage_trainable or force_c_encode:
|
| 892 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
| 893 |
+
c = self.get_learned_conditioning(xc)
|
| 894 |
+
else:
|
| 895 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
| 896 |
+
else:
|
| 897 |
+
c = xc
|
| 898 |
+
if bs is not None:
|
| 899 |
+
c = c[:bs]
|
| 900 |
+
|
| 901 |
+
if self.use_positional_encodings:
|
| 902 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
| 903 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
| 904 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
| 905 |
+
|
| 906 |
+
else:
|
| 907 |
+
c = None
|
| 908 |
+
xc = None
|
| 909 |
+
if self.use_positional_encodings:
|
| 910 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
| 911 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
| 912 |
+
out = [z,mask,masked_image_latents, c]
|
| 913 |
+
if return_first_stage_outputs:
|
| 914 |
+
xrec = self.decode_first_stage(z)
|
| 915 |
+
out.extend([x, xrec])
|
| 916 |
+
if return_x:
|
| 917 |
+
out.extend([x])
|
| 918 |
+
if return_original_cond:
|
| 919 |
+
out.append(xc)
|
| 920 |
+
return out
|
| 921 |
+
|
| 922 |
+
@torch.no_grad()
|
| 923 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
| 924 |
+
if predict_cids:
|
| 925 |
+
if z.dim() == 4:
|
| 926 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
| 927 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
| 928 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
| 929 |
+
|
| 930 |
+
z = 1. / self.scale_factor * z
|
| 931 |
+
return self.first_stage_model.decode(z)
|
| 932 |
+
|
| 933 |
+
@torch.no_grad()
|
| 934 |
+
def encode_first_stage(self, x):
|
| 935 |
+
return self.first_stage_model.encode(x)
|
| 936 |
+
|
| 937 |
+
@torch.no_grad()
|
| 938 |
+
def decode_first_stage_before_vae(self, z, predict_cids=False, force_not_quantize=False):
|
| 939 |
+
if predict_cids:
|
| 940 |
+
if z.dim() == 4:
|
| 941 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
| 942 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
| 943 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
| 944 |
+
|
| 945 |
+
z = 1. / self.scale_factor * z
|
| 946 |
+
return z
|
| 947 |
+
|
| 948 |
+
def shared_step(self, batch, **kwargs):
|
| 949 |
+
x,mask,masked_image_latents, c = self.get_input(batch, self.first_stage_key)
|
| 950 |
+
loss = self(x,mask,masked_image_latents, c)
|
| 951 |
+
return loss
|
| 952 |
+
|
| 953 |
+
def forward(self, x,mask,masked_image_latents, c, *args, **kwargs):
|
| 954 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
| 955 |
+
if self.model.conditioning_key is not None:
|
| 956 |
+
assert c is not None
|
| 957 |
+
if self.cond_stage_trainable:
|
| 958 |
+
c = self.get_learned_conditioning(c)
|
| 959 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
| 960 |
+
tc = self.cond_ids[t].to(self.device)
|
| 961 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
| 962 |
+
return self.p_losses(x,mask,masked_image_latents, c, t, *args, **kwargs)
|
| 963 |
+
|
| 964 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
| 965 |
+
if isinstance(cond, dict):
|
| 966 |
+
# hybrid case, cond is expected to be a dict
|
| 967 |
+
pass
|
| 968 |
+
else:
|
| 969 |
+
if not isinstance(cond, list):
|
| 970 |
+
cond = [cond]
|
| 971 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
| 972 |
+
cond = {key: cond}
|
| 973 |
+
|
| 974 |
+
x_recon = self.model(x_noisy, t, **cond)
|
| 975 |
+
|
| 976 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
| 977 |
+
return x_recon[0]
|
| 978 |
+
else:
|
| 979 |
+
return x_recon
|
| 980 |
+
|
| 981 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
| 982 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
| 983 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
| 984 |
+
|
| 985 |
+
def _prior_bpd(self, x_start):
|
| 986 |
+
"""
|
| 987 |
+
Get the prior KL term for the variational lower-bound, measured in
|
| 988 |
+
bits-per-dim.
|
| 989 |
+
This term can't be optimized, as it only depends on the encoder.
|
| 990 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
| 991 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
| 992 |
+
"""
|
| 993 |
+
batch_size = x_start.shape[0]
|
| 994 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
| 995 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
| 996 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
| 997 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
| 998 |
+
|
| 999 |
+
def p_losses(self, x_start,mask,masked_image_latents, cond, t, noise=None): #latent diffusion
|
| 1000 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 1001 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 1002 |
+
model_output = self.apply_model(x_noisy,mask,masked_image_latents, t, cond)
|
| 1003 |
+
# print("before loss: ", model_output.shape)
|
| 1004 |
+
loss_dict = {}
|
| 1005 |
+
prefix = 'train' if self.training else 'val'
|
| 1006 |
+
|
| 1007 |
+
if self.parameterization == "x0":
|
| 1008 |
+
target = x_start
|
| 1009 |
+
elif self.parameterization == "eps":
|
| 1010 |
+
target = noise
|
| 1011 |
+
elif self.parameterization == "v":
|
| 1012 |
+
target = self.get_v(x_start, noise, t)
|
| 1013 |
+
else:
|
| 1014 |
+
raise NotImplementedError()
|
| 1015 |
+
|
| 1016 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
| 1017 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
| 1018 |
+
|
| 1019 |
+
logvar_t = self.logvar[t].to(self.device)
|
| 1020 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
| 1021 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
| 1022 |
+
if self.learn_logvar:
|
| 1023 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
| 1024 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
| 1025 |
+
|
| 1026 |
+
loss = self.l_simple_weight * loss.mean()
|
| 1027 |
+
|
| 1028 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
| 1029 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
| 1030 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
| 1031 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
| 1032 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
| 1033 |
+
|
| 1034 |
+
return loss, loss_dict
|
| 1035 |
+
|
| 1036 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
| 1037 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
| 1038 |
+
t_in = t
|
| 1039 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
| 1040 |
+
|
| 1041 |
+
if score_corrector is not None:
|
| 1042 |
+
assert self.parameterization == "eps"
|
| 1043 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
| 1044 |
+
|
| 1045 |
+
if return_codebook_ids:
|
| 1046 |
+
model_out, logits = model_out
|
| 1047 |
+
|
| 1048 |
+
if self.parameterization == "eps":
|
| 1049 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 1050 |
+
elif self.parameterization == "x0":
|
| 1051 |
+
x_recon = model_out
|
| 1052 |
+
else:
|
| 1053 |
+
raise NotImplementedError()
|
| 1054 |
+
|
| 1055 |
+
if clip_denoised:
|
| 1056 |
+
x_recon.clamp_(-1., 1.)
|
| 1057 |
+
if quantize_denoised:
|
| 1058 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
| 1059 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
| 1060 |
+
if return_codebook_ids:
|
| 1061 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
| 1062 |
+
elif return_x0:
|
| 1063 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
| 1064 |
+
else:
|
| 1065 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 1066 |
+
|
| 1067 |
+
@torch.no_grad()
|
| 1068 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
| 1069 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
| 1070 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
| 1071 |
+
b, *_, device = *x.shape, x.device
|
| 1072 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
| 1073 |
+
return_codebook_ids=return_codebook_ids,
|
| 1074 |
+
quantize_denoised=quantize_denoised,
|
| 1075 |
+
return_x0=return_x0,
|
| 1076 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
| 1077 |
+
if return_codebook_ids:
|
| 1078 |
+
raise DeprecationWarning("Support dropped.")
|
| 1079 |
+
model_mean, _, model_log_variance, logits = outputs
|
| 1080 |
+
elif return_x0:
|
| 1081 |
+
model_mean, _, model_log_variance, x0 = outputs
|
| 1082 |
+
else:
|
| 1083 |
+
model_mean, _, model_log_variance = outputs
|
| 1084 |
+
|
| 1085 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
| 1086 |
+
if noise_dropout > 0.:
|
| 1087 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 1088 |
+
# no noise when t == 0
|
| 1089 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
| 1090 |
+
|
| 1091 |
+
if return_codebook_ids:
|
| 1092 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
| 1093 |
+
if return_x0:
|
| 1094 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
| 1095 |
+
else:
|
| 1096 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 1097 |
+
|
| 1098 |
+
@torch.no_grad()
|
| 1099 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
| 1100 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
| 1101 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
| 1102 |
+
log_every_t=None):
|
| 1103 |
+
if not log_every_t:
|
| 1104 |
+
log_every_t = self.log_every_t
|
| 1105 |
+
timesteps = self.num_timesteps
|
| 1106 |
+
if batch_size is not None:
|
| 1107 |
+
b = batch_size if batch_size is not None else shape[0]
|
| 1108 |
+
shape = [batch_size] + list(shape)
|
| 1109 |
+
else:
|
| 1110 |
+
b = batch_size = shape[0]
|
| 1111 |
+
if x_T is None:
|
| 1112 |
+
img = torch.randn(shape, device=self.device)
|
| 1113 |
+
else:
|
| 1114 |
+
img = x_T
|
| 1115 |
+
intermediates = []
|
| 1116 |
+
if cond is not None:
|
| 1117 |
+
if isinstance(cond, dict):
|
| 1118 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
| 1119 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
| 1120 |
+
else:
|
| 1121 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
| 1122 |
+
|
| 1123 |
+
if start_T is not None:
|
| 1124 |
+
timesteps = min(timesteps, start_T)
|
| 1125 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
| 1126 |
+
total=timesteps) if verbose else reversed(
|
| 1127 |
+
range(0, timesteps))
|
| 1128 |
+
if type(temperature) == float:
|
| 1129 |
+
temperature = [temperature] * timesteps
|
| 1130 |
+
|
| 1131 |
+
for i in iterator:
|
| 1132 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
| 1133 |
+
if self.shorten_cond_schedule:
|
| 1134 |
+
assert self.model.conditioning_key != 'hybrid'
|
| 1135 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 1136 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 1137 |
+
|
| 1138 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
| 1139 |
+
clip_denoised=self.clip_denoised,
|
| 1140 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
| 1141 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
| 1142 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
| 1143 |
+
if mask is not None:
|
| 1144 |
+
assert x0 is not None
|
| 1145 |
+
img_orig = self.q_sample(x0, ts)
|
| 1146 |
+
img = img_orig * mask + (1. - mask) * img
|
| 1147 |
+
|
| 1148 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 1149 |
+
intermediates.append(x0_partial)
|
| 1150 |
+
if callback: callback(i)
|
| 1151 |
+
if img_callback: img_callback(img, i)
|
| 1152 |
+
return img, intermediates
|
| 1153 |
+
|
| 1154 |
+
@torch.no_grad()
|
| 1155 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
| 1156 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
| 1157 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
| 1158 |
+
log_every_t=None):
|
| 1159 |
+
|
| 1160 |
+
if not log_every_t:
|
| 1161 |
+
log_every_t = self.log_every_t
|
| 1162 |
+
device = self.betas.device
|
| 1163 |
+
b = shape[0]
|
| 1164 |
+
if x_T is None:
|
| 1165 |
+
img = torch.randn(shape, device=device)
|
| 1166 |
+
else:
|
| 1167 |
+
img = x_T
|
| 1168 |
+
|
| 1169 |
+
intermediates = [img]
|
| 1170 |
+
if timesteps is None:
|
| 1171 |
+
timesteps = self.num_timesteps
|
| 1172 |
+
|
| 1173 |
+
if start_T is not None:
|
| 1174 |
+
timesteps = min(timesteps, start_T)
|
| 1175 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
| 1176 |
+
range(0, timesteps))
|
| 1177 |
+
|
| 1178 |
+
if mask is not None:
|
| 1179 |
+
assert x0 is not None
|
| 1180 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
| 1181 |
+
|
| 1182 |
+
for i in iterator:
|
| 1183 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
| 1184 |
+
if self.shorten_cond_schedule:
|
| 1185 |
+
assert self.model.conditioning_key != 'hybrid'
|
| 1186 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 1187 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 1188 |
+
|
| 1189 |
+
img = self.p_sample(img, cond, ts,
|
| 1190 |
+
clip_denoised=self.clip_denoised,
|
| 1191 |
+
quantize_denoised=quantize_denoised)
|
| 1192 |
+
if mask is not None:
|
| 1193 |
+
img_orig = self.q_sample(x0, ts)
|
| 1194 |
+
img = img_orig * mask + (1. - mask) * img
|
| 1195 |
+
|
| 1196 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 1197 |
+
intermediates.append(img)
|
| 1198 |
+
if callback: callback(i)
|
| 1199 |
+
if img_callback: img_callback(img, i)
|
| 1200 |
+
|
| 1201 |
+
if return_intermediates:
|
| 1202 |
+
return img, intermediates
|
| 1203 |
+
return img
|
| 1204 |
+
|
| 1205 |
+
@torch.no_grad()
|
| 1206 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
| 1207 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
| 1208 |
+
mask=None, x0=None, shape=None, **kwargs):
|
| 1209 |
+
if shape is None:
|
| 1210 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
| 1211 |
+
if cond is not None:
|
| 1212 |
+
if isinstance(cond, dict):
|
| 1213 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
| 1214 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
| 1215 |
+
else:
|
| 1216 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
| 1217 |
+
return self.p_sample_loop(cond,
|
| 1218 |
+
shape,
|
| 1219 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
| 1220 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
| 1221 |
+
mask=mask, x0=x0)
|
| 1222 |
+
|
| 1223 |
+
@torch.no_grad()
|
| 1224 |
+
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
| 1225 |
+
if ddim:
|
| 1226 |
+
ddim_sampler = DDIMSampler(self)
|
| 1227 |
+
shape = (self.channels, self.image_size, self.image_size)
|
| 1228 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
|
| 1229 |
+
shape, cond, verbose=False, **kwargs)
|
| 1230 |
+
|
| 1231 |
+
else:
|
| 1232 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
| 1233 |
+
return_intermediates=True, **kwargs)
|
| 1234 |
+
|
| 1235 |
+
return samples, intermediates
|
| 1236 |
+
|
| 1237 |
+
@torch.no_grad()
|
| 1238 |
+
def get_unconditional_conditioning(self, batch_size, null_label=None):
|
| 1239 |
+
if null_label is not None:
|
| 1240 |
+
xc = null_label
|
| 1241 |
+
if isinstance(xc, ListConfig):
|
| 1242 |
+
xc = list(xc)
|
| 1243 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
| 1244 |
+
c = self.get_learned_conditioning(xc)
|
| 1245 |
+
else:
|
| 1246 |
+
if hasattr(xc, "to"):
|
| 1247 |
+
xc = xc.to(self.device)
|
| 1248 |
+
c = self.get_learned_conditioning(xc)
|
| 1249 |
+
else:
|
| 1250 |
+
if self.cond_stage_key in ["class_label", "cls"]:
|
| 1251 |
+
xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
|
| 1252 |
+
return self.get_learned_conditioning(xc)
|
| 1253 |
+
else:
|
| 1254 |
+
raise NotImplementedError("todo")
|
| 1255 |
+
if isinstance(c, list): # in case the encoder gives us a list
|
| 1256 |
+
for i in range(len(c)):
|
| 1257 |
+
c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
|
| 1258 |
+
else:
|
| 1259 |
+
c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
|
| 1260 |
+
return c
|
| 1261 |
+
|
| 1262 |
+
@torch.no_grad()
|
| 1263 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
|
| 1264 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
| 1265 |
+
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
| 1266 |
+
use_ema_scope=True,
|
| 1267 |
+
**kwargs):
|
| 1268 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
| 1269 |
+
use_ddim = ddim_steps is not None
|
| 1270 |
+
|
| 1271 |
+
log = dict()
|
| 1272 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
| 1273 |
+
return_first_stage_outputs=True,
|
| 1274 |
+
force_c_encode=True,
|
| 1275 |
+
return_original_cond=True,
|
| 1276 |
+
bs=N)
|
| 1277 |
+
N = min(x.shape[0], N)
|
| 1278 |
+
n_row = min(x.shape[0], n_row)
|
| 1279 |
+
log["inputs"] = x
|
| 1280 |
+
log["reconstruction"] = xrec
|
| 1281 |
+
if self.model.conditioning_key is not None:
|
| 1282 |
+
if hasattr(self.cond_stage_model, "decode"):
|
| 1283 |
+
xc = self.cond_stage_model.decode(c)
|
| 1284 |
+
log["conditioning"] = xc
|
| 1285 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
| 1286 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
| 1287 |
+
log["conditioning"] = xc
|
| 1288 |
+
elif self.cond_stage_key in ['class_label', "cls"]:
|
| 1289 |
+
try:
|
| 1290 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
| 1291 |
+
log['conditioning'] = xc
|
| 1292 |
+
except KeyError:
|
| 1293 |
+
# probably no "human_label" in batch
|
| 1294 |
+
pass
|
| 1295 |
+
elif isimage(xc):
|
| 1296 |
+
log["conditioning"] = xc
|
| 1297 |
+
if ismap(xc):
|
| 1298 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
| 1299 |
+
|
| 1300 |
+
if plot_diffusion_rows:
|
| 1301 |
+
# get diffusion row
|
| 1302 |
+
diffusion_row = list()
|
| 1303 |
+
z_start = z[:n_row]
|
| 1304 |
+
for t in range(self.num_timesteps):
|
| 1305 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 1306 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 1307 |
+
t = t.to(self.device).long()
|
| 1308 |
+
noise = torch.randn_like(z_start)
|
| 1309 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
| 1310 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
| 1311 |
+
|
| 1312 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
| 1313 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
| 1314 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
| 1315 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
| 1316 |
+
log["diffusion_row"] = diffusion_grid
|
| 1317 |
+
|
| 1318 |
+
if sample:
|
| 1319 |
+
# get denoise row
|
| 1320 |
+
with ema_scope("Sampling"):
|
| 1321 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
| 1322 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
| 1323 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
| 1324 |
+
x_samples = self.decode_first_stage(samples)
|
| 1325 |
+
log["samples"] = x_samples
|
| 1326 |
+
if plot_denoise_rows:
|
| 1327 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
| 1328 |
+
log["denoise_row"] = denoise_grid
|
| 1329 |
+
|
| 1330 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
| 1331 |
+
self.first_stage_model, IdentityFirstStage):
|
| 1332 |
+
# also display when quantizing x0 while sampling
|
| 1333 |
+
with ema_scope("Plotting Quantized Denoised"):
|
| 1334 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
| 1335 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
| 1336 |
+
quantize_denoised=True)
|
| 1337 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
| 1338 |
+
# quantize_denoised=True)
|
| 1339 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1340 |
+
log["samples_x0_quantized"] = x_samples
|
| 1341 |
+
|
| 1342 |
+
if unconditional_guidance_scale > 1.0:
|
| 1343 |
+
uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
| 1344 |
+
if self.model.conditioning_key == "crossattn-adm":
|
| 1345 |
+
uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
|
| 1346 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
| 1347 |
+
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
| 1348 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
| 1349 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 1350 |
+
unconditional_conditioning=uc,
|
| 1351 |
+
)
|
| 1352 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
| 1353 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
| 1354 |
+
|
| 1355 |
+
if inpaint:
|
| 1356 |
+
# make a simple center square
|
| 1357 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
| 1358 |
+
mask = torch.ones(N, h, w).to(self.device)
|
| 1359 |
+
# zeros will be filled in
|
| 1360 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
| 1361 |
+
mask = mask[:, None, ...]
|
| 1362 |
+
with ema_scope("Plotting Inpaint"):
|
| 1363 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
|
| 1364 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
| 1365 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1366 |
+
log["samples_inpainting"] = x_samples
|
| 1367 |
+
log["mask"] = mask
|
| 1368 |
+
|
| 1369 |
+
# outpaint
|
| 1370 |
+
mask = 1. - mask
|
| 1371 |
+
with ema_scope("Plotting Outpaint"):
|
| 1372 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
|
| 1373 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
| 1374 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1375 |
+
log["samples_outpainting"] = x_samples
|
| 1376 |
+
|
| 1377 |
+
if plot_progressive_rows:
|
| 1378 |
+
with ema_scope("Plotting Progressives"):
|
| 1379 |
+
img, progressives = self.progressive_denoising(c,
|
| 1380 |
+
shape=(self.channels, self.image_size, self.image_size),
|
| 1381 |
+
batch_size=N)
|
| 1382 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
| 1383 |
+
log["progressive_row"] = prog_row
|
| 1384 |
+
|
| 1385 |
+
if return_keys:
|
| 1386 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
| 1387 |
+
return log
|
| 1388 |
+
else:
|
| 1389 |
+
return {key: log[key] for key in return_keys}
|
| 1390 |
+
return log
|
| 1391 |
+
|
| 1392 |
+
def configure_optimizers(self):
|
| 1393 |
+
lr = self.learning_rate
|
| 1394 |
+
params = list(self.model.parameters())
|
| 1395 |
+
if self.cond_stage_trainable:
|
| 1396 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
| 1397 |
+
params = params + list(self.cond_stage_model.parameters())
|
| 1398 |
+
if self.learn_logvar:
|
| 1399 |
+
print('Diffusion model optimizing logvar')
|
| 1400 |
+
params.append(self.logvar)
|
| 1401 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
| 1402 |
+
if self.use_scheduler:
|
| 1403 |
+
assert 'target' in self.scheduler_config
|
| 1404 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
| 1405 |
+
|
| 1406 |
+
print("Setting up LambdaLR scheduler...")
|
| 1407 |
+
scheduler = [
|
| 1408 |
+
{
|
| 1409 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
| 1410 |
+
'interval': 'step',
|
| 1411 |
+
'frequency': 1
|
| 1412 |
+
}]
|
| 1413 |
+
return [opt], scheduler
|
| 1414 |
+
return opt
|
| 1415 |
+
|
| 1416 |
+
@torch.no_grad()
|
| 1417 |
+
def to_rgb(self, x):
|
| 1418 |
+
x = x.float()
|
| 1419 |
+
if not hasattr(self, "colorize"):
|
| 1420 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
| 1421 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
| 1422 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
| 1423 |
+
return x
|
| 1424 |
+
|
| 1425 |
+
|
| 1426 |
+
class DiffusionWrapper(pl.LightningModule):
|
| 1427 |
+
def __init__(self, diff_model_config, conditioning_key):
|
| 1428 |
+
super().__init__()
|
| 1429 |
+
self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
|
| 1430 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
| 1431 |
+
self.conditioning_key = conditioning_key
|
| 1432 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
|
| 1433 |
+
|
| 1434 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
|
| 1435 |
+
if self.conditioning_key is None:
|
| 1436 |
+
out = self.diffusion_model(x, t)
|
| 1437 |
+
elif self.conditioning_key == 'concat':
|
| 1438 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1439 |
+
out = self.diffusion_model(xc, t)
|
| 1440 |
+
elif self.conditioning_key == 'crossattn':
|
| 1441 |
+
if not self.sequential_cross_attn:
|
| 1442 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1443 |
+
else:
|
| 1444 |
+
cc = c_crossattn
|
| 1445 |
+
out = self.diffusion_model(x, t, context=cc)
|
| 1446 |
+
elif self.conditioning_key == 'hybrid':
|
| 1447 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1448 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1449 |
+
out = self.diffusion_model(xc, t, context=cc)
|
| 1450 |
+
elif self.conditioning_key == 'hybrid-adm':
|
| 1451 |
+
assert c_adm is not None
|
| 1452 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1453 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1454 |
+
out = self.diffusion_model(xc, t, context=cc, y=c_adm)
|
| 1455 |
+
elif self.conditioning_key == 'crossattn-adm':
|
| 1456 |
+
assert c_adm is not None
|
| 1457 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1458 |
+
out = self.diffusion_model(x, t, context=cc, y=c_adm)
|
| 1459 |
+
elif self.conditioning_key == 'adm':
|
| 1460 |
+
cc = c_crossattn[0]
|
| 1461 |
+
out = self.diffusion_model(x, t, y=cc)
|
| 1462 |
+
else:
|
| 1463 |
+
raise NotImplementedError()
|
| 1464 |
+
|
| 1465 |
+
return out
|
| 1466 |
+
|
| 1467 |
+
|
| 1468 |
+
class LatentUpscaleDiffusion(LatentDiffusion):
|
| 1469 |
+
def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
|
| 1470 |
+
super().__init__(*args, **kwargs)
|
| 1471 |
+
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
|
| 1472 |
+
assert not self.cond_stage_trainable
|
| 1473 |
+
self.instantiate_low_stage(low_scale_config)
|
| 1474 |
+
self.low_scale_key = low_scale_key
|
| 1475 |
+
self.noise_level_key = noise_level_key
|
| 1476 |
+
|
| 1477 |
+
def instantiate_low_stage(self, config):
|
| 1478 |
+
model = instantiate_from_config(config)
|
| 1479 |
+
self.low_scale_model = model.eval()
|
| 1480 |
+
self.low_scale_model.train = disabled_train
|
| 1481 |
+
for param in self.low_scale_model.parameters():
|
| 1482 |
+
param.requires_grad = False
|
| 1483 |
+
|
| 1484 |
+
@torch.no_grad()
|
| 1485 |
+
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
|
| 1486 |
+
if not log_mode:
|
| 1487 |
+
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
|
| 1488 |
+
else:
|
| 1489 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
| 1490 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
| 1491 |
+
x_low = batch[self.low_scale_key][:bs]
|
| 1492 |
+
x_low = rearrange(x_low, 'b h w c -> b c h w')
|
| 1493 |
+
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
| 1494 |
+
zx, noise_level = self.low_scale_model(x_low)
|
| 1495 |
+
if self.noise_level_key is not None:
|
| 1496 |
+
# get noise level from batch instead, e.g. when extracting a custom noise level for bsr
|
| 1497 |
+
raise NotImplementedError('TODO')
|
| 1498 |
+
|
| 1499 |
+
all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
|
| 1500 |
+
if log_mode:
|
| 1501 |
+
# TODO: maybe disable if too expensive
|
| 1502 |
+
x_low_rec = self.low_scale_model.decode(zx)
|
| 1503 |
+
return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
|
| 1504 |
+
return z, all_conds
|
| 1505 |
+
|
| 1506 |
+
@torch.no_grad()
|
| 1507 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
| 1508 |
+
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
|
| 1509 |
+
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
|
| 1510 |
+
**kwargs):
|
| 1511 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
| 1512 |
+
use_ddim = ddim_steps is not None
|
| 1513 |
+
|
| 1514 |
+
log = dict()
|
| 1515 |
+
z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
|
| 1516 |
+
log_mode=True)
|
| 1517 |
+
N = min(x.shape[0], N)
|
| 1518 |
+
n_row = min(x.shape[0], n_row)
|
| 1519 |
+
log["inputs"] = x
|
| 1520 |
+
log["reconstruction"] = xrec
|
| 1521 |
+
log["x_lr"] = x_low
|
| 1522 |
+
log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
|
| 1523 |
+
if self.model.conditioning_key is not None:
|
| 1524 |
+
if hasattr(self.cond_stage_model, "decode"):
|
| 1525 |
+
xc = self.cond_stage_model.decode(c)
|
| 1526 |
+
log["conditioning"] = xc
|
| 1527 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
| 1528 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
| 1529 |
+
log["conditioning"] = xc
|
| 1530 |
+
elif self.cond_stage_key in ['class_label', 'cls']:
|
| 1531 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
| 1532 |
+
log['conditioning'] = xc
|
| 1533 |
+
elif isimage(xc):
|
| 1534 |
+
log["conditioning"] = xc
|
| 1535 |
+
if ismap(xc):
|
| 1536 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
| 1537 |
+
|
| 1538 |
+
if plot_diffusion_rows:
|
| 1539 |
+
# get diffusion row
|
| 1540 |
+
diffusion_row = list()
|
| 1541 |
+
z_start = z[:n_row]
|
| 1542 |
+
for t in range(self.num_timesteps):
|
| 1543 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 1544 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 1545 |
+
t = t.to(self.device).long()
|
| 1546 |
+
noise = torch.randn_like(z_start)
|
| 1547 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
| 1548 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
| 1549 |
+
|
| 1550 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
| 1551 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
| 1552 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
| 1553 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
| 1554 |
+
log["diffusion_row"] = diffusion_grid
|
| 1555 |
+
|
| 1556 |
+
if sample:
|
| 1557 |
+
# get denoise row
|
| 1558 |
+
with ema_scope("Sampling"):
|
| 1559 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
| 1560 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
| 1561 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
| 1562 |
+
x_samples = self.decode_first_stage(samples)
|
| 1563 |
+
log["samples"] = x_samples
|
| 1564 |
+
if plot_denoise_rows:
|
| 1565 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
| 1566 |
+
log["denoise_row"] = denoise_grid
|
| 1567 |
+
|
| 1568 |
+
if unconditional_guidance_scale > 1.0:
|
| 1569 |
+
uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
| 1570 |
+
# TODO explore better "unconditional" choices for the other keys
|
| 1571 |
+
# maybe guide away from empty text label and highest noise level and maximally degraded zx?
|
| 1572 |
+
uc = dict()
|
| 1573 |
+
for k in c:
|
| 1574 |
+
if k == "c_crossattn":
|
| 1575 |
+
assert isinstance(c[k], list) and len(c[k]) == 1
|
| 1576 |
+
uc[k] = [uc_tmp]
|
| 1577 |
+
elif k == "c_adm": # todo: only run with text-based guidance?
|
| 1578 |
+
assert isinstance(c[k], torch.Tensor)
|
| 1579 |
+
#uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
|
| 1580 |
+
uc[k] = c[k]
|
| 1581 |
+
elif isinstance(c[k], list):
|
| 1582 |
+
uc[k] = [c[k][i] for i in range(len(c[k]))]
|
| 1583 |
+
else:
|
| 1584 |
+
uc[k] = c[k]
|
| 1585 |
+
|
| 1586 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
| 1587 |
+
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
| 1588 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
| 1589 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 1590 |
+
unconditional_conditioning=uc,
|
| 1591 |
+
)
|
| 1592 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
| 1593 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
| 1594 |
+
|
| 1595 |
+
if plot_progressive_rows:
|
| 1596 |
+
with ema_scope("Plotting Progressives"):
|
| 1597 |
+
img, progressives = self.progressive_denoising(c,
|
| 1598 |
+
shape=(self.channels, self.image_size, self.image_size),
|
| 1599 |
+
batch_size=N)
|
| 1600 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
| 1601 |
+
log["progressive_row"] = prog_row
|
| 1602 |
+
|
| 1603 |
+
return log
|
| 1604 |
+
|
| 1605 |
+
|
| 1606 |
+
class LatentFinetuneDiffusion(LatentDiffusion):
|
| 1607 |
+
"""
|
| 1608 |
+
Basis for different finetunas, such as inpainting or depth2image
|
| 1609 |
+
To disable finetuning mode, set finetune_keys to None
|
| 1610 |
+
"""
|
| 1611 |
+
|
| 1612 |
+
def __init__(self,
|
| 1613 |
+
concat_keys: tuple,
|
| 1614 |
+
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
|
| 1615 |
+
"model_ema.diffusion_modelinput_blocks00weight"
|
| 1616 |
+
),
|
| 1617 |
+
keep_finetune_dims=4,
|
| 1618 |
+
# if model was trained without concat mode before and we would like to keep these channels
|
| 1619 |
+
c_concat_log_start=None, # to log reconstruction of c_concat codes
|
| 1620 |
+
c_concat_log_end=None,
|
| 1621 |
+
*args, **kwargs
|
| 1622 |
+
):
|
| 1623 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
| 1624 |
+
ignore_keys = kwargs.pop("ignore_keys", list())
|
| 1625 |
+
super().__init__(*args, **kwargs)
|
| 1626 |
+
self.finetune_keys = finetune_keys
|
| 1627 |
+
self.concat_keys = concat_keys
|
| 1628 |
+
self.keep_dims = keep_finetune_dims
|
| 1629 |
+
self.c_concat_log_start = c_concat_log_start
|
| 1630 |
+
self.c_concat_log_end = c_concat_log_end
|
| 1631 |
+
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
|
| 1632 |
+
if exists(ckpt_path):
|
| 1633 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
| 1634 |
+
|
| 1635 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
| 1636 |
+
sd = torch.load(path, map_location="cpu")
|
| 1637 |
+
if "state_dict" in list(sd.keys()):
|
| 1638 |
+
sd = sd["state_dict"]
|
| 1639 |
+
keys = list(sd.keys())
|
| 1640 |
+
for k in keys:
|
| 1641 |
+
for ik in ignore_keys:
|
| 1642 |
+
if k.startswith(ik):
|
| 1643 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 1644 |
+
del sd[k]
|
| 1645 |
+
|
| 1646 |
+
# make it explicit, finetune by including extra input channels
|
| 1647 |
+
if exists(self.finetune_keys) and k in self.finetune_keys:
|
| 1648 |
+
new_entry = None
|
| 1649 |
+
for name, param in self.named_parameters():
|
| 1650 |
+
if name in self.finetune_keys:
|
| 1651 |
+
print(
|
| 1652 |
+
f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
|
| 1653 |
+
new_entry = torch.zeros_like(param) # zero init
|
| 1654 |
+
assert exists(new_entry), 'did not find matching parameter to modify'
|
| 1655 |
+
new_entry[:, :self.keep_dims, ...] = sd[k]
|
| 1656 |
+
sd[k] = new_entry
|
| 1657 |
+
|
| 1658 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
| 1659 |
+
sd, strict=False)
|
| 1660 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 1661 |
+
if len(missing) > 0:
|
| 1662 |
+
print(f"Missing Keys: {missing}")
|
| 1663 |
+
if len(unexpected) > 0:
|
| 1664 |
+
print(f"Unexpected Keys: {unexpected}")
|
| 1665 |
+
|
| 1666 |
+
@torch.no_grad()
|
| 1667 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
| 1668 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
| 1669 |
+
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
| 1670 |
+
use_ema_scope=True,
|
| 1671 |
+
**kwargs):
|
| 1672 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
| 1673 |
+
use_ddim = ddim_steps is not None
|
| 1674 |
+
|
| 1675 |
+
log = dict()
|
| 1676 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
|
| 1677 |
+
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
|
| 1678 |
+
N = min(x.shape[0], N)
|
| 1679 |
+
n_row = min(x.shape[0], n_row)
|
| 1680 |
+
log["inputs"] = x
|
| 1681 |
+
log["reconstruction"] = xrec
|
| 1682 |
+
if self.model.conditioning_key is not None:
|
| 1683 |
+
if hasattr(self.cond_stage_model, "decode"):
|
| 1684 |
+
xc = self.cond_stage_model.decode(c)
|
| 1685 |
+
log["conditioning"] = xc
|
| 1686 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
| 1687 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
| 1688 |
+
log["conditioning"] = xc
|
| 1689 |
+
elif self.cond_stage_key in ['class_label', 'cls']:
|
| 1690 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
| 1691 |
+
log['conditioning'] = xc
|
| 1692 |
+
elif isimage(xc):
|
| 1693 |
+
log["conditioning"] = xc
|
| 1694 |
+
if ismap(xc):
|
| 1695 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
| 1696 |
+
|
| 1697 |
+
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
|
| 1698 |
+
log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
|
| 1699 |
+
|
| 1700 |
+
if plot_diffusion_rows:
|
| 1701 |
+
# get diffusion row
|
| 1702 |
+
diffusion_row = list()
|
| 1703 |
+
z_start = z[:n_row]
|
| 1704 |
+
for t in range(self.num_timesteps):
|
| 1705 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 1706 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 1707 |
+
t = t.to(self.device).long()
|
| 1708 |
+
noise = torch.randn_like(z_start)
|
| 1709 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
| 1710 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
| 1711 |
+
|
| 1712 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
| 1713 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
| 1714 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
| 1715 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
| 1716 |
+
log["diffusion_row"] = diffusion_grid
|
| 1717 |
+
|
| 1718 |
+
if sample:
|
| 1719 |
+
# get denoise row
|
| 1720 |
+
with ema_scope("Sampling"):
|
| 1721 |
+
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
| 1722 |
+
batch_size=N, ddim=use_ddim,
|
| 1723 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
| 1724 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
| 1725 |
+
x_samples = self.decode_first_stage(samples)
|
| 1726 |
+
log["samples"] = x_samples
|
| 1727 |
+
if plot_denoise_rows:
|
| 1728 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
| 1729 |
+
log["denoise_row"] = denoise_grid
|
| 1730 |
+
|
| 1731 |
+
if unconditional_guidance_scale > 1.0:
|
| 1732 |
+
uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
| 1733 |
+
uc_cat = c_cat
|
| 1734 |
+
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
| 1735 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
| 1736 |
+
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
| 1737 |
+
batch_size=N, ddim=use_ddim,
|
| 1738 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
| 1739 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 1740 |
+
unconditional_conditioning=uc_full,
|
| 1741 |
+
)
|
| 1742 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
| 1743 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
| 1744 |
+
|
| 1745 |
+
return log
|
| 1746 |
+
|
| 1747 |
+
|
| 1748 |
+
class LatentInpaintDiffusion(LatentFinetuneDiffusion):
|
| 1749 |
+
"""
|
| 1750 |
+
can either run as pure inpainting model (only concat mode) or with mixed conditionings,
|
| 1751 |
+
e.g. mask as concat and text via cross-attn.
|
| 1752 |
+
To disable finetuning mode, set finetune_keys to None
|
| 1753 |
+
"""
|
| 1754 |
+
|
| 1755 |
+
def __init__(self,
|
| 1756 |
+
concat_keys=("mask", "masked_image"),
|
| 1757 |
+
masked_image_key="masked_image",
|
| 1758 |
+
*args, **kwargs
|
| 1759 |
+
):
|
| 1760 |
+
super().__init__(concat_keys, *args, **kwargs)
|
| 1761 |
+
self.masked_image_key = masked_image_key
|
| 1762 |
+
assert self.masked_image_key in concat_keys
|
| 1763 |
+
|
| 1764 |
+
@torch.no_grad()
|
| 1765 |
+
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
| 1766 |
+
# note: restricted to non-trainable encoders currently
|
| 1767 |
+
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
|
| 1768 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
| 1769 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
| 1770 |
+
|
| 1771 |
+
assert exists(self.concat_keys)
|
| 1772 |
+
c_cat = list()
|
| 1773 |
+
for ck in self.concat_keys:
|
| 1774 |
+
cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
| 1775 |
+
if bs is not None:
|
| 1776 |
+
cc = cc[:bs]
|
| 1777 |
+
cc = cc.to(self.device)
|
| 1778 |
+
bchw = z.shape
|
| 1779 |
+
if ck != self.masked_image_key:
|
| 1780 |
+
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
| 1781 |
+
else:
|
| 1782 |
+
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
|
| 1783 |
+
c_cat.append(cc)
|
| 1784 |
+
c_cat = torch.cat(c_cat, dim=1)
|
| 1785 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
| 1786 |
+
if return_first_stage_outputs:
|
| 1787 |
+
return z, all_conds, x, xrec, xc
|
| 1788 |
+
return z, all_conds
|
| 1789 |
+
|
| 1790 |
+
@torch.no_grad()
|
| 1791 |
+
def log_images(self, *args, **kwargs):
|
| 1792 |
+
log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
|
| 1793 |
+
log["masked_image"] = rearrange(args[0]["masked_image"],
|
| 1794 |
+
'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
| 1795 |
+
return log
|
| 1796 |
+
|
| 1797 |
+
|
| 1798 |
+
class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
|
| 1799 |
+
"""
|
| 1800 |
+
condition on monocular depth estimation
|
| 1801 |
+
"""
|
| 1802 |
+
|
| 1803 |
+
def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
|
| 1804 |
+
super().__init__(concat_keys=concat_keys, *args, **kwargs)
|
| 1805 |
+
self.depth_model = instantiate_from_config(depth_stage_config)
|
| 1806 |
+
self.depth_stage_key = concat_keys[0]
|
| 1807 |
+
|
| 1808 |
+
@torch.no_grad()
|
| 1809 |
+
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
| 1810 |
+
# note: restricted to non-trainable encoders currently
|
| 1811 |
+
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
|
| 1812 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
| 1813 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
| 1814 |
+
|
| 1815 |
+
assert exists(self.concat_keys)
|
| 1816 |
+
assert len(self.concat_keys) == 1
|
| 1817 |
+
c_cat = list()
|
| 1818 |
+
for ck in self.concat_keys:
|
| 1819 |
+
cc = batch[ck]
|
| 1820 |
+
if bs is not None:
|
| 1821 |
+
cc = cc[:bs]
|
| 1822 |
+
cc = cc.to(self.device)
|
| 1823 |
+
cc = self.depth_model(cc)
|
| 1824 |
+
cc = torch.nn.functional.interpolate(
|
| 1825 |
+
cc,
|
| 1826 |
+
size=z.shape[2:],
|
| 1827 |
+
mode="bicubic",
|
| 1828 |
+
align_corners=False,
|
| 1829 |
+
)
|
| 1830 |
+
|
| 1831 |
+
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
|
| 1832 |
+
keepdim=True)
|
| 1833 |
+
cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
|
| 1834 |
+
c_cat.append(cc)
|
| 1835 |
+
c_cat = torch.cat(c_cat, dim=1)
|
| 1836 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
| 1837 |
+
if return_first_stage_outputs:
|
| 1838 |
+
return z, all_conds, x, xrec, xc
|
| 1839 |
+
return z, all_conds
|
| 1840 |
+
|
| 1841 |
+
@torch.no_grad()
|
| 1842 |
+
def log_images(self, *args, **kwargs):
|
| 1843 |
+
log = super().log_images(*args, **kwargs)
|
| 1844 |
+
depth = self.depth_model(args[0][self.depth_stage_key])
|
| 1845 |
+
depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
|
| 1846 |
+
torch.amax(depth, dim=[1, 2, 3], keepdim=True)
|
| 1847 |
+
log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
|
| 1848 |
+
return log
|
| 1849 |
+
|
| 1850 |
+
|
| 1851 |
+
class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
|
| 1852 |
+
"""
|
| 1853 |
+
condition on low-res image (and optionally on some spatial noise augmentation)
|
| 1854 |
+
"""
|
| 1855 |
+
def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
|
| 1856 |
+
low_scale_config=None, low_scale_key=None, *args, **kwargs):
|
| 1857 |
+
super().__init__(concat_keys=concat_keys, *args, **kwargs)
|
| 1858 |
+
self.reshuffle_patch_size = reshuffle_patch_size
|
| 1859 |
+
self.low_scale_model = None
|
| 1860 |
+
if low_scale_config is not None:
|
| 1861 |
+
print("Initializing a low-scale model")
|
| 1862 |
+
assert exists(low_scale_key)
|
| 1863 |
+
self.instantiate_low_stage(low_scale_config)
|
| 1864 |
+
self.low_scale_key = low_scale_key
|
| 1865 |
+
|
| 1866 |
+
def instantiate_low_stage(self, config):
|
| 1867 |
+
model = instantiate_from_config(config)
|
| 1868 |
+
self.low_scale_model = model.eval()
|
| 1869 |
+
self.low_scale_model.train = disabled_train
|
| 1870 |
+
for param in self.low_scale_model.parameters():
|
| 1871 |
+
param.requires_grad = False
|
| 1872 |
+
|
| 1873 |
+
@torch.no_grad()
|
| 1874 |
+
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
| 1875 |
+
# note: restricted to non-trainable encoders currently
|
| 1876 |
+
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
|
| 1877 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
| 1878 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
| 1879 |
+
|
| 1880 |
+
assert exists(self.concat_keys)
|
| 1881 |
+
assert len(self.concat_keys) == 1
|
| 1882 |
+
# optionally make spatial noise_level here
|
| 1883 |
+
c_cat = list()
|
| 1884 |
+
noise_level = None
|
| 1885 |
+
for ck in self.concat_keys:
|
| 1886 |
+
cc = batch[ck]
|
| 1887 |
+
cc = rearrange(cc, 'b h w c -> b c h w')
|
| 1888 |
+
if exists(self.reshuffle_patch_size):
|
| 1889 |
+
assert isinstance(self.reshuffle_patch_size, int)
|
| 1890 |
+
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
|
| 1891 |
+
p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
|
| 1892 |
+
if bs is not None:
|
| 1893 |
+
cc = cc[:bs]
|
| 1894 |
+
cc = cc.to(self.device)
|
| 1895 |
+
if exists(self.low_scale_model) and ck == self.low_scale_key:
|
| 1896 |
+
cc, noise_level = self.low_scale_model(cc)
|
| 1897 |
+
c_cat.append(cc)
|
| 1898 |
+
c_cat = torch.cat(c_cat, dim=1)
|
| 1899 |
+
if exists(noise_level):
|
| 1900 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
|
| 1901 |
+
else:
|
| 1902 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
| 1903 |
+
if return_first_stage_outputs:
|
| 1904 |
+
return z, all_conds, x, xrec, xc
|
| 1905 |
+
return z, all_conds
|
| 1906 |
+
|
| 1907 |
+
@torch.no_grad()
|
| 1908 |
+
def log_images(self, *args, **kwargs):
|
| 1909 |
+
log = super().log_images(*args, **kwargs)
|
| 1910 |
+
log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
|
| 1911 |
+
return log
|
Control-Color/ldm/models/diffusion/dpm_solver/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .sampler import DPMSolverSampler
|
Control-Color/ldm/models/diffusion/dpm_solver/dpm_solver.py
ADDED
|
@@ -0,0 +1,1154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import math
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class NoiseScheduleVP:
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
schedule='discrete',
|
| 11 |
+
betas=None,
|
| 12 |
+
alphas_cumprod=None,
|
| 13 |
+
continuous_beta_0=0.1,
|
| 14 |
+
continuous_beta_1=20.,
|
| 15 |
+
):
|
| 16 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
| 17 |
+
***
|
| 18 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
| 19 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
| 20 |
+
***
|
| 21 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
| 22 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
| 23 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
| 24 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
| 25 |
+
sigma_t = self.marginal_std(t)
|
| 26 |
+
lambda_t = self.marginal_lambda(t)
|
| 27 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
| 28 |
+
t = self.inverse_lambda(lambda_t)
|
| 29 |
+
===============================================================
|
| 30 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
| 31 |
+
1. For discrete-time DPMs:
|
| 32 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
| 33 |
+
t_i = (i + 1) / N
|
| 34 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
| 35 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
| 36 |
+
Args:
|
| 37 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
| 38 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
| 39 |
+
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
| 40 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
| 41 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
| 42 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
| 43 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
| 44 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
| 45 |
+
and
|
| 46 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
| 47 |
+
2. For continuous-time DPMs:
|
| 48 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
| 49 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
| 50 |
+
Args:
|
| 51 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
| 52 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
| 53 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
| 54 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
| 55 |
+
T: A `float` number. The ending time of the forward process.
|
| 56 |
+
===============================================================
|
| 57 |
+
Args:
|
| 58 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
| 59 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
| 60 |
+
Returns:
|
| 61 |
+
A wrapper object of the forward SDE (VP type).
|
| 62 |
+
|
| 63 |
+
===============================================================
|
| 64 |
+
Example:
|
| 65 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
| 66 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
| 67 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
| 68 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
| 69 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
| 70 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
| 74 |
+
raise ValueError(
|
| 75 |
+
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
|
| 76 |
+
schedule))
|
| 77 |
+
|
| 78 |
+
self.schedule = schedule
|
| 79 |
+
if schedule == 'discrete':
|
| 80 |
+
if betas is not None:
|
| 81 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
| 82 |
+
else:
|
| 83 |
+
assert alphas_cumprod is not None
|
| 84 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
| 85 |
+
self.total_N = len(log_alphas)
|
| 86 |
+
self.T = 1.
|
| 87 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
| 88 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
| 89 |
+
else:
|
| 90 |
+
self.total_N = 1000
|
| 91 |
+
self.beta_0 = continuous_beta_0
|
| 92 |
+
self.beta_1 = continuous_beta_1
|
| 93 |
+
self.cosine_s = 0.008
|
| 94 |
+
self.cosine_beta_max = 999.
|
| 95 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
|
| 96 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
| 97 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
| 98 |
+
self.schedule = schedule
|
| 99 |
+
if schedule == 'cosine':
|
| 100 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
| 101 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
| 102 |
+
self.T = 0.9946
|
| 103 |
+
else:
|
| 104 |
+
self.T = 1.
|
| 105 |
+
|
| 106 |
+
def marginal_log_mean_coeff(self, t):
|
| 107 |
+
"""
|
| 108 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
| 109 |
+
"""
|
| 110 |
+
if self.schedule == 'discrete':
|
| 111 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
|
| 112 |
+
self.log_alpha_array.to(t.device)).reshape((-1))
|
| 113 |
+
elif self.schedule == 'linear':
|
| 114 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
| 115 |
+
elif self.schedule == 'cosine':
|
| 116 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
| 117 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
| 118 |
+
return log_alpha_t
|
| 119 |
+
|
| 120 |
+
def marginal_alpha(self, t):
|
| 121 |
+
"""
|
| 122 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
| 123 |
+
"""
|
| 124 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
| 125 |
+
|
| 126 |
+
def marginal_std(self, t):
|
| 127 |
+
"""
|
| 128 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
| 129 |
+
"""
|
| 130 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
| 131 |
+
|
| 132 |
+
def marginal_lambda(self, t):
|
| 133 |
+
"""
|
| 134 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
| 135 |
+
"""
|
| 136 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
| 137 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
| 138 |
+
return log_mean_coeff - log_std
|
| 139 |
+
|
| 140 |
+
def inverse_lambda(self, lamb):
|
| 141 |
+
"""
|
| 142 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
| 143 |
+
"""
|
| 144 |
+
if self.schedule == 'linear':
|
| 145 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
| 146 |
+
Delta = self.beta_0 ** 2 + tmp
|
| 147 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
| 148 |
+
elif self.schedule == 'discrete':
|
| 149 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
| 150 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
|
| 151 |
+
torch.flip(self.t_array.to(lamb.device), [1]))
|
| 152 |
+
return t.reshape((-1,))
|
| 153 |
+
else:
|
| 154 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
| 155 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
|
| 156 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
| 157 |
+
t = t_fn(log_alpha)
|
| 158 |
+
return t
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def model_wrapper(
|
| 162 |
+
model,
|
| 163 |
+
noise_schedule,
|
| 164 |
+
model_type="noise",
|
| 165 |
+
model_kwargs={},
|
| 166 |
+
guidance_type="uncond",
|
| 167 |
+
condition=None,
|
| 168 |
+
unconditional_condition=None,
|
| 169 |
+
guidance_scale=1.,
|
| 170 |
+
classifier_fn=None,
|
| 171 |
+
classifier_kwargs={},
|
| 172 |
+
):
|
| 173 |
+
"""Create a wrapper function for the noise prediction model.
|
| 174 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
| 175 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
| 176 |
+
We support four types of the diffusion model by setting `model_type`:
|
| 177 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
| 178 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
| 179 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
| 180 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
| 181 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
| 182 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
| 183 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
| 184 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
| 185 |
+
|
| 186 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
| 187 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
| 188 |
+
```
|
| 189 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
| 190 |
+
```
|
| 191 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
| 192 |
+
1. "uncond": unconditional sampling by DPMs.
|
| 193 |
+
The input `model` has the following format:
|
| 194 |
+
``
|
| 195 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
| 196 |
+
``
|
| 197 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
| 198 |
+
The input `model` has the following format:
|
| 199 |
+
``
|
| 200 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
| 201 |
+
``
|
| 202 |
+
The input `classifier_fn` has the following format:
|
| 203 |
+
``
|
| 204 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
| 205 |
+
``
|
| 206 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
| 207 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
| 208 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
| 209 |
+
The input `model` has the following format:
|
| 210 |
+
``
|
| 211 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
| 212 |
+
``
|
| 213 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
| 214 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
| 215 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
| 216 |
+
|
| 217 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
| 218 |
+
or continuous-time labels (i.e. epsilon to T).
|
| 219 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
| 220 |
+
``
|
| 221 |
+
def model_fn(x, t_continuous) -> noise:
|
| 222 |
+
t_input = get_model_input_time(t_continuous)
|
| 223 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
| 224 |
+
``
|
| 225 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
| 226 |
+
===============================================================
|
| 227 |
+
Args:
|
| 228 |
+
model: A diffusion model with the corresponding format described above.
|
| 229 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
| 230 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
| 231 |
+
"noise" or "x_start" or "v" or "score".
|
| 232 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
| 233 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
| 234 |
+
"uncond" or "classifier" or "classifier-free".
|
| 235 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
| 236 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
| 237 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
| 238 |
+
Only used for "classifier-free" guidance type.
|
| 239 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
| 240 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
| 241 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
| 242 |
+
Returns:
|
| 243 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
| 244 |
+
"""
|
| 245 |
+
|
| 246 |
+
def get_model_input_time(t_continuous):
|
| 247 |
+
"""
|
| 248 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
| 249 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
| 250 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
| 251 |
+
"""
|
| 252 |
+
if noise_schedule.schedule == 'discrete':
|
| 253 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
| 254 |
+
else:
|
| 255 |
+
return t_continuous
|
| 256 |
+
|
| 257 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
| 258 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
| 259 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
| 260 |
+
t_input = get_model_input_time(t_continuous)
|
| 261 |
+
if cond is None:
|
| 262 |
+
output = model(x, t_input, **model_kwargs)
|
| 263 |
+
else:
|
| 264 |
+
output = model(x, t_input, cond, **model_kwargs)
|
| 265 |
+
if model_type == "noise":
|
| 266 |
+
return output
|
| 267 |
+
elif model_type == "x_start":
|
| 268 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
| 269 |
+
dims = x.dim()
|
| 270 |
+
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
| 271 |
+
elif model_type == "v":
|
| 272 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
| 273 |
+
dims = x.dim()
|
| 274 |
+
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
| 275 |
+
elif model_type == "score":
|
| 276 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
| 277 |
+
dims = x.dim()
|
| 278 |
+
return -expand_dims(sigma_t, dims) * output
|
| 279 |
+
|
| 280 |
+
def cond_grad_fn(x, t_input):
|
| 281 |
+
"""
|
| 282 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
| 283 |
+
"""
|
| 284 |
+
with torch.enable_grad():
|
| 285 |
+
x_in = x.detach().requires_grad_(True)
|
| 286 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
| 287 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
| 288 |
+
|
| 289 |
+
def model_fn(x, t_continuous):
|
| 290 |
+
"""
|
| 291 |
+
The noise predicition model function that is used for DPM-Solver.
|
| 292 |
+
"""
|
| 293 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
| 294 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
| 295 |
+
if guidance_type == "uncond":
|
| 296 |
+
return noise_pred_fn(x, t_continuous)
|
| 297 |
+
elif guidance_type == "classifier":
|
| 298 |
+
assert classifier_fn is not None
|
| 299 |
+
t_input = get_model_input_time(t_continuous)
|
| 300 |
+
cond_grad = cond_grad_fn(x, t_input)
|
| 301 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
| 302 |
+
noise = noise_pred_fn(x, t_continuous)
|
| 303 |
+
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
| 304 |
+
elif guidance_type == "classifier-free":
|
| 305 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
| 306 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
| 307 |
+
else:
|
| 308 |
+
x_in = torch.cat([x] * 2)
|
| 309 |
+
t_in = torch.cat([t_continuous] * 2)
|
| 310 |
+
c_in = torch.cat([unconditional_condition, condition])
|
| 311 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
| 312 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
| 313 |
+
|
| 314 |
+
assert model_type in ["noise", "x_start", "v"]
|
| 315 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
| 316 |
+
return model_fn
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
class DPM_Solver:
|
| 320 |
+
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
|
| 321 |
+
"""Construct a DPM-Solver.
|
| 322 |
+
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
|
| 323 |
+
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
|
| 324 |
+
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
|
| 325 |
+
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
|
| 326 |
+
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
|
| 327 |
+
Args:
|
| 328 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
| 329 |
+
``
|
| 330 |
+
def model_fn(x, t_continuous):
|
| 331 |
+
return noise
|
| 332 |
+
``
|
| 333 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
| 334 |
+
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
|
| 335 |
+
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
|
| 336 |
+
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
|
| 337 |
+
|
| 338 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
| 339 |
+
"""
|
| 340 |
+
self.model = model_fn
|
| 341 |
+
self.noise_schedule = noise_schedule
|
| 342 |
+
self.predict_x0 = predict_x0
|
| 343 |
+
self.thresholding = thresholding
|
| 344 |
+
self.max_val = max_val
|
| 345 |
+
|
| 346 |
+
def noise_prediction_fn(self, x, t):
|
| 347 |
+
"""
|
| 348 |
+
Return the noise prediction model.
|
| 349 |
+
"""
|
| 350 |
+
return self.model(x, t)
|
| 351 |
+
|
| 352 |
+
def data_prediction_fn(self, x, t):
|
| 353 |
+
"""
|
| 354 |
+
Return the data prediction model (with thresholding).
|
| 355 |
+
"""
|
| 356 |
+
noise = self.noise_prediction_fn(x, t)
|
| 357 |
+
dims = x.dim()
|
| 358 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
| 359 |
+
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
| 360 |
+
if self.thresholding:
|
| 361 |
+
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
| 362 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
| 363 |
+
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
| 364 |
+
x0 = torch.clamp(x0, -s, s) / s
|
| 365 |
+
return x0
|
| 366 |
+
|
| 367 |
+
def model_fn(self, x, t):
|
| 368 |
+
"""
|
| 369 |
+
Convert the model to the noise prediction model or the data prediction model.
|
| 370 |
+
"""
|
| 371 |
+
if self.predict_x0:
|
| 372 |
+
return self.data_prediction_fn(x, t)
|
| 373 |
+
else:
|
| 374 |
+
return self.noise_prediction_fn(x, t)
|
| 375 |
+
|
| 376 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
| 377 |
+
"""Compute the intermediate time steps for sampling.
|
| 378 |
+
Args:
|
| 379 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
| 380 |
+
- 'logSNR': uniform logSNR for the time steps.
|
| 381 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
| 382 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
| 383 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
| 384 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
| 385 |
+
N: A `int`. The total number of the spacing of the time steps.
|
| 386 |
+
device: A torch device.
|
| 387 |
+
Returns:
|
| 388 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
| 389 |
+
"""
|
| 390 |
+
if skip_type == 'logSNR':
|
| 391 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
| 392 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
| 393 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
| 394 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
| 395 |
+
elif skip_type == 'time_uniform':
|
| 396 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
| 397 |
+
elif skip_type == 'time_quadratic':
|
| 398 |
+
t_order = 2
|
| 399 |
+
t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
|
| 400 |
+
return t
|
| 401 |
+
else:
|
| 402 |
+
raise ValueError(
|
| 403 |
+
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
| 404 |
+
|
| 405 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
| 406 |
+
"""
|
| 407 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
| 408 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
| 409 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
| 410 |
+
- If order == 1:
|
| 411 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
| 412 |
+
- If order == 2:
|
| 413 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
| 414 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
| 415 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 416 |
+
- If order == 3:
|
| 417 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
| 418 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 419 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
| 420 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
| 421 |
+
============================================
|
| 422 |
+
Args:
|
| 423 |
+
order: A `int`. The max order for the solver (2 or 3).
|
| 424 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
| 425 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
| 426 |
+
- 'logSNR': uniform logSNR for the time steps.
|
| 427 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
| 428 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
| 429 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
| 430 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
| 431 |
+
device: A torch device.
|
| 432 |
+
Returns:
|
| 433 |
+
orders: A list of the solver order of each step.
|
| 434 |
+
"""
|
| 435 |
+
if order == 3:
|
| 436 |
+
K = steps // 3 + 1
|
| 437 |
+
if steps % 3 == 0:
|
| 438 |
+
orders = [3, ] * (K - 2) + [2, 1]
|
| 439 |
+
elif steps % 3 == 1:
|
| 440 |
+
orders = [3, ] * (K - 1) + [1]
|
| 441 |
+
else:
|
| 442 |
+
orders = [3, ] * (K - 1) + [2]
|
| 443 |
+
elif order == 2:
|
| 444 |
+
if steps % 2 == 0:
|
| 445 |
+
K = steps // 2
|
| 446 |
+
orders = [2, ] * K
|
| 447 |
+
else:
|
| 448 |
+
K = steps // 2 + 1
|
| 449 |
+
orders = [2, ] * (K - 1) + [1]
|
| 450 |
+
elif order == 1:
|
| 451 |
+
K = 1
|
| 452 |
+
orders = [1, ] * steps
|
| 453 |
+
else:
|
| 454 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
| 455 |
+
if skip_type == 'logSNR':
|
| 456 |
+
# To reproduce the results in DPM-Solver paper
|
| 457 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
| 458 |
+
else:
|
| 459 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
|
| 460 |
+
torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
|
| 461 |
+
return timesteps_outer, orders
|
| 462 |
+
|
| 463 |
+
def denoise_to_zero_fn(self, x, s):
|
| 464 |
+
"""
|
| 465 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
| 466 |
+
"""
|
| 467 |
+
return self.data_prediction_fn(x, s)
|
| 468 |
+
|
| 469 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
| 470 |
+
"""
|
| 471 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
| 472 |
+
Args:
|
| 473 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 474 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
| 475 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 476 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
| 477 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
| 478 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
| 479 |
+
Returns:
|
| 480 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 481 |
+
"""
|
| 482 |
+
ns = self.noise_schedule
|
| 483 |
+
dims = x.dim()
|
| 484 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
| 485 |
+
h = lambda_t - lambda_s
|
| 486 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
| 487 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
| 488 |
+
alpha_t = torch.exp(log_alpha_t)
|
| 489 |
+
|
| 490 |
+
if self.predict_x0:
|
| 491 |
+
phi_1 = torch.expm1(-h)
|
| 492 |
+
if model_s is None:
|
| 493 |
+
model_s = self.model_fn(x, s)
|
| 494 |
+
x_t = (
|
| 495 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
| 496 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
| 497 |
+
)
|
| 498 |
+
if return_intermediate:
|
| 499 |
+
return x_t, {'model_s': model_s}
|
| 500 |
+
else:
|
| 501 |
+
return x_t
|
| 502 |
+
else:
|
| 503 |
+
phi_1 = torch.expm1(h)
|
| 504 |
+
if model_s is None:
|
| 505 |
+
model_s = self.model_fn(x, s)
|
| 506 |
+
x_t = (
|
| 507 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
| 508 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
| 509 |
+
)
|
| 510 |
+
if return_intermediate:
|
| 511 |
+
return x_t, {'model_s': model_s}
|
| 512 |
+
else:
|
| 513 |
+
return x_t
|
| 514 |
+
|
| 515 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
|
| 516 |
+
solver_type='dpm_solver'):
|
| 517 |
+
"""
|
| 518 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
| 519 |
+
Args:
|
| 520 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 521 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
| 522 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 523 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
| 524 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
| 525 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
| 526 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
| 527 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 528 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 529 |
+
Returns:
|
| 530 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 531 |
+
"""
|
| 532 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
| 533 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
| 534 |
+
if r1 is None:
|
| 535 |
+
r1 = 0.5
|
| 536 |
+
ns = self.noise_schedule
|
| 537 |
+
dims = x.dim()
|
| 538 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
| 539 |
+
h = lambda_t - lambda_s
|
| 540 |
+
lambda_s1 = lambda_s + r1 * h
|
| 541 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
| 542 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
|
| 543 |
+
s1), ns.marginal_log_mean_coeff(t)
|
| 544 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
| 545 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
| 546 |
+
|
| 547 |
+
if self.predict_x0:
|
| 548 |
+
phi_11 = torch.expm1(-r1 * h)
|
| 549 |
+
phi_1 = torch.expm1(-h)
|
| 550 |
+
|
| 551 |
+
if model_s is None:
|
| 552 |
+
model_s = self.model_fn(x, s)
|
| 553 |
+
x_s1 = (
|
| 554 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
| 555 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
| 556 |
+
)
|
| 557 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 558 |
+
if solver_type == 'dpm_solver':
|
| 559 |
+
x_t = (
|
| 560 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
| 561 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
| 562 |
+
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
|
| 563 |
+
)
|
| 564 |
+
elif solver_type == 'taylor':
|
| 565 |
+
x_t = (
|
| 566 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
| 567 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
| 568 |
+
+ (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
|
| 569 |
+
model_s1 - model_s)
|
| 570 |
+
)
|
| 571 |
+
else:
|
| 572 |
+
phi_11 = torch.expm1(r1 * h)
|
| 573 |
+
phi_1 = torch.expm1(h)
|
| 574 |
+
|
| 575 |
+
if model_s is None:
|
| 576 |
+
model_s = self.model_fn(x, s)
|
| 577 |
+
x_s1 = (
|
| 578 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
| 579 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
| 580 |
+
)
|
| 581 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 582 |
+
if solver_type == 'dpm_solver':
|
| 583 |
+
x_t = (
|
| 584 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
| 585 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
| 586 |
+
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
|
| 587 |
+
)
|
| 588 |
+
elif solver_type == 'taylor':
|
| 589 |
+
x_t = (
|
| 590 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
| 591 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
| 592 |
+
- (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
|
| 593 |
+
)
|
| 594 |
+
if return_intermediate:
|
| 595 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
| 596 |
+
else:
|
| 597 |
+
return x_t
|
| 598 |
+
|
| 599 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
|
| 600 |
+
return_intermediate=False, solver_type='dpm_solver'):
|
| 601 |
+
"""
|
| 602 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
| 603 |
+
Args:
|
| 604 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 605 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
| 606 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 607 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
| 608 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
| 609 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
| 610 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
| 611 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
| 612 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
| 613 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
| 614 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 615 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 616 |
+
Returns:
|
| 617 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 618 |
+
"""
|
| 619 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
| 620 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
| 621 |
+
if r1 is None:
|
| 622 |
+
r1 = 1. / 3.
|
| 623 |
+
if r2 is None:
|
| 624 |
+
r2 = 2. / 3.
|
| 625 |
+
ns = self.noise_schedule
|
| 626 |
+
dims = x.dim()
|
| 627 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
| 628 |
+
h = lambda_t - lambda_s
|
| 629 |
+
lambda_s1 = lambda_s + r1 * h
|
| 630 |
+
lambda_s2 = lambda_s + r2 * h
|
| 631 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
| 632 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
| 633 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
|
| 634 |
+
s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
| 635 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
|
| 636 |
+
s2), ns.marginal_std(t)
|
| 637 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
| 638 |
+
|
| 639 |
+
if self.predict_x0:
|
| 640 |
+
phi_11 = torch.expm1(-r1 * h)
|
| 641 |
+
phi_12 = torch.expm1(-r2 * h)
|
| 642 |
+
phi_1 = torch.expm1(-h)
|
| 643 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
| 644 |
+
phi_2 = phi_1 / h + 1.
|
| 645 |
+
phi_3 = phi_2 / h - 0.5
|
| 646 |
+
|
| 647 |
+
if model_s is None:
|
| 648 |
+
model_s = self.model_fn(x, s)
|
| 649 |
+
if model_s1 is None:
|
| 650 |
+
x_s1 = (
|
| 651 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
| 652 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
| 653 |
+
)
|
| 654 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 655 |
+
x_s2 = (
|
| 656 |
+
expand_dims(sigma_s2 / sigma_s, dims) * x
|
| 657 |
+
- expand_dims(alpha_s2 * phi_12, dims) * model_s
|
| 658 |
+
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
|
| 659 |
+
)
|
| 660 |
+
model_s2 = self.model_fn(x_s2, s2)
|
| 661 |
+
if solver_type == 'dpm_solver':
|
| 662 |
+
x_t = (
|
| 663 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
| 664 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
| 665 |
+
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
|
| 666 |
+
)
|
| 667 |
+
elif solver_type == 'taylor':
|
| 668 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
| 669 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
| 670 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
| 671 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
| 672 |
+
x_t = (
|
| 673 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
| 674 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
| 675 |
+
+ expand_dims(alpha_t * phi_2, dims) * D1
|
| 676 |
+
- expand_dims(alpha_t * phi_3, dims) * D2
|
| 677 |
+
)
|
| 678 |
+
else:
|
| 679 |
+
phi_11 = torch.expm1(r1 * h)
|
| 680 |
+
phi_12 = torch.expm1(r2 * h)
|
| 681 |
+
phi_1 = torch.expm1(h)
|
| 682 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
| 683 |
+
phi_2 = phi_1 / h - 1.
|
| 684 |
+
phi_3 = phi_2 / h - 0.5
|
| 685 |
+
|
| 686 |
+
if model_s is None:
|
| 687 |
+
model_s = self.model_fn(x, s)
|
| 688 |
+
if model_s1 is None:
|
| 689 |
+
x_s1 = (
|
| 690 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
| 691 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
| 692 |
+
)
|
| 693 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 694 |
+
x_s2 = (
|
| 695 |
+
expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
|
| 696 |
+
- expand_dims(sigma_s2 * phi_12, dims) * model_s
|
| 697 |
+
- r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
|
| 698 |
+
)
|
| 699 |
+
model_s2 = self.model_fn(x_s2, s2)
|
| 700 |
+
if solver_type == 'dpm_solver':
|
| 701 |
+
x_t = (
|
| 702 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
| 703 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
| 704 |
+
- (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
|
| 705 |
+
)
|
| 706 |
+
elif solver_type == 'taylor':
|
| 707 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
| 708 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
| 709 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
| 710 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
| 711 |
+
x_t = (
|
| 712 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
| 713 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
| 714 |
+
- expand_dims(sigma_t * phi_2, dims) * D1
|
| 715 |
+
- expand_dims(sigma_t * phi_3, dims) * D2
|
| 716 |
+
)
|
| 717 |
+
|
| 718 |
+
if return_intermediate:
|
| 719 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
| 720 |
+
else:
|
| 721 |
+
return x_t
|
| 722 |
+
|
| 723 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
|
| 724 |
+
"""
|
| 725 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
| 726 |
+
Args:
|
| 727 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 728 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
| 729 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
| 730 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 731 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 732 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 733 |
+
Returns:
|
| 734 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 735 |
+
"""
|
| 736 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
| 737 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
| 738 |
+
ns = self.noise_schedule
|
| 739 |
+
dims = x.dim()
|
| 740 |
+
model_prev_1, model_prev_0 = model_prev_list
|
| 741 |
+
t_prev_1, t_prev_0 = t_prev_list
|
| 742 |
+
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
|
| 743 |
+
t_prev_0), ns.marginal_lambda(t)
|
| 744 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
| 745 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
| 746 |
+
alpha_t = torch.exp(log_alpha_t)
|
| 747 |
+
|
| 748 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
| 749 |
+
h = lambda_t - lambda_prev_0
|
| 750 |
+
r0 = h_0 / h
|
| 751 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
| 752 |
+
if self.predict_x0:
|
| 753 |
+
if solver_type == 'dpm_solver':
|
| 754 |
+
x_t = (
|
| 755 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
| 756 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
| 757 |
+
- 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
|
| 758 |
+
)
|
| 759 |
+
elif solver_type == 'taylor':
|
| 760 |
+
x_t = (
|
| 761 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
| 762 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
| 763 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
|
| 764 |
+
)
|
| 765 |
+
else:
|
| 766 |
+
if solver_type == 'dpm_solver':
|
| 767 |
+
x_t = (
|
| 768 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
| 769 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
| 770 |
+
- 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
|
| 771 |
+
)
|
| 772 |
+
elif solver_type == 'taylor':
|
| 773 |
+
x_t = (
|
| 774 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
| 775 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
| 776 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
|
| 777 |
+
)
|
| 778 |
+
return x_t
|
| 779 |
+
|
| 780 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
|
| 781 |
+
"""
|
| 782 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
| 783 |
+
Args:
|
| 784 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 785 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
| 786 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
| 787 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 788 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 789 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 790 |
+
Returns:
|
| 791 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 792 |
+
"""
|
| 793 |
+
ns = self.noise_schedule
|
| 794 |
+
dims = x.dim()
|
| 795 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
| 796 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
| 797 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
|
| 798 |
+
t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
| 799 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
| 800 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
| 801 |
+
alpha_t = torch.exp(log_alpha_t)
|
| 802 |
+
|
| 803 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
| 804 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
| 805 |
+
h = lambda_t - lambda_prev_0
|
| 806 |
+
r0, r1 = h_0 / h, h_1 / h
|
| 807 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
| 808 |
+
D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
|
| 809 |
+
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
|
| 810 |
+
D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
|
| 811 |
+
if self.predict_x0:
|
| 812 |
+
x_t = (
|
| 813 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
| 814 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
| 815 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
|
| 816 |
+
- expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
|
| 817 |
+
)
|
| 818 |
+
else:
|
| 819 |
+
x_t = (
|
| 820 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
| 821 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
| 822 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
|
| 823 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
|
| 824 |
+
)
|
| 825 |
+
return x_t
|
| 826 |
+
|
| 827 |
+
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
|
| 828 |
+
r2=None):
|
| 829 |
+
"""
|
| 830 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
| 831 |
+
Args:
|
| 832 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 833 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
| 834 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 835 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
| 836 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
| 837 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 838 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 839 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
| 840 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
| 841 |
+
Returns:
|
| 842 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 843 |
+
"""
|
| 844 |
+
if order == 1:
|
| 845 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
| 846 |
+
elif order == 2:
|
| 847 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
|
| 848 |
+
solver_type=solver_type, r1=r1)
|
| 849 |
+
elif order == 3:
|
| 850 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
|
| 851 |
+
solver_type=solver_type, r1=r1, r2=r2)
|
| 852 |
+
else:
|
| 853 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
| 854 |
+
|
| 855 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
|
| 856 |
+
"""
|
| 857 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
| 858 |
+
Args:
|
| 859 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 860 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
| 861 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
| 862 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 863 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
| 864 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 865 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 866 |
+
Returns:
|
| 867 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 868 |
+
"""
|
| 869 |
+
if order == 1:
|
| 870 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
| 871 |
+
elif order == 2:
|
| 872 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
| 873 |
+
elif order == 3:
|
| 874 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
| 875 |
+
else:
|
| 876 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
| 877 |
+
|
| 878 |
+
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
|
| 879 |
+
solver_type='dpm_solver'):
|
| 880 |
+
"""
|
| 881 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
| 882 |
+
Args:
|
| 883 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
| 884 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
| 885 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
| 886 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
| 887 |
+
h_init: A `float`. The initial step size (for logSNR).
|
| 888 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
| 889 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
| 890 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
| 891 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
| 892 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
| 893 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 894 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 895 |
+
Returns:
|
| 896 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
| 897 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. PichΓ©-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
| 898 |
+
"""
|
| 899 |
+
ns = self.noise_schedule
|
| 900 |
+
s = t_T * torch.ones((x.shape[0],)).to(x)
|
| 901 |
+
lambda_s = ns.marginal_lambda(s)
|
| 902 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
| 903 |
+
h = h_init * torch.ones_like(s).to(x)
|
| 904 |
+
x_prev = x
|
| 905 |
+
nfe = 0
|
| 906 |
+
if order == 2:
|
| 907 |
+
r1 = 0.5
|
| 908 |
+
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
| 909 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
| 910 |
+
solver_type=solver_type,
|
| 911 |
+
**kwargs)
|
| 912 |
+
elif order == 3:
|
| 913 |
+
r1, r2 = 1. / 3., 2. / 3.
|
| 914 |
+
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
| 915 |
+
return_intermediate=True,
|
| 916 |
+
solver_type=solver_type)
|
| 917 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
|
| 918 |
+
solver_type=solver_type,
|
| 919 |
+
**kwargs)
|
| 920 |
+
else:
|
| 921 |
+
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
| 922 |
+
while torch.abs((s - t_0)).mean() > t_err:
|
| 923 |
+
t = ns.inverse_lambda(lambda_s + h)
|
| 924 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
| 925 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
| 926 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
| 927 |
+
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
| 928 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
| 929 |
+
if torch.all(E <= 1.):
|
| 930 |
+
x = x_higher
|
| 931 |
+
s = t
|
| 932 |
+
x_prev = x_lower
|
| 933 |
+
lambda_s = ns.marginal_lambda(s)
|
| 934 |
+
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
| 935 |
+
nfe += order
|
| 936 |
+
print('adaptive solver nfe', nfe)
|
| 937 |
+
return x
|
| 938 |
+
|
| 939 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
| 940 |
+
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
| 941 |
+
atol=0.0078, rtol=0.05,
|
| 942 |
+
):
|
| 943 |
+
"""
|
| 944 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
| 945 |
+
=====================================================
|
| 946 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
| 947 |
+
- 'singlestep':
|
| 948 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
| 949 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
| 950 |
+
The total number of function evaluations (NFE) == `steps`.
|
| 951 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
| 952 |
+
- If `order` == 1:
|
| 953 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
| 954 |
+
- If `order` == 2:
|
| 955 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
| 956 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
| 957 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 958 |
+
- If `order` == 3:
|
| 959 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
| 960 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 961 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
| 962 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
| 963 |
+
- 'multistep':
|
| 964 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
| 965 |
+
We initialize the first `order` values by lower order multistep solvers.
|
| 966 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
| 967 |
+
Denote K = steps.
|
| 968 |
+
- If `order` == 1:
|
| 969 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
| 970 |
+
- If `order` == 2:
|
| 971 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
| 972 |
+
- If `order` == 3:
|
| 973 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
| 974 |
+
- 'singlestep_fixed':
|
| 975 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
| 976 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
| 977 |
+
- 'adaptive':
|
| 978 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
| 979 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
| 980 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
| 981 |
+
(NFE) and the sample quality.
|
| 982 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
| 983 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
| 984 |
+
=====================================================
|
| 985 |
+
Some advices for choosing the algorithm:
|
| 986 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
| 987 |
+
Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
|
| 988 |
+
e.g.
|
| 989 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
|
| 990 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
| 991 |
+
skip_type='time_uniform', method='singlestep')
|
| 992 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
| 993 |
+
Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
|
| 994 |
+
e.g.
|
| 995 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
|
| 996 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
| 997 |
+
skip_type='time_uniform', method='multistep')
|
| 998 |
+
We support three types of `skip_type`:
|
| 999 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
| 1000 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
| 1001 |
+
- 'time_quadratic': quadratic time for the time steps.
|
| 1002 |
+
=====================================================
|
| 1003 |
+
Args:
|
| 1004 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
| 1005 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
| 1006 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
| 1007 |
+
t_start: A `float`. The starting time of the sampling.
|
| 1008 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
| 1009 |
+
t_end: A `float`. The ending time of the sampling.
|
| 1010 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
| 1011 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
| 1012 |
+
For discrete-time DPMs:
|
| 1013 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
| 1014 |
+
For continuous-time DPMs:
|
| 1015 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
| 1016 |
+
order: A `int`. The order of DPM-Solver.
|
| 1017 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
| 1018 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
| 1019 |
+
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
| 1020 |
+
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
| 1021 |
+
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
| 1022 |
+
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
| 1023 |
+
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
| 1024 |
+
(such as CIFAR-10). However, we observed that such trick does not matter for
|
| 1025 |
+
high-resolutional images. As it needs an additional NFE, we do not recommend
|
| 1026 |
+
it for high-resolutional images.
|
| 1027 |
+
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
| 1028 |
+
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
| 1029 |
+
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
| 1030 |
+
(especially for steps <= 10). So we recommend to set it to be `True`.
|
| 1031 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
|
| 1032 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
| 1033 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
| 1034 |
+
Returns:
|
| 1035 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
| 1036 |
+
"""
|
| 1037 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
| 1038 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
| 1039 |
+
device = x.device
|
| 1040 |
+
if method == 'adaptive':
|
| 1041 |
+
with torch.no_grad():
|
| 1042 |
+
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
|
| 1043 |
+
solver_type=solver_type)
|
| 1044 |
+
elif method == 'multistep':
|
| 1045 |
+
assert steps >= order
|
| 1046 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
| 1047 |
+
assert timesteps.shape[0] - 1 == steps
|
| 1048 |
+
with torch.no_grad():
|
| 1049 |
+
vec_t = timesteps[0].expand((x.shape[0]))
|
| 1050 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
| 1051 |
+
t_prev_list = [vec_t]
|
| 1052 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
| 1053 |
+
for init_order in tqdm(range(1, order), desc="DPM init order"):
|
| 1054 |
+
vec_t = timesteps[init_order].expand(x.shape[0])
|
| 1055 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
|
| 1056 |
+
solver_type=solver_type)
|
| 1057 |
+
model_prev_list.append(self.model_fn(x, vec_t))
|
| 1058 |
+
t_prev_list.append(vec_t)
|
| 1059 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
| 1060 |
+
for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
|
| 1061 |
+
vec_t = timesteps[step].expand(x.shape[0])
|
| 1062 |
+
if lower_order_final and steps < 15:
|
| 1063 |
+
step_order = min(order, steps + 1 - step)
|
| 1064 |
+
else:
|
| 1065 |
+
step_order = order
|
| 1066 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
|
| 1067 |
+
solver_type=solver_type)
|
| 1068 |
+
for i in range(order - 1):
|
| 1069 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
| 1070 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
| 1071 |
+
t_prev_list[-1] = vec_t
|
| 1072 |
+
# We do not need to evaluate the final model value.
|
| 1073 |
+
if step < steps:
|
| 1074 |
+
model_prev_list[-1] = self.model_fn(x, vec_t)
|
| 1075 |
+
elif method in ['singlestep', 'singlestep_fixed']:
|
| 1076 |
+
if method == 'singlestep':
|
| 1077 |
+
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
|
| 1078 |
+
skip_type=skip_type,
|
| 1079 |
+
t_T=t_T, t_0=t_0,
|
| 1080 |
+
device=device)
|
| 1081 |
+
elif method == 'singlestep_fixed':
|
| 1082 |
+
K = steps // order
|
| 1083 |
+
orders = [order, ] * K
|
| 1084 |
+
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
| 1085 |
+
for i, order in enumerate(orders):
|
| 1086 |
+
t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
|
| 1087 |
+
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
|
| 1088 |
+
N=order, device=device)
|
| 1089 |
+
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
| 1090 |
+
vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
|
| 1091 |
+
h = lambda_inner[-1] - lambda_inner[0]
|
| 1092 |
+
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
| 1093 |
+
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
| 1094 |
+
x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
|
| 1095 |
+
if denoise_to_zero:
|
| 1096 |
+
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
| 1097 |
+
return x
|
| 1098 |
+
|
| 1099 |
+
|
| 1100 |
+
#############################################################
|
| 1101 |
+
# other utility functions
|
| 1102 |
+
#############################################################
|
| 1103 |
+
|
| 1104 |
+
def interpolate_fn(x, xp, yp):
|
| 1105 |
+
"""
|
| 1106 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
| 1107 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
| 1108 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
| 1109 |
+
Args:
|
| 1110 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
| 1111 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
| 1112 |
+
yp: PyTorch tensor with shape [C, K].
|
| 1113 |
+
Returns:
|
| 1114 |
+
The function values f(x), with shape [N, C].
|
| 1115 |
+
"""
|
| 1116 |
+
N, K = x.shape[0], xp.shape[1]
|
| 1117 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
| 1118 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
| 1119 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
| 1120 |
+
cand_start_idx = x_idx - 1
|
| 1121 |
+
start_idx = torch.where(
|
| 1122 |
+
torch.eq(x_idx, 0),
|
| 1123 |
+
torch.tensor(1, device=x.device),
|
| 1124 |
+
torch.where(
|
| 1125 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
| 1126 |
+
),
|
| 1127 |
+
)
|
| 1128 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
| 1129 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
| 1130 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
| 1131 |
+
start_idx2 = torch.where(
|
| 1132 |
+
torch.eq(x_idx, 0),
|
| 1133 |
+
torch.tensor(0, device=x.device),
|
| 1134 |
+
torch.where(
|
| 1135 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
| 1136 |
+
),
|
| 1137 |
+
)
|
| 1138 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
| 1139 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
| 1140 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
| 1141 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
| 1142 |
+
return cand
|
| 1143 |
+
|
| 1144 |
+
|
| 1145 |
+
def expand_dims(v, dims):
|
| 1146 |
+
"""
|
| 1147 |
+
Expand the tensor `v` to the dim `dims`.
|
| 1148 |
+
Args:
|
| 1149 |
+
`v`: a PyTorch tensor with shape [N].
|
| 1150 |
+
`dim`: a `int`.
|
| 1151 |
+
Returns:
|
| 1152 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
| 1153 |
+
"""
|
| 1154 |
+
return v[(...,) + (None,) * (dims - 1)]
|
Control-Color/ldm/models/diffusion/dpm_solver/sampler.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
MODEL_TYPES = {
|
| 8 |
+
"eps": "noise",
|
| 9 |
+
"v": "v"
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class DPMSolverSampler(object):
|
| 14 |
+
def __init__(self, model, **kwargs):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.model = model
|
| 17 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
|
| 18 |
+
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
|
| 19 |
+
|
| 20 |
+
def register_buffer(self, name, attr):
|
| 21 |
+
if type(attr) == torch.Tensor:
|
| 22 |
+
if attr.device != torch.device("cuda"):
|
| 23 |
+
attr = attr.to(torch.device("cuda"))
|
| 24 |
+
setattr(self, name, attr)
|
| 25 |
+
|
| 26 |
+
@torch.no_grad()
|
| 27 |
+
def sample(self,
|
| 28 |
+
S,
|
| 29 |
+
batch_size,
|
| 30 |
+
shape,
|
| 31 |
+
conditioning=None,
|
| 32 |
+
callback=None,
|
| 33 |
+
normals_sequence=None,
|
| 34 |
+
img_callback=None,
|
| 35 |
+
quantize_x0=False,
|
| 36 |
+
eta=0.,
|
| 37 |
+
mask=None,
|
| 38 |
+
x0=None,
|
| 39 |
+
temperature=1.,
|
| 40 |
+
noise_dropout=0.,
|
| 41 |
+
score_corrector=None,
|
| 42 |
+
corrector_kwargs=None,
|
| 43 |
+
verbose=True,
|
| 44 |
+
x_T=None,
|
| 45 |
+
log_every_t=100,
|
| 46 |
+
unconditional_guidance_scale=1.,
|
| 47 |
+
unconditional_conditioning=None,
|
| 48 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 49 |
+
**kwargs
|
| 50 |
+
):
|
| 51 |
+
if conditioning is not None:
|
| 52 |
+
if isinstance(conditioning, dict):
|
| 53 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
| 54 |
+
if cbs != batch_size:
|
| 55 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 56 |
+
else:
|
| 57 |
+
if conditioning.shape[0] != batch_size:
|
| 58 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 59 |
+
|
| 60 |
+
# sampling
|
| 61 |
+
C, H, W = shape
|
| 62 |
+
size = (batch_size, C, H, W)
|
| 63 |
+
|
| 64 |
+
print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
|
| 65 |
+
|
| 66 |
+
device = self.model.betas.device
|
| 67 |
+
if x_T is None:
|
| 68 |
+
img = torch.randn(size, device=device)
|
| 69 |
+
else:
|
| 70 |
+
img = x_T
|
| 71 |
+
|
| 72 |
+
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
|
| 73 |
+
|
| 74 |
+
model_fn = model_wrapper(
|
| 75 |
+
lambda x, t, c: self.model.apply_model(x, t, c),
|
| 76 |
+
ns,
|
| 77 |
+
model_type=MODEL_TYPES[self.model.parameterization],
|
| 78 |
+
guidance_type="classifier-free",
|
| 79 |
+
condition=conditioning,
|
| 80 |
+
unconditional_condition=unconditional_conditioning,
|
| 81 |
+
guidance_scale=unconditional_guidance_scale,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
|
| 85 |
+
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
|
| 86 |
+
|
| 87 |
+
return x.to(device), None
|
Control-Color/ldm/models/diffusion/plms.py
ADDED
|
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from functools import partial
|
| 7 |
+
|
| 8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
| 9 |
+
from ldm.models.diffusion.sampling_util import norm_thresholding
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class PLMSSampler(object):
|
| 13 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
| 14 |
+
super().__init__()
|
| 15 |
+
self.model = model
|
| 16 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
| 17 |
+
self.schedule = schedule
|
| 18 |
+
|
| 19 |
+
def register_buffer(self, name, attr):
|
| 20 |
+
if type(attr) == torch.Tensor:
|
| 21 |
+
if attr.device != torch.device("cuda"):
|
| 22 |
+
attr = attr.to(torch.device("cuda"))
|
| 23 |
+
setattr(self, name, attr)
|
| 24 |
+
|
| 25 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
| 26 |
+
if ddim_eta != 0:
|
| 27 |
+
raise ValueError('ddim_eta must be 0 for PLMS')
|
| 28 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
| 29 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
| 30 |
+
alphas_cumprod = self.model.alphas_cumprod
|
| 31 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
| 32 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
| 33 |
+
|
| 34 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
| 35 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 36 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
| 37 |
+
|
| 38 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 39 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
| 40 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
| 41 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
| 42 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
| 43 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
| 44 |
+
|
| 45 |
+
# ddim sampling parameters
|
| 46 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
| 47 |
+
ddim_timesteps=self.ddim_timesteps,
|
| 48 |
+
eta=ddim_eta,verbose=verbose)
|
| 49 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
| 50 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
| 51 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
| 52 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
| 53 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
| 54 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
| 55 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
| 56 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
| 57 |
+
|
| 58 |
+
@torch.no_grad()
|
| 59 |
+
def sample(self,
|
| 60 |
+
S,
|
| 61 |
+
batch_size,
|
| 62 |
+
shape,
|
| 63 |
+
conditioning=None,
|
| 64 |
+
callback=None,
|
| 65 |
+
normals_sequence=None,
|
| 66 |
+
img_callback=None,
|
| 67 |
+
quantize_x0=False,
|
| 68 |
+
eta=0.,
|
| 69 |
+
mask=None,
|
| 70 |
+
x0=None,
|
| 71 |
+
temperature=1.,
|
| 72 |
+
noise_dropout=0.,
|
| 73 |
+
score_corrector=None,
|
| 74 |
+
corrector_kwargs=None,
|
| 75 |
+
verbose=True,
|
| 76 |
+
x_T=None,
|
| 77 |
+
log_every_t=100,
|
| 78 |
+
unconditional_guidance_scale=1.,
|
| 79 |
+
unconditional_conditioning=None,
|
| 80 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 81 |
+
dynamic_threshold=None,
|
| 82 |
+
**kwargs
|
| 83 |
+
):
|
| 84 |
+
if conditioning is not None:
|
| 85 |
+
if isinstance(conditioning, dict):
|
| 86 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
| 87 |
+
if cbs != batch_size:
|
| 88 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 89 |
+
else:
|
| 90 |
+
if conditioning.shape[0] != batch_size:
|
| 91 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 92 |
+
|
| 93 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
| 94 |
+
# sampling
|
| 95 |
+
C, H, W = shape
|
| 96 |
+
size = (batch_size, C, H, W)
|
| 97 |
+
print(f'Data shape for PLMS sampling is {size}')
|
| 98 |
+
|
| 99 |
+
samples, intermediates = self.plms_sampling(conditioning, size,
|
| 100 |
+
callback=callback,
|
| 101 |
+
img_callback=img_callback,
|
| 102 |
+
quantize_denoised=quantize_x0,
|
| 103 |
+
mask=mask, x0=x0,
|
| 104 |
+
ddim_use_original_steps=False,
|
| 105 |
+
noise_dropout=noise_dropout,
|
| 106 |
+
temperature=temperature,
|
| 107 |
+
score_corrector=score_corrector,
|
| 108 |
+
corrector_kwargs=corrector_kwargs,
|
| 109 |
+
x_T=x_T,
|
| 110 |
+
log_every_t=log_every_t,
|
| 111 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 112 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 113 |
+
dynamic_threshold=dynamic_threshold,
|
| 114 |
+
)
|
| 115 |
+
return samples, intermediates
|
| 116 |
+
|
| 117 |
+
@torch.no_grad()
|
| 118 |
+
def plms_sampling(self, cond, shape,
|
| 119 |
+
x_T=None, ddim_use_original_steps=False,
|
| 120 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
| 121 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
| 122 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 123 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
| 124 |
+
dynamic_threshold=None):
|
| 125 |
+
device = self.model.betas.device
|
| 126 |
+
b = shape[0]
|
| 127 |
+
if x_T is None:
|
| 128 |
+
img = torch.randn(shape, device=device)
|
| 129 |
+
else:
|
| 130 |
+
img = x_T
|
| 131 |
+
|
| 132 |
+
if timesteps is None:
|
| 133 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
| 134 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
| 135 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
| 136 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
| 137 |
+
|
| 138 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
| 139 |
+
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
| 140 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
| 141 |
+
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
| 142 |
+
|
| 143 |
+
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
| 144 |
+
old_eps = []
|
| 145 |
+
|
| 146 |
+
for i, step in enumerate(iterator):
|
| 147 |
+
index = total_steps - i - 1
|
| 148 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
| 149 |
+
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
| 150 |
+
|
| 151 |
+
if mask is not None:
|
| 152 |
+
assert x0 is not None
|
| 153 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
| 154 |
+
img = img_orig * mask + (1. - mask) * img
|
| 155 |
+
|
| 156 |
+
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
| 157 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
| 158 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
| 159 |
+
corrector_kwargs=corrector_kwargs,
|
| 160 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 161 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 162 |
+
old_eps=old_eps, t_next=ts_next,
|
| 163 |
+
dynamic_threshold=dynamic_threshold)
|
| 164 |
+
img, pred_x0, e_t = outs
|
| 165 |
+
old_eps.append(e_t)
|
| 166 |
+
if len(old_eps) >= 4:
|
| 167 |
+
old_eps.pop(0)
|
| 168 |
+
if callback: callback(i)
|
| 169 |
+
if img_callback: img_callback(pred_x0, i)
|
| 170 |
+
|
| 171 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
| 172 |
+
intermediates['x_inter'].append(img)
|
| 173 |
+
intermediates['pred_x0'].append(pred_x0)
|
| 174 |
+
|
| 175 |
+
return img, intermediates
|
| 176 |
+
|
| 177 |
+
@torch.no_grad()
|
| 178 |
+
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 179 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 180 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
|
| 181 |
+
dynamic_threshold=None):
|
| 182 |
+
b, *_, device = *x.shape, x.device
|
| 183 |
+
|
| 184 |
+
def get_model_output(x, t):
|
| 185 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 186 |
+
e_t = self.model.apply_model(x, t, c)
|
| 187 |
+
else:
|
| 188 |
+
x_in = torch.cat([x] * 2)
|
| 189 |
+
t_in = torch.cat([t] * 2)
|
| 190 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
| 191 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
| 192 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
| 193 |
+
|
| 194 |
+
if score_corrector is not None:
|
| 195 |
+
assert self.model.parameterization == "eps"
|
| 196 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
| 197 |
+
|
| 198 |
+
return e_t
|
| 199 |
+
|
| 200 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
| 201 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
| 202 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
| 203 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
| 204 |
+
|
| 205 |
+
def get_x_prev_and_pred_x0(e_t, index):
|
| 206 |
+
# select parameters corresponding to the currently considered timestep
|
| 207 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
| 208 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
| 209 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
| 210 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
| 211 |
+
|
| 212 |
+
# current prediction for x_0
|
| 213 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 214 |
+
if quantize_denoised:
|
| 215 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 216 |
+
if dynamic_threshold is not None:
|
| 217 |
+
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
| 218 |
+
# direction pointing to x_t
|
| 219 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
| 220 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
| 221 |
+
if noise_dropout > 0.:
|
| 222 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 223 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
| 224 |
+
return x_prev, pred_x0
|
| 225 |
+
|
| 226 |
+
e_t = get_model_output(x, t)
|
| 227 |
+
if len(old_eps) == 0:
|
| 228 |
+
# Pseudo Improved Euler (2nd order)
|
| 229 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
| 230 |
+
e_t_next = get_model_output(x_prev, t_next)
|
| 231 |
+
e_t_prime = (e_t + e_t_next) / 2
|
| 232 |
+
elif len(old_eps) == 1:
|
| 233 |
+
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
| 234 |
+
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
| 235 |
+
elif len(old_eps) == 2:
|
| 236 |
+
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
| 237 |
+
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
| 238 |
+
elif len(old_eps) >= 3:
|
| 239 |
+
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
| 240 |
+
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
| 241 |
+
|
| 242 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
| 243 |
+
|
| 244 |
+
return x_prev, pred_x0, e_t
|
Control-Color/ldm/models/diffusion/sampling_util.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def append_dims(x, target_dims):
|
| 6 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
| 7 |
+
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
| 8 |
+
dims_to_append = target_dims - x.ndim
|
| 9 |
+
if dims_to_append < 0:
|
| 10 |
+
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
| 11 |
+
return x[(...,) + (None,) * dims_to_append]
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def norm_thresholding(x0, value):
|
| 15 |
+
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
| 16 |
+
return x0 * (value / s)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def spatial_norm_thresholding(x0, value):
|
| 20 |
+
# b c h w
|
| 21 |
+
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
| 22 |
+
return x0 * (value / s)
|
Control-Color/ldm/models/logger.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torchvision
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from pytorch_lightning.callbacks import Callback
|
| 8 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
| 9 |
+
|
| 10 |
+
# import pdb
|
| 11 |
+
|
| 12 |
+
class ImageLogger(Callback):
|
| 13 |
+
def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True,
|
| 14 |
+
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
|
| 15 |
+
log_images_kwargs=None,ckpt_dir="./ckpt"):
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.rescale = rescale
|
| 18 |
+
self.batch_freq = batch_frequency
|
| 19 |
+
self.max_images = max_images
|
| 20 |
+
if not increase_log_steps:
|
| 21 |
+
self.log_steps = [self.batch_freq]
|
| 22 |
+
self.clamp = clamp
|
| 23 |
+
self.disabled = disabled
|
| 24 |
+
self.log_on_batch_idx = log_on_batch_idx
|
| 25 |
+
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
| 26 |
+
self.log_first_step = log_first_step
|
| 27 |
+
self.ckpt_dir=ckpt_dir
|
| 28 |
+
self.global_save_num=-2000
|
| 29 |
+
self.global_save_num1=-100
|
| 30 |
+
|
| 31 |
+
@rank_zero_only
|
| 32 |
+
def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
|
| 33 |
+
root = os.path.join(save_dir, "image_log", split)
|
| 34 |
+
# print(images)
|
| 35 |
+
for k in images:
|
| 36 |
+
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
| 37 |
+
if self.rescale:
|
| 38 |
+
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
| 39 |
+
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
| 40 |
+
grid = grid.numpy()
|
| 41 |
+
grid = (grid * 255).astype(np.uint8)
|
| 42 |
+
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx)
|
| 43 |
+
path = os.path.join(root, filename)
|
| 44 |
+
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
| 45 |
+
Image.fromarray(grid).save(path)
|
| 46 |
+
|
| 47 |
+
def log_img(self, pl_module, batch, batch_idx, split="train"):
|
| 48 |
+
check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step
|
| 49 |
+
if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
|
| 50 |
+
hasattr(pl_module, "log_images") and
|
| 51 |
+
callable(pl_module.log_images) and
|
| 52 |
+
self.max_images > 0):
|
| 53 |
+
logger = type(pl_module.logger)
|
| 54 |
+
|
| 55 |
+
is_train = pl_module.training
|
| 56 |
+
if is_train:
|
| 57 |
+
pl_module.eval()
|
| 58 |
+
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
|
| 61 |
+
|
| 62 |
+
for k in images:
|
| 63 |
+
N = min(images[k].shape[0], self.max_images)
|
| 64 |
+
images[k] = images[k][:N]
|
| 65 |
+
if isinstance(images[k], torch.Tensor):
|
| 66 |
+
images[k] = images[k].detach().cpu()
|
| 67 |
+
if self.clamp:
|
| 68 |
+
images[k] = torch.clamp(images[k], -1., 1.)
|
| 69 |
+
|
| 70 |
+
self.log_local(pl_module.logger.save_dir, split, images,
|
| 71 |
+
pl_module.global_step, pl_module.current_epoch, batch_idx)
|
| 72 |
+
|
| 73 |
+
if is_train:
|
| 74 |
+
pl_module.train()
|
| 75 |
+
|
| 76 |
+
def check_frequency(self, check_idx):
|
| 77 |
+
return check_idx % self.batch_freq == 0
|
| 78 |
+
|
| 79 |
+
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
| 80 |
+
#if not self.disabled:
|
| 81 |
+
#if pl_module.global_step%50 == 0:
|
| 82 |
+
# if pl_module.current_epoch-self.global_save_num1 > 0:
|
| 83 |
+
# print(batch_idx)
|
| 84 |
+
if batch_idx % 500 == 0:
|
| 85 |
+
# print("inside")
|
| 86 |
+
# pdb.set_trace()
|
| 87 |
+
# self.global_save_num1=pl_module.current_epoch
|
| 88 |
+
self.log_img(pl_module, batch, batch_idx, split="train_"+"ckpt_inpainting_from5625_2+3750_exemplar_only_vae")
|
| 89 |
+
#if pl_module.global_step%1200 == 0 and self.check_frequency(batch_idx):
|
| 90 |
+
if batch_idx % 1000 == 0:
|
| 91 |
+
# if pl_module.current_epoch-self.global_save_num>10 and self.check_frequency(batch_idx):
|
| 92 |
+
# self.global_save_num=pl_module.current_epoch
|
| 93 |
+
trainer.save_checkpoint(self.ckpt_dir+"/epoch"+str(pl_module.current_epoch)+"_global-step"+str(pl_module.global_step)+".ckpt")
|
Control-Color/ldm/modules/__pycache__/attention.cpython-38.pyc
ADDED
|
Binary file (19.1 kB). View file
|
|
|
Control-Color/ldm/modules/__pycache__/attention_dcn_control.cpython-38.pyc
ADDED
|
Binary file (23.3 kB). View file
|
|
|
Control-Color/ldm/modules/__pycache__/ema.cpython-38.pyc
ADDED
|
Binary file (3.19 kB). View file
|
|
|
Control-Color/ldm/modules/attention.py
ADDED
|
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from inspect import isfunction
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch import nn, einsum
|
| 6 |
+
from einops import rearrange, repeat
|
| 7 |
+
from typing import Optional, Any
|
| 8 |
+
|
| 9 |
+
from ldm.modules.diffusionmodules.util import checkpoint
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
try:
|
| 13 |
+
import xformers
|
| 14 |
+
import xformers.ops
|
| 15 |
+
XFORMERS_IS_AVAILBLE = True
|
| 16 |
+
except:
|
| 17 |
+
XFORMERS_IS_AVAILBLE = False
|
| 18 |
+
|
| 19 |
+
# CrossAttn precision handling
|
| 20 |
+
import os
|
| 21 |
+
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
| 22 |
+
|
| 23 |
+
def exists(val):
|
| 24 |
+
return val is not None
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def uniq(arr):
|
| 28 |
+
return{el: True for el in arr}.keys()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def default(val, d):
|
| 32 |
+
if exists(val):
|
| 33 |
+
return val
|
| 34 |
+
return d() if isfunction(d) else d
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def max_neg_value(t):
|
| 38 |
+
return -torch.finfo(t.dtype).max
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def init_(tensor):
|
| 42 |
+
dim = tensor.shape[-1]
|
| 43 |
+
std = 1 / math.sqrt(dim)
|
| 44 |
+
tensor.uniform_(-std, std)
|
| 45 |
+
return tensor
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# feedforward
|
| 49 |
+
class GEGLU(nn.Module):
|
| 50 |
+
def __init__(self, dim_in, dim_out):
|
| 51 |
+
super().__init__()
|
| 52 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 53 |
+
|
| 54 |
+
def forward(self, x):
|
| 55 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 56 |
+
return x * F.gelu(gate)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class FeedForward(nn.Module):
|
| 60 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
| 61 |
+
super().__init__()
|
| 62 |
+
inner_dim = int(dim * mult)
|
| 63 |
+
dim_out = default(dim_out, dim)
|
| 64 |
+
project_in = nn.Sequential(
|
| 65 |
+
nn.Linear(dim, inner_dim),
|
| 66 |
+
nn.GELU()
|
| 67 |
+
) if not glu else GEGLU(dim, inner_dim)
|
| 68 |
+
|
| 69 |
+
self.net = nn.Sequential(
|
| 70 |
+
project_in,
|
| 71 |
+
nn.Dropout(dropout),
|
| 72 |
+
nn.Linear(inner_dim, dim_out)
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
def forward(self, x):
|
| 76 |
+
return self.net(x)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def zero_module(module):
|
| 80 |
+
"""
|
| 81 |
+
Zero out the parameters of a module and return it.
|
| 82 |
+
"""
|
| 83 |
+
for p in module.parameters():
|
| 84 |
+
p.detach().zero_()
|
| 85 |
+
return module
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def Normalize(in_channels):
|
| 89 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class SpatialSelfAttention(nn.Module):
|
| 93 |
+
def __init__(self, in_channels):
|
| 94 |
+
super().__init__()
|
| 95 |
+
self.in_channels = in_channels
|
| 96 |
+
|
| 97 |
+
self.norm = Normalize(in_channels)
|
| 98 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 99 |
+
in_channels,
|
| 100 |
+
kernel_size=1,
|
| 101 |
+
stride=1,
|
| 102 |
+
padding=0)
|
| 103 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 104 |
+
in_channels,
|
| 105 |
+
kernel_size=1,
|
| 106 |
+
stride=1,
|
| 107 |
+
padding=0)
|
| 108 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 109 |
+
in_channels,
|
| 110 |
+
kernel_size=1,
|
| 111 |
+
stride=1,
|
| 112 |
+
padding=0)
|
| 113 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 114 |
+
in_channels,
|
| 115 |
+
kernel_size=1,
|
| 116 |
+
stride=1,
|
| 117 |
+
padding=0)
|
| 118 |
+
|
| 119 |
+
def forward(self, x):
|
| 120 |
+
h_ = x
|
| 121 |
+
h_ = self.norm(h_)
|
| 122 |
+
q = self.q(h_)
|
| 123 |
+
k = self.k(h_)
|
| 124 |
+
v = self.v(h_)
|
| 125 |
+
|
| 126 |
+
# compute attention
|
| 127 |
+
b,c,h,w = q.shape
|
| 128 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
| 129 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
| 130 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
| 131 |
+
|
| 132 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 133 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 134 |
+
|
| 135 |
+
# attend to values
|
| 136 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
| 137 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
| 138 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
| 139 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
| 140 |
+
h_ = self.proj_out(h_)
|
| 141 |
+
|
| 142 |
+
return x+h_
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class CrossAttention(nn.Module):
|
| 146 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
| 147 |
+
super().__init__()
|
| 148 |
+
inner_dim = dim_head * heads
|
| 149 |
+
context_dim = default(context_dim, query_dim)
|
| 150 |
+
|
| 151 |
+
self.scale = dim_head ** -0.5
|
| 152 |
+
self.heads = heads
|
| 153 |
+
|
| 154 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 155 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 156 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 157 |
+
|
| 158 |
+
self.to_out = nn.Sequential(
|
| 159 |
+
nn.Linear(inner_dim, query_dim),
|
| 160 |
+
nn.Dropout(dropout)
|
| 161 |
+
)
|
| 162 |
+
self.attention_probs=None
|
| 163 |
+
|
| 164 |
+
def forward(self, x, context=None, mask=None):
|
| 165 |
+
h = self.heads
|
| 166 |
+
|
| 167 |
+
q = self.to_q(x)
|
| 168 |
+
context = default(context, x)
|
| 169 |
+
k = self.to_k(context)
|
| 170 |
+
v = self.to_v(context)
|
| 171 |
+
|
| 172 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
| 173 |
+
|
| 174 |
+
# force cast to fp32 to avoid overflowing
|
| 175 |
+
if _ATTN_PRECISION =="fp32":
|
| 176 |
+
with torch.autocast(enabled=False, device_type = 'cuda'):
|
| 177 |
+
q, k = q.float(), k.float()
|
| 178 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 179 |
+
else:
|
| 180 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 181 |
+
|
| 182 |
+
del q, k
|
| 183 |
+
|
| 184 |
+
if exists(mask):
|
| 185 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
| 186 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 187 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 188 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 189 |
+
|
| 190 |
+
# attention, what we cannot get enough of
|
| 191 |
+
sim = sim.softmax(dim=-1)
|
| 192 |
+
self.attention_probs = sim
|
| 193 |
+
#print("similarity",sim.shape)
|
| 194 |
+
out = einsum('b i j, b j d -> b i d', sim, v)
|
| 195 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
| 196 |
+
return self.to_out(out)
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
| 200 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
| 201 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
| 202 |
+
super().__init__()
|
| 203 |
+
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
| 204 |
+
f"{heads} heads.")
|
| 205 |
+
inner_dim = dim_head * heads
|
| 206 |
+
context_dim = default(context_dim, query_dim)
|
| 207 |
+
|
| 208 |
+
self.heads = heads
|
| 209 |
+
self.dim_head = dim_head
|
| 210 |
+
|
| 211 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 212 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 213 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 214 |
+
|
| 215 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
| 216 |
+
self.attention_op: Optional[Any] = None
|
| 217 |
+
self.attention_probs=None
|
| 218 |
+
|
| 219 |
+
def forward(self, x, context=None, mask=None):#,timestep=None):
|
| 220 |
+
h = self.heads
|
| 221 |
+
q = self.to_q(x)
|
| 222 |
+
context = default(context, x)
|
| 223 |
+
k = self.to_k(context)
|
| 224 |
+
v = self.to_v(context)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
b, _, _ = q.shape
|
| 228 |
+
q, k, v = map(
|
| 229 |
+
lambda t: t.unsqueeze(3)
|
| 230 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
| 231 |
+
.permute(0, 2, 1, 3)
|
| 232 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
| 233 |
+
.contiguous(),
|
| 234 |
+
(q, k, v),
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
# actually compute the attention, what we cannot get enough of
|
| 238 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
| 239 |
+
|
| 240 |
+
if exists(mask):
|
| 241 |
+
raise NotImplementedError
|
| 242 |
+
out = (
|
| 243 |
+
out.unsqueeze(0)
|
| 244 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
| 245 |
+
.permute(0, 2, 1, 3)
|
| 246 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
| 247 |
+
)
|
| 248 |
+
prob=rearrange(out, 'b n (h d) -> (b h) n d', h=h)
|
| 249 |
+
prob = einsum('b i d, b j d -> b i j', prob, v)
|
| 250 |
+
self.attention_probs = prob
|
| 251 |
+
|
| 252 |
+
# print("emb",emb)
|
| 253 |
+
# print(timestep)
|
| 254 |
+
# if prob.shape[1] ==6144 and prob.shape[2]==6144 and timestep!=None and timestep<100: #and emb==0:
|
| 255 |
+
# torch.save(q,"./q1.pt")
|
| 256 |
+
# torch.save(k,"./k1.pt")
|
| 257 |
+
# torch.save(prob,"./prob.pt")
|
| 258 |
+
# print(prob.shape)
|
| 259 |
+
return self.to_out(out)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
class BasicTransformerBlock(nn.Module):
|
| 263 |
+
ATTENTION_MODES = {
|
| 264 |
+
"softmax": CrossAttention, # vanilla attention
|
| 265 |
+
"softmax-xformers": MemoryEfficientCrossAttention
|
| 266 |
+
}
|
| 267 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
| 268 |
+
disable_self_attn=False):
|
| 269 |
+
super().__init__()
|
| 270 |
+
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
| 271 |
+
assert attn_mode in self.ATTENTION_MODES
|
| 272 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
| 273 |
+
self.disable_self_attn = disable_self_attn
|
| 274 |
+
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
| 275 |
+
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
|
| 276 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 277 |
+
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
|
| 278 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
| 279 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 280 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 281 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 282 |
+
self.checkpoint = checkpoint
|
| 283 |
+
|
| 284 |
+
def forward(self, x, context=None):#, timestep=None):
|
| 285 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
| 286 |
+
|
| 287 |
+
def _forward(self, x, context=None):#, timestep=None):
|
| 288 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
| 289 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
| 290 |
+
x = self.ff(self.norm3(x)) + x
|
| 291 |
+
return x
|
| 292 |
+
|
| 293 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
| 294 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 295 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 296 |
+
def norm_cdf(x):
|
| 297 |
+
# Computes standard normal cumulative distribution function
|
| 298 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
| 299 |
+
|
| 300 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 301 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 302 |
+
"The distribution of values may be incorrect.",
|
| 303 |
+
stacklevel=2)
|
| 304 |
+
|
| 305 |
+
# Values are generated by using a truncated uniform distribution and
|
| 306 |
+
# then using the inverse CDF for the normal distribution.
|
| 307 |
+
# Get upper and lower cdf values
|
| 308 |
+
l = norm_cdf((a - mean) / std)
|
| 309 |
+
u = norm_cdf((b - mean) / std)
|
| 310 |
+
|
| 311 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 312 |
+
# [2l-1, 2u-1].
|
| 313 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 314 |
+
|
| 315 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 316 |
+
# standard normal
|
| 317 |
+
tensor.erfinv_()
|
| 318 |
+
|
| 319 |
+
# Transform to proper mean, std
|
| 320 |
+
tensor.mul_(std * math.sqrt(2.))
|
| 321 |
+
tensor.add_(mean)
|
| 322 |
+
|
| 323 |
+
# Clamp to ensure it's in the proper range
|
| 324 |
+
tensor.clamp_(min=a, max=b)
|
| 325 |
+
return tensor
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
| 329 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
| 330 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
| 331 |
+
normal distribution. The values are effectively drawn from the
|
| 332 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 333 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 334 |
+
the bounds. The method used for generating the random values works
|
| 335 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
| 336 |
+
|
| 337 |
+
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
|
| 338 |
+
applied while sampling the normal with mean/std applied, therefore a, b args
|
| 339 |
+
should be adjusted to match the range of mean, std args.
|
| 340 |
+
|
| 341 |
+
Args:
|
| 342 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 343 |
+
mean: the mean of the normal distribution
|
| 344 |
+
std: the standard deviation of the normal distribution
|
| 345 |
+
a: the minimum cutoff value
|
| 346 |
+
b: the maximum cutoff value
|
| 347 |
+
Examples:
|
| 348 |
+
>>> w = torch.empty(3, 5)
|
| 349 |
+
>>> nn.init.trunc_normal_(w)
|
| 350 |
+
"""
|
| 351 |
+
with torch.no_grad():
|
| 352 |
+
return _trunc_normal_(tensor, mean, std, a, b)
|
| 353 |
+
|
| 354 |
+
class PostionalAttention(nn.Module):
|
| 355 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
| 356 |
+
proj_drop=0., attn_head_dim=None, use_rpb=False, window_size=14):
|
| 357 |
+
super().__init__()
|
| 358 |
+
self.num_heads = num_heads
|
| 359 |
+
head_dim = dim // num_heads
|
| 360 |
+
if attn_head_dim is not None:
|
| 361 |
+
head_dim = attn_head_dim
|
| 362 |
+
all_head_dim = head_dim * self.num_heads
|
| 363 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 364 |
+
|
| 365 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
| 366 |
+
if qkv_bias:
|
| 367 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 368 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 369 |
+
else:
|
| 370 |
+
self.q_bias = None
|
| 371 |
+
self.v_bias = None
|
| 372 |
+
|
| 373 |
+
# relative positional bias option
|
| 374 |
+
self.use_rpb = use_rpb
|
| 375 |
+
if use_rpb:
|
| 376 |
+
self.window_size = window_size
|
| 377 |
+
self.rpb_table = nn.Parameter(torch.zeros((2 * window_size - 1) * (2 * window_size - 1), num_heads))
|
| 378 |
+
trunc_normal_(self.rpb_table, std=.02)
|
| 379 |
+
|
| 380 |
+
coords_h = torch.arange(window_size)
|
| 381 |
+
coords_w = torch.arange(window_size)
|
| 382 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, h, w
|
| 383 |
+
coords_flatten = torch.flatten(coords, 1) # 2, h*w
|
| 384 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, h*w, h*w
|
| 385 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # h*w, h*w, 2
|
| 386 |
+
relative_coords[:, :, 0] += window_size - 1 # shift to start from 0
|
| 387 |
+
relative_coords[:, :, 1] += window_size - 1
|
| 388 |
+
relative_coords[:, :, 0] *= 2 * window_size - 1
|
| 389 |
+
relative_position_index = relative_coords.sum(-1) # h*w, h*w
|
| 390 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
| 391 |
+
|
| 392 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 393 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
| 394 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 395 |
+
|
| 396 |
+
def forward(self, x):
|
| 397 |
+
B, N, C = x.shape
|
| 398 |
+
qkv_bias = None
|
| 399 |
+
if self.q_bias is not None:
|
| 400 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
| 401 |
+
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 402 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
| 403 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
| 404 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
| 405 |
+
|
| 406 |
+
q = q * self.scale
|
| 407 |
+
attn = (q @ k.transpose(-2, -1))
|
| 408 |
+
|
| 409 |
+
if self.use_rpb:
|
| 410 |
+
relative_position_bias = self.rpb_table[self.relative_position_index.view(-1)].view(
|
| 411 |
+
self.window_size * self.window_size, self.window_size * self.window_size, -1) # h*w,h*w,nH
|
| 412 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, h*w, h*w
|
| 413 |
+
attn += relative_position_bias
|
| 414 |
+
|
| 415 |
+
attn = attn.softmax(dim=-1)
|
| 416 |
+
attn = self.attn_drop(attn)
|
| 417 |
+
|
| 418 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
| 419 |
+
x = self.proj(x)
|
| 420 |
+
x = self.proj_drop(x)
|
| 421 |
+
return x
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
class Mlp(nn.Module):
|
| 426 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 427 |
+
super().__init__()
|
| 428 |
+
out_features = out_features or in_features
|
| 429 |
+
hidden_features = hidden_features or in_features
|
| 430 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 431 |
+
self.act = act_layer()
|
| 432 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 433 |
+
self.drop = nn.Dropout(drop)
|
| 434 |
+
|
| 435 |
+
def forward(self, x):
|
| 436 |
+
x = self.fc1(x)
|
| 437 |
+
x = self.act(x)
|
| 438 |
+
# x = self.drop(x)
|
| 439 |
+
# commit this for the orignal BERT implement
|
| 440 |
+
x = self.fc2(x)
|
| 441 |
+
x = self.drop(x)
|
| 442 |
+
return x
|
| 443 |
+
|
| 444 |
+
class Block(nn.Module):
|
| 445 |
+
|
| 446 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
| 447 |
+
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
| 448 |
+
attn_head_dim=None, use_rpb=False, window_size=14):
|
| 449 |
+
super().__init__()
|
| 450 |
+
self.norm1 = norm_layer(dim)
|
| 451 |
+
self.attn = PostionalAttention(
|
| 452 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 453 |
+
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim,
|
| 454 |
+
use_rpb=use_rpb, window_size=window_size)
|
| 455 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
| 456 |
+
self.drop_path = nn.Identity() #DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 457 |
+
self.norm2 = norm_layer(dim)
|
| 458 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 459 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 460 |
+
|
| 461 |
+
if init_values > 0:
|
| 462 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
|
| 463 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
|
| 464 |
+
else:
|
| 465 |
+
self.gamma_1, self.gamma_2 = None, None
|
| 466 |
+
|
| 467 |
+
def forward(self, x):
|
| 468 |
+
if self.gamma_1 is None:
|
| 469 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
| 470 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 471 |
+
else:
|
| 472 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
|
| 473 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
| 474 |
+
return x
|
| 475 |
+
|
| 476 |
+
class PatchEmbed(nn.Module):
|
| 477 |
+
""" Image to Patch Embedding
|
| 478 |
+
"""
|
| 479 |
+
|
| 480 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, mask_cent=False):
|
| 481 |
+
super().__init__()
|
| 482 |
+
# to_2tuple = _ntuple(2)
|
| 483 |
+
# img_size = to_2tuple(img_size)
|
| 484 |
+
# patch_size = to_2tuple(patch_size)
|
| 485 |
+
img_size = tuple((img_size, img_size))
|
| 486 |
+
patch_size = tuple((patch_size,patch_size))
|
| 487 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
| 488 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
| 489 |
+
self.img_size = img_size
|
| 490 |
+
self.patch_size = patch_size
|
| 491 |
+
self.num_patches = num_patches
|
| 492 |
+
self.mask_cent = mask_cent
|
| 493 |
+
|
| 494 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
| 495 |
+
|
| 496 |
+
# # From PyTorch internals
|
| 497 |
+
# def _ntuple(n):
|
| 498 |
+
# def parse(x):
|
| 499 |
+
# if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
| 500 |
+
# return tuple(x)
|
| 501 |
+
# return tuple(repeat(x, n))
|
| 502 |
+
# return parse
|
| 503 |
+
|
| 504 |
+
def forward(self, x, **kwargs):
|
| 505 |
+
B, C, H, W = x.shape
|
| 506 |
+
# FIXME look at relaxing size constraints
|
| 507 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
| 508 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
| 509 |
+
if self.mask_cent:
|
| 510 |
+
x[:, -1] = x[:, -1] - 0.5
|
| 511 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
| 512 |
+
return x
|
| 513 |
+
|
| 514 |
+
class CnnHead(nn.Module):
|
| 515 |
+
def __init__(self, embed_dim, num_classes, window_size):
|
| 516 |
+
super().__init__()
|
| 517 |
+
self.embed_dim = embed_dim
|
| 518 |
+
self.num_classes = num_classes
|
| 519 |
+
self.window_size = window_size
|
| 520 |
+
|
| 521 |
+
self.head = nn.Conv2d(embed_dim, num_classes, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
|
| 522 |
+
|
| 523 |
+
def forward(self, x):
|
| 524 |
+
x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
|
| 525 |
+
x = self.head(x)
|
| 526 |
+
x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
|
| 527 |
+
return x
|
| 528 |
+
|
| 529 |
+
# sin-cos position encoding
|
| 530 |
+
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
|
| 531 |
+
|
| 532 |
+
import numpy as np
|
| 533 |
+
def get_sinusoid_encoding_table(n_position, d_hid):
|
| 534 |
+
''' Sinusoid position encoding table '''
|
| 535 |
+
# TODO: make it with torch instead of numpy
|
| 536 |
+
def get_position_angle_vec(position):
|
| 537 |
+
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
| 538 |
+
|
| 539 |
+
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
| 540 |
+
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
| 541 |
+
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
| 542 |
+
|
| 543 |
+
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
|
| 544 |
+
|
| 545 |
+
class SpatialTransformer(nn.Module):
|
| 546 |
+
"""
|
| 547 |
+
Transformer block for image-like data.
|
| 548 |
+
First, project the input (aka embedding)
|
| 549 |
+
and reshape to b, t, d.
|
| 550 |
+
Then apply standard transformer action.
|
| 551 |
+
Finally, reshape to image
|
| 552 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
| 553 |
+
"""
|
| 554 |
+
def __init__(self, in_channels, n_heads, d_head,
|
| 555 |
+
depth=1, dropout=0., context_dim=None,
|
| 556 |
+
disable_self_attn=False, use_linear=False,
|
| 557 |
+
use_checkpoint=True):
|
| 558 |
+
super().__init__()
|
| 559 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
| 560 |
+
context_dim = [context_dim]
|
| 561 |
+
self.in_channels = in_channels
|
| 562 |
+
inner_dim = n_heads * d_head
|
| 563 |
+
self.norm = Normalize(in_channels)
|
| 564 |
+
if not use_linear:
|
| 565 |
+
self.proj_in = nn.Conv2d(in_channels,
|
| 566 |
+
inner_dim,
|
| 567 |
+
kernel_size=1,
|
| 568 |
+
stride=1,
|
| 569 |
+
padding=0)
|
| 570 |
+
else:
|
| 571 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 572 |
+
|
| 573 |
+
self.transformer_blocks = nn.ModuleList(
|
| 574 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
| 575 |
+
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
|
| 576 |
+
for d in range(depth)]
|
| 577 |
+
)
|
| 578 |
+
if not use_linear:
|
| 579 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
| 580 |
+
in_channels,
|
| 581 |
+
kernel_size=1,
|
| 582 |
+
stride=1,
|
| 583 |
+
padding=0))
|
| 584 |
+
else:
|
| 585 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
| 586 |
+
self.use_linear = use_linear
|
| 587 |
+
self.map_size = None
|
| 588 |
+
# self.cnnhead = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
|
| 589 |
+
|
| 590 |
+
# embed_dim=192
|
| 591 |
+
# img_size=64
|
| 592 |
+
# patch_size=8
|
| 593 |
+
# self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size,
|
| 594 |
+
# in_chans=4, embed_dim=embed_dim, mask_cent=False)
|
| 595 |
+
# num_patches = self.patch_embed.num_patches # 2
|
| 596 |
+
|
| 597 |
+
# self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
|
| 598 |
+
|
| 599 |
+
# self.cnnhead = CnnHead(embed_dim, num_classes=32, window_size=img_size // patch_size)
|
| 600 |
+
|
| 601 |
+
# self.posatnn_block = Block(dim=embed_dim, num_heads=3, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 602 |
+
# drop=0., attn_drop=0., norm_layer=nn.LayerNorm,
|
| 603 |
+
# init_values=0., use_rpb=True, window_size=img_size // patch_size)
|
| 604 |
+
# # self.window_size=8
|
| 605 |
+
# self.norm1=nn.LayerNorm(embed_dim)
|
| 606 |
+
|
| 607 |
+
def forward(self, x, context=None):#,timestep=None):
|
| 608 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 609 |
+
if not isinstance(context, list):
|
| 610 |
+
context = [context]
|
| 611 |
+
b, c, h, w = x.shape
|
| 612 |
+
x_in = x
|
| 613 |
+
x = self.norm(x)
|
| 614 |
+
if not self.use_linear:
|
| 615 |
+
x = self.proj_in(x)
|
| 616 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
| 617 |
+
if self.use_linear:
|
| 618 |
+
x = self.proj_in(x)
|
| 619 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 620 |
+
x = block(x, context=context[i])#,timestep=timestep)
|
| 621 |
+
if self.use_linear:
|
| 622 |
+
x = self.proj_out(x)
|
| 623 |
+
|
| 624 |
+
# x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
|
| 625 |
+
# x = self.cnnhead(x)
|
| 626 |
+
# x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
|
| 627 |
+
|
| 628 |
+
# x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
| 629 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
| 630 |
+
# print("before",x.shape)
|
| 631 |
+
|
| 632 |
+
# if x.shape[1]==4:
|
| 633 |
+
# x = self.patch_embed(x)
|
| 634 |
+
# print("after PatchEmbed",x.shape)
|
| 635 |
+
# x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
|
| 636 |
+
|
| 637 |
+
# x =self.posatnn_block(x)
|
| 638 |
+
# x = self.norm1(x)
|
| 639 |
+
# print("after norm",x.shape)
|
| 640 |
+
|
| 641 |
+
# x = self.cnnhead(x)
|
| 642 |
+
|
| 643 |
+
# print("after",x.shape)
|
| 644 |
+
if not self.use_linear:
|
| 645 |
+
x = self.proj_out(x)
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
self.map_size = x.shape[-2:]
|
| 649 |
+
return x + x_in
|
| 650 |
+
|
| 651 |
+
# res = self.cnnhead(x+x_in)
|
| 652 |
+
# return res
|
| 653 |
+
|
Control-Color/ldm/modules/attention_dcn_control.py
ADDED
|
@@ -0,0 +1,854 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from inspect import isfunction
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch import nn, einsum
|
| 6 |
+
from einops import rearrange, repeat
|
| 7 |
+
from typing import Optional, Any
|
| 8 |
+
|
| 9 |
+
from ldm.modules.diffusionmodules.util import checkpoint
|
| 10 |
+
|
| 11 |
+
import torchvision
|
| 12 |
+
from torch.nn.modules.utils import _pair, _single
|
| 13 |
+
|
| 14 |
+
try:
|
| 15 |
+
import xformers
|
| 16 |
+
import xformers.ops
|
| 17 |
+
XFORMERS_IS_AVAILBLE = True
|
| 18 |
+
except:
|
| 19 |
+
XFORMERS_IS_AVAILBLE = False
|
| 20 |
+
|
| 21 |
+
# CrossAttn precision handling
|
| 22 |
+
import os
|
| 23 |
+
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
| 24 |
+
|
| 25 |
+
def exists(val):
|
| 26 |
+
return val is not None
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def uniq(arr):
|
| 30 |
+
return{el: True for el in arr}.keys()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def default(val, d):
|
| 34 |
+
if exists(val):
|
| 35 |
+
return val
|
| 36 |
+
return d() if isfunction(d) else d
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def max_neg_value(t):
|
| 40 |
+
return -torch.finfo(t.dtype).max
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def init_(tensor):
|
| 44 |
+
dim = tensor.shape[-1]
|
| 45 |
+
std = 1 / math.sqrt(dim)
|
| 46 |
+
tensor.uniform_(-std, std)
|
| 47 |
+
return tensor
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# feedforward
|
| 51 |
+
class GEGLU(nn.Module):
|
| 52 |
+
def __init__(self, dim_in, dim_out):
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 55 |
+
|
| 56 |
+
def forward(self, x):
|
| 57 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 58 |
+
return x * F.gelu(gate)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class FeedForward(nn.Module):
|
| 62 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
| 63 |
+
super().__init__()
|
| 64 |
+
inner_dim = int(dim * mult)
|
| 65 |
+
dim_out = default(dim_out, dim)
|
| 66 |
+
project_in = nn.Sequential(
|
| 67 |
+
nn.Linear(dim, inner_dim),
|
| 68 |
+
nn.GELU()
|
| 69 |
+
) if not glu else GEGLU(dim, inner_dim)
|
| 70 |
+
|
| 71 |
+
self.net = nn.Sequential(
|
| 72 |
+
project_in,
|
| 73 |
+
nn.Dropout(dropout),
|
| 74 |
+
nn.Linear(inner_dim, dim_out)
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
def forward(self, x):
|
| 78 |
+
return self.net(x)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def zero_module(module):
|
| 82 |
+
"""
|
| 83 |
+
Zero out the parameters of a module and return it.
|
| 84 |
+
"""
|
| 85 |
+
for p in module.parameters():
|
| 86 |
+
p.detach().zero_()
|
| 87 |
+
return module
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def Normalize(in_channels):
|
| 91 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class SpatialSelfAttention(nn.Module):
|
| 95 |
+
def __init__(self, in_channels):
|
| 96 |
+
super().__init__()
|
| 97 |
+
self.in_channels = in_channels
|
| 98 |
+
|
| 99 |
+
self.norm = Normalize(in_channels)
|
| 100 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 101 |
+
in_channels,
|
| 102 |
+
kernel_size=1,
|
| 103 |
+
stride=1,
|
| 104 |
+
padding=0)
|
| 105 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 106 |
+
in_channels,
|
| 107 |
+
kernel_size=1,
|
| 108 |
+
stride=1,
|
| 109 |
+
padding=0)
|
| 110 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 111 |
+
in_channels,
|
| 112 |
+
kernel_size=1,
|
| 113 |
+
stride=1,
|
| 114 |
+
padding=0)
|
| 115 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 116 |
+
in_channels,
|
| 117 |
+
kernel_size=1,
|
| 118 |
+
stride=1,
|
| 119 |
+
padding=0)
|
| 120 |
+
|
| 121 |
+
def forward(self, x):
|
| 122 |
+
h_ = x
|
| 123 |
+
h_ = self.norm(h_)
|
| 124 |
+
q = self.q(h_)
|
| 125 |
+
k = self.k(h_)
|
| 126 |
+
v = self.v(h_)
|
| 127 |
+
|
| 128 |
+
# compute attention
|
| 129 |
+
b,c,h,w = q.shape
|
| 130 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
| 131 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
| 132 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
| 133 |
+
|
| 134 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 135 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 136 |
+
|
| 137 |
+
# attend to values
|
| 138 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
| 139 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
| 140 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
| 141 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
| 142 |
+
h_ = self.proj_out(h_)
|
| 143 |
+
|
| 144 |
+
return x+h_
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class CrossAttention(nn.Module):
|
| 148 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
| 149 |
+
super().__init__()
|
| 150 |
+
inner_dim = dim_head * heads
|
| 151 |
+
context_dim = default(context_dim, query_dim)
|
| 152 |
+
|
| 153 |
+
self.scale = dim_head ** -0.5
|
| 154 |
+
self.heads = heads
|
| 155 |
+
|
| 156 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 157 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 158 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 159 |
+
|
| 160 |
+
self.to_out = nn.Sequential(
|
| 161 |
+
nn.Linear(inner_dim, query_dim),
|
| 162 |
+
nn.Dropout(dropout)
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
def forward(self, x, context=None, mask=None):
|
| 166 |
+
h = self.heads
|
| 167 |
+
|
| 168 |
+
q = self.to_q(x)
|
| 169 |
+
context = default(context, x)
|
| 170 |
+
k = self.to_k(context)
|
| 171 |
+
v = self.to_v(context)
|
| 172 |
+
|
| 173 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
| 174 |
+
|
| 175 |
+
# force cast to fp32 to avoid overflowing
|
| 176 |
+
if _ATTN_PRECISION =="fp32":
|
| 177 |
+
with torch.autocast(enabled=False, device_type = 'cuda'):
|
| 178 |
+
q, k = q.float(), k.float()
|
| 179 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 180 |
+
else:
|
| 181 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 182 |
+
|
| 183 |
+
del q, k
|
| 184 |
+
|
| 185 |
+
if exists(mask):
|
| 186 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
| 187 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 188 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 189 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 190 |
+
|
| 191 |
+
# attention, what we cannot get enough of
|
| 192 |
+
sim = sim.softmax(dim=-1)
|
| 193 |
+
|
| 194 |
+
out = einsum('b i j, b j d -> b i d', sim, v)
|
| 195 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
| 196 |
+
return self.to_out(out)
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
| 200 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
| 201 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
| 202 |
+
super().__init__()
|
| 203 |
+
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
| 204 |
+
f"{heads} heads.")
|
| 205 |
+
inner_dim = dim_head * heads
|
| 206 |
+
context_dim = default(context_dim, query_dim)
|
| 207 |
+
|
| 208 |
+
self.heads = heads
|
| 209 |
+
self.dim_head = dim_head
|
| 210 |
+
|
| 211 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 212 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 213 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 214 |
+
|
| 215 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
| 216 |
+
self.attention_op: Optional[Any] = None
|
| 217 |
+
|
| 218 |
+
def forward(self, x, context=None, mask=None):
|
| 219 |
+
q = self.to_q(x)
|
| 220 |
+
context = default(context, x)
|
| 221 |
+
k = self.to_k(context)
|
| 222 |
+
v = self.to_v(context)
|
| 223 |
+
|
| 224 |
+
b, _, _ = q.shape
|
| 225 |
+
q, k, v = map(
|
| 226 |
+
lambda t: t.unsqueeze(3)
|
| 227 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
| 228 |
+
.permute(0, 2, 1, 3)
|
| 229 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
| 230 |
+
.contiguous(),
|
| 231 |
+
(q, k, v),
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# actually compute the attention, what we cannot get enough of
|
| 235 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
| 236 |
+
|
| 237 |
+
if exists(mask):
|
| 238 |
+
raise NotImplementedError
|
| 239 |
+
out = (
|
| 240 |
+
out.unsqueeze(0)
|
| 241 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
| 242 |
+
.permute(0, 2, 1, 3)
|
| 243 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
| 244 |
+
)
|
| 245 |
+
return self.to_out(out)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class BasicTransformerBlock(nn.Module):
|
| 249 |
+
ATTENTION_MODES = {
|
| 250 |
+
"softmax": CrossAttention, # vanilla attention
|
| 251 |
+
"softmax-xformers": MemoryEfficientCrossAttention
|
| 252 |
+
}
|
| 253 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
| 254 |
+
disable_self_attn=False):
|
| 255 |
+
super().__init__()
|
| 256 |
+
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
| 257 |
+
assert attn_mode in self.ATTENTION_MODES
|
| 258 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
| 259 |
+
self.disable_self_attn = disable_self_attn
|
| 260 |
+
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
| 261 |
+
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
|
| 262 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 263 |
+
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
|
| 264 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
| 265 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 266 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 267 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 268 |
+
self.checkpoint = checkpoint
|
| 269 |
+
|
| 270 |
+
def forward(self, x, context=None):
|
| 271 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
| 272 |
+
|
| 273 |
+
def _forward(self, x, context=None):
|
| 274 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
| 275 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
| 276 |
+
x = self.ff(self.norm3(x)) + x
|
| 277 |
+
return x
|
| 278 |
+
|
| 279 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
| 280 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 281 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 282 |
+
def norm_cdf(x):
|
| 283 |
+
# Computes standard normal cumulative distribution function
|
| 284 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
| 285 |
+
|
| 286 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 287 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 288 |
+
"The distribution of values may be incorrect.",
|
| 289 |
+
stacklevel=2)
|
| 290 |
+
|
| 291 |
+
# Values are generated by using a truncated uniform distribution and
|
| 292 |
+
# then using the inverse CDF for the normal distribution.
|
| 293 |
+
# Get upper and lower cdf values
|
| 294 |
+
l = norm_cdf((a - mean) / std)
|
| 295 |
+
u = norm_cdf((b - mean) / std)
|
| 296 |
+
|
| 297 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 298 |
+
# [2l-1, 2u-1].
|
| 299 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 300 |
+
|
| 301 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 302 |
+
# standard normal
|
| 303 |
+
tensor.erfinv_()
|
| 304 |
+
|
| 305 |
+
# Transform to proper mean, std
|
| 306 |
+
tensor.mul_(std * math.sqrt(2.))
|
| 307 |
+
tensor.add_(mean)
|
| 308 |
+
|
| 309 |
+
# Clamp to ensure it's in the proper range
|
| 310 |
+
tensor.clamp_(min=a, max=b)
|
| 311 |
+
return tensor
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
| 315 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
| 316 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
| 317 |
+
normal distribution. The values are effectively drawn from the
|
| 318 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 319 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 320 |
+
the bounds. The method used for generating the random values works
|
| 321 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
| 322 |
+
|
| 323 |
+
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
|
| 324 |
+
applied while sampling the normal with mean/std applied, therefore a, b args
|
| 325 |
+
should be adjusted to match the range of mean, std args.
|
| 326 |
+
|
| 327 |
+
Args:
|
| 328 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 329 |
+
mean: the mean of the normal distribution
|
| 330 |
+
std: the standard deviation of the normal distribution
|
| 331 |
+
a: the minimum cutoff value
|
| 332 |
+
b: the maximum cutoff value
|
| 333 |
+
Examples:
|
| 334 |
+
>>> w = torch.empty(3, 5)
|
| 335 |
+
>>> nn.init.trunc_normal_(w)
|
| 336 |
+
"""
|
| 337 |
+
with torch.no_grad():
|
| 338 |
+
return _trunc_normal_(tensor, mean, std, a, b)
|
| 339 |
+
|
| 340 |
+
class PostionalAttention(nn.Module):
|
| 341 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
| 342 |
+
proj_drop=0., attn_head_dim=None, use_rpb=False, window_size=14):
|
| 343 |
+
super().__init__()
|
| 344 |
+
self.num_heads = num_heads
|
| 345 |
+
head_dim = dim // num_heads
|
| 346 |
+
if attn_head_dim is not None:
|
| 347 |
+
head_dim = attn_head_dim
|
| 348 |
+
all_head_dim = head_dim * self.num_heads
|
| 349 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 350 |
+
|
| 351 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
| 352 |
+
if qkv_bias:
|
| 353 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 354 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 355 |
+
else:
|
| 356 |
+
self.q_bias = None
|
| 357 |
+
self.v_bias = None
|
| 358 |
+
|
| 359 |
+
# relative positional bias option
|
| 360 |
+
self.use_rpb = use_rpb
|
| 361 |
+
if use_rpb:
|
| 362 |
+
self.window_size = window_size
|
| 363 |
+
self.rpb_table = nn.Parameter(torch.zeros((2 * window_size - 1) * (2 * window_size - 1), num_heads))
|
| 364 |
+
trunc_normal_(self.rpb_table, std=.02)
|
| 365 |
+
|
| 366 |
+
coords_h = torch.arange(window_size)
|
| 367 |
+
coords_w = torch.arange(window_size)
|
| 368 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, h, w
|
| 369 |
+
coords_flatten = torch.flatten(coords, 1) # 2, h*w
|
| 370 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, h*w, h*w
|
| 371 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # h*w, h*w, 2
|
| 372 |
+
relative_coords[:, :, 0] += window_size - 1 # shift to start from 0
|
| 373 |
+
relative_coords[:, :, 1] += window_size - 1
|
| 374 |
+
relative_coords[:, :, 0] *= 2 * window_size - 1
|
| 375 |
+
relative_position_index = relative_coords.sum(-1) # h*w, h*w
|
| 376 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
| 377 |
+
|
| 378 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 379 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
| 380 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 381 |
+
|
| 382 |
+
def forward(self, x):
|
| 383 |
+
B, N, C = x.shape
|
| 384 |
+
qkv_bias = None
|
| 385 |
+
if self.q_bias is not None:
|
| 386 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
| 387 |
+
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 388 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
| 389 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
| 390 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
| 391 |
+
|
| 392 |
+
q = q * self.scale
|
| 393 |
+
attn = (q @ k.transpose(-2, -1))
|
| 394 |
+
|
| 395 |
+
if self.use_rpb:
|
| 396 |
+
relative_position_bias = self.rpb_table[self.relative_position_index.view(-1)].view(
|
| 397 |
+
self.window_size * self.window_size, self.window_size * self.window_size, -1) # h*w,h*w,nH
|
| 398 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, h*w, h*w
|
| 399 |
+
attn += relative_position_bias
|
| 400 |
+
|
| 401 |
+
attn = attn.softmax(dim=-1)
|
| 402 |
+
attn = self.attn_drop(attn)
|
| 403 |
+
|
| 404 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
| 405 |
+
x = self.proj(x)
|
| 406 |
+
x = self.proj_drop(x)
|
| 407 |
+
return x
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
class Mlp(nn.Module):
|
| 412 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 413 |
+
super().__init__()
|
| 414 |
+
out_features = out_features or in_features
|
| 415 |
+
hidden_features = hidden_features or in_features
|
| 416 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 417 |
+
self.act = act_layer()
|
| 418 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 419 |
+
self.drop = nn.Dropout(drop)
|
| 420 |
+
|
| 421 |
+
def forward(self, x):
|
| 422 |
+
x = self.fc1(x)
|
| 423 |
+
x = self.act(x)
|
| 424 |
+
# x = self.drop(x)
|
| 425 |
+
# commit this for the orignal BERT implement
|
| 426 |
+
x = self.fc2(x)
|
| 427 |
+
x = self.drop(x)
|
| 428 |
+
return x
|
| 429 |
+
|
| 430 |
+
class Block(nn.Module):
|
| 431 |
+
|
| 432 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
| 433 |
+
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
| 434 |
+
attn_head_dim=None, use_rpb=False, window_size=14):
|
| 435 |
+
super().__init__()
|
| 436 |
+
self.norm1 = norm_layer(dim)
|
| 437 |
+
self.attn = PostionalAttention(
|
| 438 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 439 |
+
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim,
|
| 440 |
+
use_rpb=use_rpb, window_size=window_size)
|
| 441 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
| 442 |
+
self.drop_path = nn.Identity() #DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 443 |
+
self.norm2 = norm_layer(dim)
|
| 444 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 445 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 446 |
+
|
| 447 |
+
if init_values > 0:
|
| 448 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
|
| 449 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
|
| 450 |
+
else:
|
| 451 |
+
self.gamma_1, self.gamma_2 = None, None
|
| 452 |
+
|
| 453 |
+
def forward(self, x):
|
| 454 |
+
if self.gamma_1 is None:
|
| 455 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
| 456 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 457 |
+
else:
|
| 458 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
|
| 459 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
| 460 |
+
return x
|
| 461 |
+
|
| 462 |
+
class PatchEmbed(nn.Module):
|
| 463 |
+
""" Image to Patch Embedding
|
| 464 |
+
"""
|
| 465 |
+
|
| 466 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, mask_cent=False):
|
| 467 |
+
super().__init__()
|
| 468 |
+
# to_2tuple = _ntuple(2)
|
| 469 |
+
# img_size = to_2tuple(img_size)
|
| 470 |
+
# patch_size = to_2tuple(patch_size)
|
| 471 |
+
img_size = tuple((img_size, img_size))
|
| 472 |
+
patch_size = tuple((patch_size,patch_size))
|
| 473 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
| 474 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
| 475 |
+
self.img_size = img_size
|
| 476 |
+
self.patch_size = patch_size
|
| 477 |
+
self.num_patches = num_patches
|
| 478 |
+
self.mask_cent = mask_cent
|
| 479 |
+
|
| 480 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
| 481 |
+
|
| 482 |
+
# # From PyTorch internals
|
| 483 |
+
# def _ntuple(n):
|
| 484 |
+
# def parse(x):
|
| 485 |
+
# if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
| 486 |
+
# return tuple(x)
|
| 487 |
+
# return tuple(repeat(x, n))
|
| 488 |
+
# return parse
|
| 489 |
+
|
| 490 |
+
def forward(self, x, **kwargs):
|
| 491 |
+
B, C, H, W = x.shape
|
| 492 |
+
# FIXME look at relaxing size constraints
|
| 493 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
| 494 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
| 495 |
+
if self.mask_cent:
|
| 496 |
+
x[:, -1] = x[:, -1] - 0.5
|
| 497 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
| 498 |
+
return x
|
| 499 |
+
|
| 500 |
+
class CnnHead(nn.Module):
|
| 501 |
+
def __init__(self, embed_dim, num_classes, window_size):
|
| 502 |
+
super().__init__()
|
| 503 |
+
self.embed_dim = embed_dim
|
| 504 |
+
self.num_classes = num_classes
|
| 505 |
+
self.window_size = window_size
|
| 506 |
+
|
| 507 |
+
self.head = nn.Conv2d(embed_dim, num_classes, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
|
| 508 |
+
|
| 509 |
+
def forward(self, x):
|
| 510 |
+
x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
|
| 511 |
+
x = self.head(x)
|
| 512 |
+
x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
|
| 513 |
+
return x
|
| 514 |
+
|
| 515 |
+
# sin-cos position encoding
|
| 516 |
+
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
|
| 517 |
+
|
| 518 |
+
import numpy as np
|
| 519 |
+
def get_sinusoid_encoding_table(n_position, d_hid):
|
| 520 |
+
''' Sinusoid position encoding table '''
|
| 521 |
+
# TODO: make it with torch instead of numpy
|
| 522 |
+
def get_position_angle_vec(position):
|
| 523 |
+
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
| 524 |
+
|
| 525 |
+
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
| 526 |
+
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
| 527 |
+
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
| 528 |
+
|
| 529 |
+
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
|
| 530 |
+
|
| 531 |
+
class ModulatedDeformConv(nn.Module):
|
| 532 |
+
|
| 533 |
+
def __init__(self,
|
| 534 |
+
in_channels,
|
| 535 |
+
out_channels,
|
| 536 |
+
kernel_size,
|
| 537 |
+
stride=1,
|
| 538 |
+
padding=0,
|
| 539 |
+
dilation=1,
|
| 540 |
+
groups=1,
|
| 541 |
+
deformable_groups=1,
|
| 542 |
+
bias=True):
|
| 543 |
+
super(ModulatedDeformConv, self).__init__()
|
| 544 |
+
self.in_channels = in_channels
|
| 545 |
+
self.out_channels = out_channels
|
| 546 |
+
self.kernel_size = _pair(kernel_size)
|
| 547 |
+
self.stride = stride
|
| 548 |
+
self.padding = padding
|
| 549 |
+
self.dilation = dilation
|
| 550 |
+
self.groups = groups
|
| 551 |
+
self.deformable_groups = deformable_groups
|
| 552 |
+
self.with_bias = bias
|
| 553 |
+
# enable compatibility with nn.Conv2d
|
| 554 |
+
self.transposed = False
|
| 555 |
+
self.output_padding = _single(0)
|
| 556 |
+
|
| 557 |
+
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *self.kernel_size))
|
| 558 |
+
if bias:
|
| 559 |
+
self.bias = nn.Parameter(torch.Tensor(out_channels))
|
| 560 |
+
else:
|
| 561 |
+
self.register_parameter('bias', None)
|
| 562 |
+
self.init_weights()
|
| 563 |
+
|
| 564 |
+
def init_weights(self):
|
| 565 |
+
n = self.in_channels
|
| 566 |
+
for k in self.kernel_size:
|
| 567 |
+
n *= k
|
| 568 |
+
stdv = 1. / math.sqrt(n)
|
| 569 |
+
self.weight.data.uniform_(-stdv, stdv)
|
| 570 |
+
if self.bias is not None:
|
| 571 |
+
self.bias.data.zero_()
|
| 572 |
+
|
| 573 |
+
class ModulatedDeformConvPack(ModulatedDeformConv):
|
| 574 |
+
"""
|
| 575 |
+
https://github.com/xinntao/EDVR/blob/master/basicsr/models/ops/dcn/deform_conv.py
|
| 576 |
+
A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers.
|
| 577 |
+
|
| 578 |
+
Args:
|
| 579 |
+
in_channels (int): Same as nn.Conv2d.
|
| 580 |
+
out_channels (int): Same as nn.Conv2d.
|
| 581 |
+
kernel_size (int or tuple[int]): Same as nn.Conv2d.
|
| 582 |
+
stride (int or tuple[int]): Same as nn.Conv2d.
|
| 583 |
+
padding (int or tuple[int]): Same as nn.Conv2d.
|
| 584 |
+
dilation (int or tuple[int]): Same as nn.Conv2d.
|
| 585 |
+
groups (int): Same as nn.Conv2d.
|
| 586 |
+
bias (bool or str): If specified as `auto`, it will be decided by the
|
| 587 |
+
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
|
| 588 |
+
False.
|
| 589 |
+
"""
|
| 590 |
+
|
| 591 |
+
_version = 2
|
| 592 |
+
|
| 593 |
+
def __init__(self, *args, **kwargs):
|
| 594 |
+
super(ModulatedDeformConvPack, self).__init__(*args, **kwargs)
|
| 595 |
+
|
| 596 |
+
self.conv_offset = nn.Conv2d(
|
| 597 |
+
self.in_channels,#self.in_channels+4,
|
| 598 |
+
self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
|
| 599 |
+
kernel_size=self.kernel_size,
|
| 600 |
+
stride=_pair(self.stride),
|
| 601 |
+
padding=_pair(self.padding),
|
| 602 |
+
dilation=_pair(self.dilation),
|
| 603 |
+
bias=True)
|
| 604 |
+
self.init_weights()
|
| 605 |
+
|
| 606 |
+
def init_weights(self):
|
| 607 |
+
super(ModulatedDeformConvPack, self).init_weights()
|
| 608 |
+
if hasattr(self, 'conv_offset'):
|
| 609 |
+
self.conv_offset.weight.data.zero_()
|
| 610 |
+
self.conv_offset.bias.data.zero_()
|
| 611 |
+
|
| 612 |
+
def forward(self, x):
|
| 613 |
+
# out = self.conv_offset(torch.cat((x,gray_content),dim=1))
|
| 614 |
+
out = self.conv_offset(x)
|
| 615 |
+
o1, o2, mask = torch.chunk(out, 3, dim=1)
|
| 616 |
+
offset = torch.cat((o1, o2), dim=1)
|
| 617 |
+
mask = torch.sigmoid(mask)
|
| 618 |
+
|
| 619 |
+
# return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
|
| 620 |
+
# self.groups, self.deformable_groups)
|
| 621 |
+
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
|
| 622 |
+
self.dilation, mask)
|
| 623 |
+
|
| 624 |
+
class SpatialTransformer(nn.Module):
|
| 625 |
+
"""
|
| 626 |
+
Transformer block for image-like data.
|
| 627 |
+
First, project the input (aka embedding)
|
| 628 |
+
and reshape to b, t, d.
|
| 629 |
+
Then apply standard transformer action.
|
| 630 |
+
Finally, reshape to image
|
| 631 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
| 632 |
+
"""
|
| 633 |
+
def __init__(self, in_channels, n_heads, d_head,
|
| 634 |
+
depth=1, dropout=0., context_dim=None,
|
| 635 |
+
disable_self_attn=False, use_linear=False,
|
| 636 |
+
use_checkpoint=True):
|
| 637 |
+
super().__init__()
|
| 638 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
| 639 |
+
context_dim = [context_dim]
|
| 640 |
+
self.in_channels = in_channels
|
| 641 |
+
inner_dim = n_heads * d_head
|
| 642 |
+
self.norm = Normalize(in_channels)
|
| 643 |
+
if not use_linear:
|
| 644 |
+
self.proj_in = nn.Conv2d(in_channels,
|
| 645 |
+
inner_dim,
|
| 646 |
+
kernel_size=1,
|
| 647 |
+
stride=1,
|
| 648 |
+
padding=0)
|
| 649 |
+
else:
|
| 650 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 651 |
+
|
| 652 |
+
self.transformer_blocks = nn.ModuleList(
|
| 653 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
| 654 |
+
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
|
| 655 |
+
for d in range(depth)]
|
| 656 |
+
)
|
| 657 |
+
if not use_linear:
|
| 658 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
| 659 |
+
in_channels,
|
| 660 |
+
kernel_size=1,
|
| 661 |
+
stride=1,
|
| 662 |
+
padding=0))
|
| 663 |
+
else:
|
| 664 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
| 665 |
+
self.use_linear = use_linear
|
| 666 |
+
# self.dcn_cnn = ModulatedDeformConvPack(inner_dim,
|
| 667 |
+
# inner_dim,
|
| 668 |
+
# kernel_size=3,
|
| 669 |
+
# stride=1,
|
| 670 |
+
# padding=1)
|
| 671 |
+
|
| 672 |
+
# self.cnnhead = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
|
| 673 |
+
|
| 674 |
+
# embed_dim=192
|
| 675 |
+
# img_size=64
|
| 676 |
+
# patch_size=8
|
| 677 |
+
# self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size,
|
| 678 |
+
# in_chans=4, embed_dim=embed_dim, mask_cent=False)
|
| 679 |
+
# num_patches = self.patch_embed.num_patches # 2
|
| 680 |
+
|
| 681 |
+
# self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
|
| 682 |
+
|
| 683 |
+
# self.cnnhead = CnnHead(embed_dim, num_classes=32, window_size=img_size // patch_size)
|
| 684 |
+
|
| 685 |
+
# self.posatnn_block = Block(dim=embed_dim, num_heads=3, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 686 |
+
# drop=0., attn_drop=0., norm_layer=nn.LayerNorm,
|
| 687 |
+
# init_values=0., use_rpb=True, window_size=img_size // patch_size)
|
| 688 |
+
# # self.window_size=8
|
| 689 |
+
# self.norm1=nn.LayerNorm(embed_dim)
|
| 690 |
+
|
| 691 |
+
def forward(self, x, context=None,dcn_guide=None):
|
| 692 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 693 |
+
if not isinstance(context, list):
|
| 694 |
+
context = [context]
|
| 695 |
+
b, c, h, w = x.shape
|
| 696 |
+
x_in = x
|
| 697 |
+
x = self.norm(x)
|
| 698 |
+
if not self.use_linear:
|
| 699 |
+
x = self.proj_in(x)
|
| 700 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
| 701 |
+
if self.use_linear:
|
| 702 |
+
x = self.proj_in(x)
|
| 703 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 704 |
+
x = block(x, context=context[i])
|
| 705 |
+
if self.use_linear:
|
| 706 |
+
x = self.proj_out(x)
|
| 707 |
+
|
| 708 |
+
# x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
|
| 709 |
+
# x = self.cnnhead(x)
|
| 710 |
+
# x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
|
| 711 |
+
|
| 712 |
+
# x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
| 713 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
| 714 |
+
# print("before",x.shape)
|
| 715 |
+
|
| 716 |
+
# if x.shape[1]==4:
|
| 717 |
+
# x = self.patch_embed(x)
|
| 718 |
+
# print("after PatchEmbed",x.shape)
|
| 719 |
+
# x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
|
| 720 |
+
|
| 721 |
+
# x =self.posatnn_block(x)
|
| 722 |
+
# x = self.norm1(x)
|
| 723 |
+
# print("after norm",x.shape)
|
| 724 |
+
|
| 725 |
+
# x = self.cnnhead(x)
|
| 726 |
+
|
| 727 |
+
# x = self.dcn_cnn(x,dcn_guide) ##
|
| 728 |
+
|
| 729 |
+
# print("after",x.shape)
|
| 730 |
+
if not self.use_linear:
|
| 731 |
+
x = self.proj_out(x)
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
|
| 735 |
+
return x + x_in
|
| 736 |
+
|
| 737 |
+
# res = self.cnnhead(x+x_in)
|
| 738 |
+
# return res
|
| 739 |
+
|
| 740 |
+
|
| 741 |
+
class SpatialTransformer_dcn(nn.Module):
|
| 742 |
+
"""
|
| 743 |
+
Transformer block for image-like data.
|
| 744 |
+
First, project the input (aka embedding)
|
| 745 |
+
and reshape to b, t, d.
|
| 746 |
+
Then apply standard transformer action.
|
| 747 |
+
Finally, reshape to image
|
| 748 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
| 749 |
+
"""
|
| 750 |
+
def __init__(self, in_channels, n_heads, d_head,
|
| 751 |
+
depth=1, dropout=0., context_dim=None,
|
| 752 |
+
disable_self_attn=False, use_linear=False,
|
| 753 |
+
use_checkpoint=True):
|
| 754 |
+
super().__init__()
|
| 755 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
| 756 |
+
context_dim = [context_dim]
|
| 757 |
+
self.in_channels = in_channels
|
| 758 |
+
inner_dim = n_heads * d_head
|
| 759 |
+
self.norm = Normalize(in_channels)
|
| 760 |
+
if not use_linear:
|
| 761 |
+
self.proj_in = nn.Conv2d(in_channels,
|
| 762 |
+
inner_dim,
|
| 763 |
+
kernel_size=1,
|
| 764 |
+
stride=1,
|
| 765 |
+
padding=0)
|
| 766 |
+
else:
|
| 767 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 768 |
+
|
| 769 |
+
self.transformer_blocks = nn.ModuleList(
|
| 770 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
| 771 |
+
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
|
| 772 |
+
for d in range(depth)]
|
| 773 |
+
)
|
| 774 |
+
if not use_linear:
|
| 775 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
| 776 |
+
in_channels,
|
| 777 |
+
kernel_size=1,
|
| 778 |
+
stride=1,
|
| 779 |
+
padding=0))
|
| 780 |
+
else:
|
| 781 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
| 782 |
+
self.use_linear = use_linear
|
| 783 |
+
# print(in_channels,inner_dim)
|
| 784 |
+
self.dcn_cnn = ModulatedDeformConvPack(inner_dim,
|
| 785 |
+
inner_dim,
|
| 786 |
+
kernel_size=3,
|
| 787 |
+
stride=1,
|
| 788 |
+
padding=1)
|
| 789 |
+
|
| 790 |
+
# self.cnnhead = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
|
| 791 |
+
|
| 792 |
+
# embed_dim=192
|
| 793 |
+
# img_size=64
|
| 794 |
+
# patch_size=8
|
| 795 |
+
# self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size,
|
| 796 |
+
# in_chans=4, embed_dim=embed_dim, mask_cent=False)
|
| 797 |
+
# num_patches = self.patch_embed.num_patches # 2
|
| 798 |
+
|
| 799 |
+
# self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
|
| 800 |
+
|
| 801 |
+
# self.cnnhead = CnnHead(embed_dim, num_classes=32, window_size=img_size // patch_size)
|
| 802 |
+
|
| 803 |
+
# self.posatnn_block = Block(dim=embed_dim, num_heads=3, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 804 |
+
# drop=0., attn_drop=0., norm_layer=nn.LayerNorm,
|
| 805 |
+
# init_values=0., use_rpb=True, window_size=img_size // patch_size)
|
| 806 |
+
# # self.window_size=8
|
| 807 |
+
# self.norm1=nn.LayerNorm(embed_dim)
|
| 808 |
+
|
| 809 |
+
def forward(self, x, context=None,dcn_guide=None):
|
| 810 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 811 |
+
if not isinstance(context, list):
|
| 812 |
+
context = [context]
|
| 813 |
+
b, c, h, w = x.shape
|
| 814 |
+
x_in = x
|
| 815 |
+
x = self.norm(x)
|
| 816 |
+
if not self.use_linear:
|
| 817 |
+
x = self.proj_in(x)
|
| 818 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
| 819 |
+
if self.use_linear:
|
| 820 |
+
x = self.proj_in(x)
|
| 821 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 822 |
+
x = block(x, context=context[i])
|
| 823 |
+
if self.use_linear:
|
| 824 |
+
x = self.proj_out(x)
|
| 825 |
+
|
| 826 |
+
# x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
|
| 827 |
+
# x = self.cnnhead(x)
|
| 828 |
+
# x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
|
| 829 |
+
|
| 830 |
+
# x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
| 831 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
| 832 |
+
# print("before",x.shape)
|
| 833 |
+
|
| 834 |
+
# if x.shape[1]==4:
|
| 835 |
+
# x = self.patch_embed(x)
|
| 836 |
+
# print("after PatchEmbed",x.shape)
|
| 837 |
+
# x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
|
| 838 |
+
|
| 839 |
+
# x =self.posatnn_block(x)
|
| 840 |
+
# x = self.norm1(x)
|
| 841 |
+
# print("after norm",x.shape)
|
| 842 |
+
|
| 843 |
+
# x = self.cnnhead(x)
|
| 844 |
+
x = self.dcn_cnn(x)
|
| 845 |
+
# print("after",x.shape)
|
| 846 |
+
if not self.use_linear:
|
| 847 |
+
x = self.proj_out(x)
|
| 848 |
+
|
| 849 |
+
|
| 850 |
+
|
| 851 |
+
return x + x_in
|
| 852 |
+
|
| 853 |
+
# res = self.cnnhead(x+x_in)
|
| 854 |
+
# return res
|
Control-Color/ldm/modules/diffusionmodules/__init__.py
ADDED
|
File without changes
|
Control-Color/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (170 Bytes). View file
|
|
|
Control-Color/ldm/modules/diffusionmodules/__pycache__/model.cpython-38.pyc
ADDED
|
Binary file (25.5 kB). View file
|
|
|
Control-Color/ldm/modules/diffusionmodules/__pycache__/model_brefore_dcn.cpython-38.pyc
ADDED
|
Binary file (21.3 kB). View file
|
|
|
Control-Color/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-38.pyc
ADDED
|
Binary file (21.6 kB). View file
|
|
|
Control-Color/ldm/modules/diffusionmodules/__pycache__/util.cpython-38.pyc
ADDED
|
Binary file (9.67 kB). View file
|
|
|
Control-Color/ldm/modules/diffusionmodules/model.py
ADDED
|
@@ -0,0 +1,1107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pytorch_diffusion + derived encoder decoder
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torchvision
|
| 6 |
+
from torch.nn.modules.utils import _pair, _single
|
| 7 |
+
import numpy as np
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from typing import Optional, Any
|
| 10 |
+
|
| 11 |
+
from ldm.modules.attention import MemoryEfficientCrossAttention
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
import xformers
|
| 15 |
+
import xformers.ops
|
| 16 |
+
XFORMERS_IS_AVAILBLE = True
|
| 17 |
+
except:
|
| 18 |
+
XFORMERS_IS_AVAILBLE = False
|
| 19 |
+
print("No module 'xformers'. Proceeding without it.")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
| 23 |
+
"""
|
| 24 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
| 25 |
+
From Fairseq.
|
| 26 |
+
Build sinusoidal embeddings.
|
| 27 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
| 28 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
| 29 |
+
"""
|
| 30 |
+
assert len(timesteps.shape) == 1
|
| 31 |
+
|
| 32 |
+
half_dim = embedding_dim // 2
|
| 33 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 34 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
| 35 |
+
emb = emb.to(device=timesteps.device)
|
| 36 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
| 37 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 38 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 39 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
| 40 |
+
return emb
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def nonlinearity(x):
|
| 44 |
+
# swish
|
| 45 |
+
return x*torch.sigmoid(x)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def Normalize(in_channels, num_groups=32):
|
| 49 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class Upsample(nn.Module):
|
| 53 |
+
def __init__(self, in_channels, with_conv):
|
| 54 |
+
super().__init__()
|
| 55 |
+
self.with_conv = with_conv
|
| 56 |
+
if self.with_conv:
|
| 57 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 58 |
+
in_channels,
|
| 59 |
+
kernel_size=3,
|
| 60 |
+
stride=1,
|
| 61 |
+
padding=1)
|
| 62 |
+
|
| 63 |
+
def forward(self, x):
|
| 64 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 65 |
+
if self.with_conv:
|
| 66 |
+
x = self.conv(x)
|
| 67 |
+
return x
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class Downsample(nn.Module):
|
| 71 |
+
def __init__(self, in_channels, with_conv):
|
| 72 |
+
super().__init__()
|
| 73 |
+
self.with_conv = with_conv
|
| 74 |
+
if self.with_conv:
|
| 75 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 76 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 77 |
+
in_channels,
|
| 78 |
+
kernel_size=3,
|
| 79 |
+
stride=2,
|
| 80 |
+
padding=0)
|
| 81 |
+
|
| 82 |
+
def forward(self, x):
|
| 83 |
+
if self.with_conv:
|
| 84 |
+
pad = (0,1,0,1)
|
| 85 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 86 |
+
x = self.conv(x)
|
| 87 |
+
else:
|
| 88 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 89 |
+
return x
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class ResnetBlock(nn.Module):
|
| 93 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
| 94 |
+
dropout, temb_channels=512):
|
| 95 |
+
super().__init__()
|
| 96 |
+
self.in_channels = in_channels
|
| 97 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 98 |
+
self.out_channels = out_channels
|
| 99 |
+
self.use_conv_shortcut = conv_shortcut
|
| 100 |
+
|
| 101 |
+
self.norm1 = Normalize(in_channels)
|
| 102 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
| 103 |
+
out_channels,
|
| 104 |
+
kernel_size=3,
|
| 105 |
+
stride=1,
|
| 106 |
+
padding=1)
|
| 107 |
+
if temb_channels > 0:
|
| 108 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
| 109 |
+
out_channels)
|
| 110 |
+
self.norm2 = Normalize(out_channels)
|
| 111 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 112 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
| 113 |
+
out_channels,
|
| 114 |
+
kernel_size=3,
|
| 115 |
+
stride=1,
|
| 116 |
+
padding=1)
|
| 117 |
+
|
| 118 |
+
if self.in_channels != self.out_channels:
|
| 119 |
+
if self.use_conv_shortcut:
|
| 120 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
| 121 |
+
out_channels,
|
| 122 |
+
kernel_size=3,
|
| 123 |
+
stride=1,
|
| 124 |
+
padding=1)
|
| 125 |
+
else:
|
| 126 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
| 127 |
+
out_channels,
|
| 128 |
+
kernel_size=1,
|
| 129 |
+
stride=1,
|
| 130 |
+
padding=0)
|
| 131 |
+
|
| 132 |
+
def forward(self, x, temb):
|
| 133 |
+
h = x
|
| 134 |
+
h = self.norm1(h)
|
| 135 |
+
h = nonlinearity(h)
|
| 136 |
+
h = self.conv1(h)
|
| 137 |
+
|
| 138 |
+
if temb is not None:
|
| 139 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
| 140 |
+
|
| 141 |
+
h = self.norm2(h)
|
| 142 |
+
h = nonlinearity(h)
|
| 143 |
+
h = self.dropout(h)
|
| 144 |
+
h = self.conv2(h)
|
| 145 |
+
|
| 146 |
+
if self.in_channels != self.out_channels:
|
| 147 |
+
if self.use_conv_shortcut:
|
| 148 |
+
x = self.conv_shortcut(x)
|
| 149 |
+
else:
|
| 150 |
+
x = self.nin_shortcut(x)
|
| 151 |
+
|
| 152 |
+
return x+h
|
| 153 |
+
|
| 154 |
+
class ResnetBlock_dcn(nn.Module):
|
| 155 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
| 156 |
+
dropout, temb_channels=512):
|
| 157 |
+
super().__init__()
|
| 158 |
+
self.in_channels = in_channels
|
| 159 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 160 |
+
self.out_channels = out_channels
|
| 161 |
+
self.use_conv_shortcut = conv_shortcut
|
| 162 |
+
|
| 163 |
+
self.norm1 = Normalize(in_channels)
|
| 164 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
| 165 |
+
out_channels,
|
| 166 |
+
kernel_size=3,
|
| 167 |
+
stride=1,
|
| 168 |
+
padding=1)
|
| 169 |
+
self.dcn1 = ModulatedDeformConvPack(out_channels,
|
| 170 |
+
out_channels,
|
| 171 |
+
kernel_size=3,
|
| 172 |
+
stride=1,
|
| 173 |
+
padding=1)
|
| 174 |
+
if temb_channels > 0:
|
| 175 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
| 176 |
+
out_channels)
|
| 177 |
+
self.norm2 = Normalize(out_channels)
|
| 178 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 179 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
| 180 |
+
out_channels,
|
| 181 |
+
kernel_size=3,
|
| 182 |
+
stride=1,
|
| 183 |
+
padding=1)
|
| 184 |
+
self.dcn2 = ModulatedDeformConvPack(out_channels,
|
| 185 |
+
out_channels,
|
| 186 |
+
kernel_size=3,
|
| 187 |
+
stride=1,
|
| 188 |
+
padding=1)
|
| 189 |
+
|
| 190 |
+
if self.in_channels != self.out_channels:
|
| 191 |
+
if self.use_conv_shortcut:
|
| 192 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
| 193 |
+
out_channels,
|
| 194 |
+
kernel_size=3,
|
| 195 |
+
stride=1,
|
| 196 |
+
padding=1)
|
| 197 |
+
else:
|
| 198 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
| 199 |
+
out_channels,
|
| 200 |
+
kernel_size=1,
|
| 201 |
+
stride=1,
|
| 202 |
+
padding=0)
|
| 203 |
+
|
| 204 |
+
def forward(self, x,grayx, temb):
|
| 205 |
+
h = x
|
| 206 |
+
h = self.norm1(h)
|
| 207 |
+
h = nonlinearity(h)
|
| 208 |
+
h = self.conv1(h)
|
| 209 |
+
h = self.dcn1(h,grayx)+h
|
| 210 |
+
|
| 211 |
+
if temb is not None:
|
| 212 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
| 213 |
+
|
| 214 |
+
h = self.norm2(h)
|
| 215 |
+
h = nonlinearity(h)
|
| 216 |
+
h = self.dropout(h)
|
| 217 |
+
h = self.conv2(h)
|
| 218 |
+
h = self.dcn2(h,grayx)+h
|
| 219 |
+
|
| 220 |
+
if self.in_channels != self.out_channels:
|
| 221 |
+
if self.use_conv_shortcut:
|
| 222 |
+
x = self.conv_shortcut(x)
|
| 223 |
+
else:
|
| 224 |
+
x = self.nin_shortcut(x)
|
| 225 |
+
|
| 226 |
+
return x+h
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
class AttnBlock(nn.Module):
|
| 230 |
+
def __init__(self, in_channels):
|
| 231 |
+
super().__init__()
|
| 232 |
+
self.in_channels = in_channels
|
| 233 |
+
|
| 234 |
+
self.norm = Normalize(in_channels)
|
| 235 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 236 |
+
in_channels,
|
| 237 |
+
kernel_size=1,
|
| 238 |
+
stride=1,
|
| 239 |
+
padding=0)
|
| 240 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 241 |
+
in_channels,
|
| 242 |
+
kernel_size=1,
|
| 243 |
+
stride=1,
|
| 244 |
+
padding=0)
|
| 245 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 246 |
+
in_channels,
|
| 247 |
+
kernel_size=1,
|
| 248 |
+
stride=1,
|
| 249 |
+
padding=0)
|
| 250 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 251 |
+
in_channels,
|
| 252 |
+
kernel_size=1,
|
| 253 |
+
stride=1,
|
| 254 |
+
padding=0)
|
| 255 |
+
|
| 256 |
+
def forward(self, x):
|
| 257 |
+
h_ = x
|
| 258 |
+
h_ = self.norm(h_)
|
| 259 |
+
q = self.q(h_)
|
| 260 |
+
k = self.k(h_)
|
| 261 |
+
v = self.v(h_)
|
| 262 |
+
|
| 263 |
+
# compute attention
|
| 264 |
+
b,c,h,w = q.shape
|
| 265 |
+
q = q.reshape(b,c,h*w)
|
| 266 |
+
q = q.permute(0,2,1) # b,hw,c
|
| 267 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
| 268 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 269 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 270 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 271 |
+
|
| 272 |
+
# attend to values
|
| 273 |
+
v = v.reshape(b,c,h*w)
|
| 274 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
| 275 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 276 |
+
h_ = h_.reshape(b,c,h,w)
|
| 277 |
+
|
| 278 |
+
h_ = self.proj_out(h_)
|
| 279 |
+
|
| 280 |
+
return x+h_
|
| 281 |
+
|
| 282 |
+
class MemoryEfficientAttnBlock(nn.Module):
|
| 283 |
+
"""
|
| 284 |
+
Uses xformers efficient implementation,
|
| 285 |
+
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
| 286 |
+
Note: this is a single-head self-attention operation
|
| 287 |
+
"""
|
| 288 |
+
#
|
| 289 |
+
def __init__(self, in_channels):
|
| 290 |
+
super().__init__()
|
| 291 |
+
self.in_channels = in_channels
|
| 292 |
+
|
| 293 |
+
self.norm = Normalize(in_channels)
|
| 294 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 295 |
+
in_channels,
|
| 296 |
+
kernel_size=1,
|
| 297 |
+
stride=1,
|
| 298 |
+
padding=0)
|
| 299 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 300 |
+
in_channels,
|
| 301 |
+
kernel_size=1,
|
| 302 |
+
stride=1,
|
| 303 |
+
padding=0)
|
| 304 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 305 |
+
in_channels,
|
| 306 |
+
kernel_size=1,
|
| 307 |
+
stride=1,
|
| 308 |
+
padding=0)
|
| 309 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 310 |
+
in_channels,
|
| 311 |
+
kernel_size=1,
|
| 312 |
+
stride=1,
|
| 313 |
+
padding=0)
|
| 314 |
+
self.attention_op: Optional[Any] = None
|
| 315 |
+
|
| 316 |
+
def forward(self, x):
|
| 317 |
+
h_ = x
|
| 318 |
+
h_ = self.norm(h_)
|
| 319 |
+
q = self.q(h_)
|
| 320 |
+
k = self.k(h_)
|
| 321 |
+
v = self.v(h_)
|
| 322 |
+
|
| 323 |
+
# compute attention
|
| 324 |
+
B, C, H, W = q.shape
|
| 325 |
+
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
|
| 326 |
+
|
| 327 |
+
q, k, v = map(
|
| 328 |
+
lambda t: t.unsqueeze(3)
|
| 329 |
+
.reshape(B, t.shape[1], 1, C)
|
| 330 |
+
.permute(0, 2, 1, 3)
|
| 331 |
+
.reshape(B * 1, t.shape[1], C)
|
| 332 |
+
.contiguous(),
|
| 333 |
+
(q, k, v),
|
| 334 |
+
)
|
| 335 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
| 336 |
+
|
| 337 |
+
out = (
|
| 338 |
+
out.unsqueeze(0)
|
| 339 |
+
.reshape(B, 1, out.shape[1], C)
|
| 340 |
+
.permute(0, 2, 1, 3)
|
| 341 |
+
.reshape(B, out.shape[1], C)
|
| 342 |
+
)
|
| 343 |
+
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
|
| 344 |
+
out = self.proj_out(out)
|
| 345 |
+
return x+out
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
| 349 |
+
def forward(self, x, context=None, mask=None):
|
| 350 |
+
b, c, h, w = x.shape
|
| 351 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
| 352 |
+
out = super().forward(x, context=context, mask=mask)
|
| 353 |
+
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
|
| 354 |
+
return x + out
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
| 358 |
+
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
|
| 359 |
+
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
|
| 360 |
+
attn_type = "vanilla-xformers"
|
| 361 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
| 362 |
+
if attn_type == "vanilla":
|
| 363 |
+
assert attn_kwargs is None
|
| 364 |
+
return AttnBlock(in_channels)
|
| 365 |
+
elif attn_type == "vanilla-xformers":
|
| 366 |
+
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
|
| 367 |
+
return MemoryEfficientAttnBlock(in_channels)
|
| 368 |
+
elif type == "memory-efficient-cross-attn":
|
| 369 |
+
attn_kwargs["query_dim"] = in_channels
|
| 370 |
+
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
| 371 |
+
elif attn_type == "none":
|
| 372 |
+
return nn.Identity(in_channels)
|
| 373 |
+
else:
|
| 374 |
+
raise NotImplementedError()
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
class Model(nn.Module):
|
| 378 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 379 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 380 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
| 381 |
+
super().__init__()
|
| 382 |
+
if use_linear_attn: attn_type = "linear"
|
| 383 |
+
self.ch = ch
|
| 384 |
+
self.temb_ch = self.ch*4
|
| 385 |
+
self.num_resolutions = len(ch_mult)
|
| 386 |
+
self.num_res_blocks = num_res_blocks
|
| 387 |
+
self.resolution = resolution
|
| 388 |
+
self.in_channels = in_channels
|
| 389 |
+
|
| 390 |
+
self.use_timestep = use_timestep
|
| 391 |
+
if self.use_timestep:
|
| 392 |
+
# timestep embedding
|
| 393 |
+
self.temb = nn.Module()
|
| 394 |
+
self.temb.dense = nn.ModuleList([
|
| 395 |
+
torch.nn.Linear(self.ch,
|
| 396 |
+
self.temb_ch),
|
| 397 |
+
torch.nn.Linear(self.temb_ch,
|
| 398 |
+
self.temb_ch),
|
| 399 |
+
])
|
| 400 |
+
|
| 401 |
+
# downsampling
|
| 402 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 403 |
+
self.ch,
|
| 404 |
+
kernel_size=3,
|
| 405 |
+
stride=1,
|
| 406 |
+
padding=1)
|
| 407 |
+
|
| 408 |
+
curr_res = resolution
|
| 409 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 410 |
+
self.down = nn.ModuleList()
|
| 411 |
+
for i_level in range(self.num_resolutions):
|
| 412 |
+
block = nn.ModuleList()
|
| 413 |
+
attn = nn.ModuleList()
|
| 414 |
+
block_in = ch*in_ch_mult[i_level]
|
| 415 |
+
block_out = ch*ch_mult[i_level]
|
| 416 |
+
for i_block in range(self.num_res_blocks):
|
| 417 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 418 |
+
out_channels=block_out,
|
| 419 |
+
temb_channels=self.temb_ch,
|
| 420 |
+
dropout=dropout))
|
| 421 |
+
block_in = block_out
|
| 422 |
+
if curr_res in attn_resolutions:
|
| 423 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 424 |
+
down = nn.Module()
|
| 425 |
+
down.block = block
|
| 426 |
+
down.attn = attn
|
| 427 |
+
if i_level != self.num_resolutions-1:
|
| 428 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 429 |
+
curr_res = curr_res // 2
|
| 430 |
+
self.down.append(down)
|
| 431 |
+
|
| 432 |
+
# middle
|
| 433 |
+
self.mid = nn.Module()
|
| 434 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 435 |
+
out_channels=block_in,
|
| 436 |
+
temb_channels=self.temb_ch,
|
| 437 |
+
dropout=dropout)
|
| 438 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 439 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 440 |
+
out_channels=block_in,
|
| 441 |
+
temb_channels=self.temb_ch,
|
| 442 |
+
dropout=dropout)
|
| 443 |
+
|
| 444 |
+
# upsampling
|
| 445 |
+
self.up = nn.ModuleList()
|
| 446 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 447 |
+
block = nn.ModuleList()
|
| 448 |
+
attn = nn.ModuleList()
|
| 449 |
+
block_out = ch*ch_mult[i_level]
|
| 450 |
+
skip_in = ch*ch_mult[i_level]
|
| 451 |
+
for i_block in range(self.num_res_blocks+1):
|
| 452 |
+
if i_block == self.num_res_blocks:
|
| 453 |
+
skip_in = ch*in_ch_mult[i_level]
|
| 454 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
| 455 |
+
out_channels=block_out,
|
| 456 |
+
temb_channels=self.temb_ch,
|
| 457 |
+
dropout=dropout))
|
| 458 |
+
block_in = block_out
|
| 459 |
+
if curr_res in attn_resolutions:
|
| 460 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 461 |
+
up = nn.Module()
|
| 462 |
+
up.block = block
|
| 463 |
+
up.attn = attn
|
| 464 |
+
if i_level != 0:
|
| 465 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 466 |
+
curr_res = curr_res * 2
|
| 467 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 468 |
+
|
| 469 |
+
# end
|
| 470 |
+
self.norm_out = Normalize(block_in)
|
| 471 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 472 |
+
out_ch,
|
| 473 |
+
kernel_size=3,
|
| 474 |
+
stride=1,
|
| 475 |
+
padding=1)
|
| 476 |
+
|
| 477 |
+
def forward(self, x, t=None, context=None):
|
| 478 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
| 479 |
+
if context is not None:
|
| 480 |
+
# assume aligned context, cat along channel axis
|
| 481 |
+
x = torch.cat((x, context), dim=1)
|
| 482 |
+
if self.use_timestep:
|
| 483 |
+
# timestep embedding
|
| 484 |
+
assert t is not None
|
| 485 |
+
temb = get_timestep_embedding(t, self.ch)
|
| 486 |
+
temb = self.temb.dense[0](temb)
|
| 487 |
+
temb = nonlinearity(temb)
|
| 488 |
+
temb = self.temb.dense[1](temb)
|
| 489 |
+
else:
|
| 490 |
+
temb = None
|
| 491 |
+
|
| 492 |
+
# downsampling
|
| 493 |
+
hs = [self.conv_in(x)]
|
| 494 |
+
for i_level in range(self.num_resolutions):
|
| 495 |
+
for i_block in range(self.num_res_blocks):
|
| 496 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 497 |
+
if len(self.down[i_level].attn) > 0:
|
| 498 |
+
h = self.down[i_level].attn[i_block](h)
|
| 499 |
+
hs.append(h)
|
| 500 |
+
if i_level != self.num_resolutions-1:
|
| 501 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 502 |
+
|
| 503 |
+
# middle
|
| 504 |
+
h = hs[-1]
|
| 505 |
+
h = self.mid.block_1(h, temb)
|
| 506 |
+
h = self.mid.attn_1(h)
|
| 507 |
+
h = self.mid.block_2(h, temb)
|
| 508 |
+
|
| 509 |
+
# upsampling
|
| 510 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 511 |
+
for i_block in range(self.num_res_blocks+1):
|
| 512 |
+
h = self.up[i_level].block[i_block](
|
| 513 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
| 514 |
+
if len(self.up[i_level].attn) > 0:
|
| 515 |
+
h = self.up[i_level].attn[i_block](h)
|
| 516 |
+
if i_level != 0:
|
| 517 |
+
h = self.up[i_level].upsample(h)
|
| 518 |
+
|
| 519 |
+
# end
|
| 520 |
+
h = self.norm_out(h)
|
| 521 |
+
h = nonlinearity(h)
|
| 522 |
+
h = self.conv_out(h)
|
| 523 |
+
return h
|
| 524 |
+
|
| 525 |
+
def get_last_layer(self):
|
| 526 |
+
return self.conv_out.weight
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
class Encoder(nn.Module):
|
| 530 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 531 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 532 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
| 533 |
+
**ignore_kwargs):
|
| 534 |
+
super().__init__()
|
| 535 |
+
if use_linear_attn: attn_type = "linear"
|
| 536 |
+
self.ch = ch
|
| 537 |
+
self.temb_ch = 0
|
| 538 |
+
self.num_resolutions = len(ch_mult)
|
| 539 |
+
self.num_res_blocks = num_res_blocks
|
| 540 |
+
self.resolution = resolution
|
| 541 |
+
self.in_channels = in_channels
|
| 542 |
+
|
| 543 |
+
# downsampling
|
| 544 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 545 |
+
self.ch,
|
| 546 |
+
kernel_size=3,
|
| 547 |
+
stride=1,
|
| 548 |
+
padding=1)
|
| 549 |
+
|
| 550 |
+
curr_res = resolution
|
| 551 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 552 |
+
self.in_ch_mult = in_ch_mult
|
| 553 |
+
self.down = nn.ModuleList()
|
| 554 |
+
for i_level in range(self.num_resolutions):
|
| 555 |
+
block = nn.ModuleList()
|
| 556 |
+
attn = nn.ModuleList()
|
| 557 |
+
block_in = ch*in_ch_mult[i_level]
|
| 558 |
+
block_out = ch*ch_mult[i_level]
|
| 559 |
+
for i_block in range(self.num_res_blocks):
|
| 560 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 561 |
+
out_channels=block_out,
|
| 562 |
+
temb_channels=self.temb_ch,
|
| 563 |
+
dropout=dropout))
|
| 564 |
+
block_in = block_out
|
| 565 |
+
if curr_res in attn_resolutions:
|
| 566 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 567 |
+
down = nn.Module()
|
| 568 |
+
down.block = block
|
| 569 |
+
down.attn = attn
|
| 570 |
+
if i_level != self.num_resolutions-1:
|
| 571 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 572 |
+
curr_res = curr_res // 2
|
| 573 |
+
self.down.append(down)
|
| 574 |
+
|
| 575 |
+
# middle
|
| 576 |
+
self.mid = nn.Module()
|
| 577 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 578 |
+
out_channels=block_in,
|
| 579 |
+
temb_channels=self.temb_ch,
|
| 580 |
+
dropout=dropout)
|
| 581 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 582 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 583 |
+
out_channels=block_in,
|
| 584 |
+
temb_channels=self.temb_ch,
|
| 585 |
+
dropout=dropout)
|
| 586 |
+
|
| 587 |
+
# end
|
| 588 |
+
self.norm_out = Normalize(block_in)
|
| 589 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 590 |
+
2*z_channels if double_z else z_channels,
|
| 591 |
+
kernel_size=3,
|
| 592 |
+
stride=1,
|
| 593 |
+
padding=1)
|
| 594 |
+
|
| 595 |
+
def forward(self, x):
|
| 596 |
+
# timestep embedding
|
| 597 |
+
temb = None
|
| 598 |
+
|
| 599 |
+
# downsampling
|
| 600 |
+
hs = [self.conv_in(x)]
|
| 601 |
+
for i_level in range(self.num_resolutions):
|
| 602 |
+
for i_block in range(self.num_res_blocks):
|
| 603 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 604 |
+
if len(self.down[i_level].attn) > 0:
|
| 605 |
+
h = self.down[i_level].attn[i_block](h)
|
| 606 |
+
hs.append(h)
|
| 607 |
+
if i_level != self.num_resolutions-1:
|
| 608 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 609 |
+
|
| 610 |
+
# middle
|
| 611 |
+
h = hs[-1]
|
| 612 |
+
h = self.mid.block_1(h, temb)
|
| 613 |
+
h = self.mid.attn_1(h)
|
| 614 |
+
h = self.mid.block_2(h, temb)
|
| 615 |
+
|
| 616 |
+
# end
|
| 617 |
+
h = self.norm_out(h)
|
| 618 |
+
h = nonlinearity(h)
|
| 619 |
+
h = self.conv_out(h)
|
| 620 |
+
return h
|
| 621 |
+
|
| 622 |
+
class ModulatedDeformConv(nn.Module):
|
| 623 |
+
|
| 624 |
+
def __init__(self,
|
| 625 |
+
in_channels,
|
| 626 |
+
out_channels,
|
| 627 |
+
kernel_size,
|
| 628 |
+
stride=1,
|
| 629 |
+
padding=0,
|
| 630 |
+
dilation=1,
|
| 631 |
+
groups=1,
|
| 632 |
+
deformable_groups=1,
|
| 633 |
+
bias=True):
|
| 634 |
+
super(ModulatedDeformConv, self).__init__()
|
| 635 |
+
self.in_channels = in_channels
|
| 636 |
+
self.out_channels = out_channels
|
| 637 |
+
self.kernel_size = _pair(kernel_size)
|
| 638 |
+
self.stride = stride
|
| 639 |
+
self.padding = padding
|
| 640 |
+
self.dilation = dilation
|
| 641 |
+
self.groups = groups
|
| 642 |
+
self.deformable_groups = deformable_groups
|
| 643 |
+
self.with_bias = bias
|
| 644 |
+
# enable compatibility with nn.Conv2d
|
| 645 |
+
self.transposed = False
|
| 646 |
+
self.output_padding = _single(0)
|
| 647 |
+
|
| 648 |
+
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *self.kernel_size))
|
| 649 |
+
if bias:
|
| 650 |
+
self.bias = nn.Parameter(torch.Tensor(out_channels))
|
| 651 |
+
else:
|
| 652 |
+
self.register_parameter('bias', None)
|
| 653 |
+
self.init_weights()
|
| 654 |
+
|
| 655 |
+
def init_weights(self):
|
| 656 |
+
n = self.in_channels
|
| 657 |
+
for k in self.kernel_size:
|
| 658 |
+
n *= k
|
| 659 |
+
stdv = 1. / math.sqrt(n)
|
| 660 |
+
self.weight.data.uniform_(-stdv, stdv)
|
| 661 |
+
if self.bias is not None:
|
| 662 |
+
self.bias.data.zero_()
|
| 663 |
+
|
| 664 |
+
# def forward(self, x, offset, mask):
|
| 665 |
+
# return torchvision.ops.con(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
|
| 666 |
+
# self.groups, self.deformable_groups)
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
class ModulatedDeformConvPack(ModulatedDeformConv):
|
| 670 |
+
"""A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers.
|
| 671 |
+
|
| 672 |
+
Args:
|
| 673 |
+
in_channels (int): Same as nn.Conv2d.
|
| 674 |
+
out_channels (int): Same as nn.Conv2d.
|
| 675 |
+
kernel_size (int or tuple[int]): Same as nn.Conv2d.
|
| 676 |
+
stride (int or tuple[int]): Same as nn.Conv2d.
|
| 677 |
+
padding (int or tuple[int]): Same as nn.Conv2d.
|
| 678 |
+
dilation (int or tuple[int]): Same as nn.Conv2d.
|
| 679 |
+
groups (int): Same as nn.Conv2d.
|
| 680 |
+
bias (bool or str): If specified as `auto`, it will be decided by the
|
| 681 |
+
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
|
| 682 |
+
False.
|
| 683 |
+
"""
|
| 684 |
+
|
| 685 |
+
_version = 2
|
| 686 |
+
|
| 687 |
+
def __init__(self, *args, **kwargs):
|
| 688 |
+
super(ModulatedDeformConvPack, self).__init__(*args, **kwargs)
|
| 689 |
+
|
| 690 |
+
self.conv_offset = nn.Conv2d(
|
| 691 |
+
self.in_channels+4,
|
| 692 |
+
self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
|
| 693 |
+
kernel_size=self.kernel_size,
|
| 694 |
+
stride=_pair(self.stride),
|
| 695 |
+
padding=_pair(self.padding),
|
| 696 |
+
dilation=_pair(self.dilation),
|
| 697 |
+
bias=True)
|
| 698 |
+
self.init_weights()
|
| 699 |
+
|
| 700 |
+
def init_weights(self):
|
| 701 |
+
super(ModulatedDeformConvPack, self).init_weights()
|
| 702 |
+
if hasattr(self, 'conv_offset'):
|
| 703 |
+
self.conv_offset.weight.data.zero_()
|
| 704 |
+
self.conv_offset.bias.data.zero_()
|
| 705 |
+
|
| 706 |
+
def forward(self, x, gray_content):
|
| 707 |
+
out = self.conv_offset(torch.cat((x,gray_content),dim=1))
|
| 708 |
+
o1, o2, mask = torch.chunk(out, 3, dim=1)
|
| 709 |
+
offset = torch.cat((o1, o2), dim=1)
|
| 710 |
+
mask = torch.sigmoid(mask)
|
| 711 |
+
|
| 712 |
+
# return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
|
| 713 |
+
# self.groups, self.deformable_groups)
|
| 714 |
+
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
|
| 715 |
+
self.dilation, mask)
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
# class SecondOrderDeformableAlignment(ModulatedDeformConvPack):
|
| 719 |
+
# """Second-order deformable alignment module.
|
| 720 |
+
|
| 721 |
+
# Args:
|
| 722 |
+
# in_channels (int): Same as nn.Conv2d.
|
| 723 |
+
# out_channels (int): Same as nn.Conv2d.
|
| 724 |
+
# kernel_size (int or tuple[int]): Same as nn.Conv2d.
|
| 725 |
+
# stride (int or tuple[int]): Same as nn.Conv2d.
|
| 726 |
+
# padding (int or tuple[int]): Same as nn.Conv2d.
|
| 727 |
+
# dilation (int or tuple[int]): Same as nn.Conv2d.
|
| 728 |
+
# groups (int): Same as nn.Conv2d.
|
| 729 |
+
# bias (bool or str): If specified as `auto`, it will be decided by the
|
| 730 |
+
# norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
|
| 731 |
+
# False.
|
| 732 |
+
# max_residue_magnitude (int): The maximum magnitude of the offset
|
| 733 |
+
# residue (Eq. 6 in paper). Default: 10.
|
| 734 |
+
# """
|
| 735 |
+
|
| 736 |
+
# def __init__(self, *args, **kwargs):
|
| 737 |
+
# self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10)
|
| 738 |
+
|
| 739 |
+
# super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs)
|
| 740 |
+
|
| 741 |
+
# self.conv_offset = nn.Sequential(
|
| 742 |
+
# nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1),
|
| 743 |
+
# nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
| 744 |
+
# nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
|
| 745 |
+
# nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
| 746 |
+
# nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
|
| 747 |
+
# nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
| 748 |
+
# nn.Conv2d(self.out_channels, 27 * self.deformable_groups, 3, 1, 1),
|
| 749 |
+
# )
|
| 750 |
+
|
| 751 |
+
# self.init_offset()
|
| 752 |
+
|
| 753 |
+
# def init_offset(self):
|
| 754 |
+
|
| 755 |
+
# def _constant_init(module, val, bias=0):
|
| 756 |
+
# if hasattr(module, 'weight') and module.weight is not None:
|
| 757 |
+
# nn.init.constant_(module.weight, val)
|
| 758 |
+
# if hasattr(module, 'bias') and module.bias is not None:
|
| 759 |
+
# nn.init.constant_(module.bias, bias)
|
| 760 |
+
|
| 761 |
+
# _constant_init(self.conv_offset[-1], val=0, bias=0)
|
| 762 |
+
|
| 763 |
+
# def forward(self, x, extra_feat, flow_1, flow_2):
|
| 764 |
+
# extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1)
|
| 765 |
+
# out = self.conv_offset(extra_feat)
|
| 766 |
+
# o1, o2, mask = torch.chunk(out, 3, dim=1)
|
| 767 |
+
|
| 768 |
+
# # offset
|
| 769 |
+
# offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1))
|
| 770 |
+
# offset_1, offset_2 = torch.chunk(offset, 2, dim=1)
|
| 771 |
+
# offset_1 = offset_1 + flow_1.flip(1).repeat(1, offset_1.size(1) // 2, 1, 1)
|
| 772 |
+
# offset_2 = offset_2 + flow_2.flip(1).repeat(1, offset_2.size(1) // 2, 1, 1)
|
| 773 |
+
# offset = torch.cat([offset_1, offset_2], dim=1)
|
| 774 |
+
|
| 775 |
+
# # mask
|
| 776 |
+
# mask = torch.sigmoid(mask)
|
| 777 |
+
|
| 778 |
+
# return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
|
| 779 |
+
# self.dilation, mask)
|
| 780 |
+
|
| 781 |
+
class Decoder(nn.Module):
|
| 782 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 783 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 784 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
| 785 |
+
attn_type="vanilla", **ignorekwargs):
|
| 786 |
+
super().__init__()
|
| 787 |
+
if use_linear_attn: attn_type = "linear"
|
| 788 |
+
self.ch = ch
|
| 789 |
+
self.temb_ch = 0
|
| 790 |
+
self.num_resolutions = len(ch_mult)
|
| 791 |
+
self.num_res_blocks = num_res_blocks
|
| 792 |
+
self.resolution = resolution
|
| 793 |
+
self.in_channels = in_channels
|
| 794 |
+
self.give_pre_end = give_pre_end
|
| 795 |
+
self.tanh_out = tanh_out
|
| 796 |
+
|
| 797 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 798 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 799 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 800 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
| 801 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
| 802 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
| 803 |
+
self.z_shape, np.prod(self.z_shape)))
|
| 804 |
+
|
| 805 |
+
# z to block_in
|
| 806 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
| 807 |
+
block_in,
|
| 808 |
+
kernel_size=3,
|
| 809 |
+
stride=1,
|
| 810 |
+
padding=1)
|
| 811 |
+
|
| 812 |
+
self.dcn_in = ModulatedDeformConvPack(block_in,
|
| 813 |
+
block_in,
|
| 814 |
+
kernel_size=3,
|
| 815 |
+
stride=1,
|
| 816 |
+
padding=1)
|
| 817 |
+
# middle
|
| 818 |
+
self.mid = nn.Module()
|
| 819 |
+
self.mid.block_1 = ResnetBlock_dcn(in_channels=block_in,
|
| 820 |
+
out_channels=block_in,
|
| 821 |
+
temb_channels=self.temb_ch,
|
| 822 |
+
dropout=dropout)
|
| 823 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 824 |
+
self.mid.block_2 = ResnetBlock_dcn(in_channels=block_in,
|
| 825 |
+
out_channels=block_in,
|
| 826 |
+
temb_channels=self.temb_ch,
|
| 827 |
+
dropout=dropout)
|
| 828 |
+
|
| 829 |
+
# upsampling
|
| 830 |
+
self.up = nn.ModuleList()
|
| 831 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 832 |
+
block = nn.ModuleList()
|
| 833 |
+
attn = nn.ModuleList()
|
| 834 |
+
block_out = ch*ch_mult[i_level]
|
| 835 |
+
for i_block in range(self.num_res_blocks+1):
|
| 836 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 837 |
+
out_channels=block_out,
|
| 838 |
+
temb_channels=self.temb_ch,
|
| 839 |
+
dropout=dropout))
|
| 840 |
+
# else:
|
| 841 |
+
# block.append(ResnetBlock_dcn(in_channels=block_in,
|
| 842 |
+
# out_channels=block_out,
|
| 843 |
+
# temb_channels=self.temb_ch,
|
| 844 |
+
# dropout=dropout))
|
| 845 |
+
block_in = block_out
|
| 846 |
+
if curr_res in attn_resolutions:
|
| 847 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 848 |
+
up = nn.Module()
|
| 849 |
+
up.block = block
|
| 850 |
+
up.attn = attn
|
| 851 |
+
if i_level != 0:
|
| 852 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 853 |
+
curr_res = curr_res * 2
|
| 854 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 855 |
+
|
| 856 |
+
# end
|
| 857 |
+
self.norm_out = Normalize(block_in)
|
| 858 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 859 |
+
out_ch,
|
| 860 |
+
kernel_size=3,
|
| 861 |
+
stride=1,
|
| 862 |
+
padding=1)
|
| 863 |
+
# self.dcn_out = ModulatedDeformConvPack(out_ch,
|
| 864 |
+
# out_ch,
|
| 865 |
+
# kernel_size=3,
|
| 866 |
+
# stride=1,
|
| 867 |
+
# padding=1)
|
| 868 |
+
|
| 869 |
+
def forward(self, z, gray_content_z):
|
| 870 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
| 871 |
+
self.last_z_shape = z.shape
|
| 872 |
+
|
| 873 |
+
# timestep embedding
|
| 874 |
+
temb = None
|
| 875 |
+
|
| 876 |
+
# z to block_in
|
| 877 |
+
h = self.conv_in(z)
|
| 878 |
+
# print("h",h.shape)
|
| 879 |
+
# print("gray_content_z",gray_content_z.shape)
|
| 880 |
+
h = self.dcn_in(h, gray_content_z)+h
|
| 881 |
+
|
| 882 |
+
# middle
|
| 883 |
+
h = self.mid.block_1(h, gray_content_z,temb)
|
| 884 |
+
h = self.mid.attn_1(h)
|
| 885 |
+
h = self.mid.block_2(h, gray_content_z,temb)
|
| 886 |
+
|
| 887 |
+
# upsampling
|
| 888 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 889 |
+
for i_block in range(self.num_res_blocks+1):
|
| 890 |
+
h = self.up[i_level].block[i_block](h, temb)#h, gray_content_z,temb
|
| 891 |
+
if len(self.up[i_level].attn) > 0:
|
| 892 |
+
h = self.up[i_level].attn[i_block](h)
|
| 893 |
+
if i_level != 0:
|
| 894 |
+
h = self.up[i_level].upsample(h)
|
| 895 |
+
|
| 896 |
+
# end
|
| 897 |
+
if self.give_pre_end:
|
| 898 |
+
return h
|
| 899 |
+
|
| 900 |
+
h = self.norm_out(h)
|
| 901 |
+
h = nonlinearity(h)
|
| 902 |
+
h = self.conv_out(h)
|
| 903 |
+
# print(h.shape)
|
| 904 |
+
# h = self.dcn_out(h,gray_content_z)
|
| 905 |
+
if self.tanh_out:
|
| 906 |
+
h = torch.tanh(h)
|
| 907 |
+
return h
|
| 908 |
+
|
| 909 |
+
|
| 910 |
+
class SimpleDecoder(nn.Module):
|
| 911 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
| 912 |
+
super().__init__()
|
| 913 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
| 914 |
+
ResnetBlock(in_channels=in_channels,
|
| 915 |
+
out_channels=2 * in_channels,
|
| 916 |
+
temb_channels=0, dropout=0.0),
|
| 917 |
+
ResnetBlock(in_channels=2 * in_channels,
|
| 918 |
+
out_channels=4 * in_channels,
|
| 919 |
+
temb_channels=0, dropout=0.0),
|
| 920 |
+
ResnetBlock(in_channels=4 * in_channels,
|
| 921 |
+
out_channels=2 * in_channels,
|
| 922 |
+
temb_channels=0, dropout=0.0),
|
| 923 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
| 924 |
+
Upsample(in_channels, with_conv=True)])
|
| 925 |
+
# end
|
| 926 |
+
self.norm_out = Normalize(in_channels)
|
| 927 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
| 928 |
+
out_channels,
|
| 929 |
+
kernel_size=3,
|
| 930 |
+
stride=1,
|
| 931 |
+
padding=1)
|
| 932 |
+
|
| 933 |
+
def forward(self, x):
|
| 934 |
+
for i, layer in enumerate(self.model):
|
| 935 |
+
if i in [1,2,3]:
|
| 936 |
+
x = layer(x, None)
|
| 937 |
+
else:
|
| 938 |
+
x = layer(x)
|
| 939 |
+
|
| 940 |
+
h = self.norm_out(x)
|
| 941 |
+
h = nonlinearity(h)
|
| 942 |
+
x = self.conv_out(h)
|
| 943 |
+
return x
|
| 944 |
+
|
| 945 |
+
|
| 946 |
+
class UpsampleDecoder(nn.Module):
|
| 947 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
| 948 |
+
ch_mult=(2,2), dropout=0.0):
|
| 949 |
+
super().__init__()
|
| 950 |
+
# upsampling
|
| 951 |
+
self.temb_ch = 0
|
| 952 |
+
self.num_resolutions = len(ch_mult)
|
| 953 |
+
self.num_res_blocks = num_res_blocks
|
| 954 |
+
block_in = in_channels
|
| 955 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
| 956 |
+
self.res_blocks = nn.ModuleList()
|
| 957 |
+
self.upsample_blocks = nn.ModuleList()
|
| 958 |
+
for i_level in range(self.num_resolutions):
|
| 959 |
+
res_block = []
|
| 960 |
+
block_out = ch * ch_mult[i_level]
|
| 961 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 962 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
| 963 |
+
out_channels=block_out,
|
| 964 |
+
temb_channels=self.temb_ch,
|
| 965 |
+
dropout=dropout))
|
| 966 |
+
block_in = block_out
|
| 967 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
| 968 |
+
if i_level != self.num_resolutions - 1:
|
| 969 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
| 970 |
+
curr_res = curr_res * 2
|
| 971 |
+
|
| 972 |
+
# end
|
| 973 |
+
self.norm_out = Normalize(block_in)
|
| 974 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 975 |
+
out_channels,
|
| 976 |
+
kernel_size=3,
|
| 977 |
+
stride=1,
|
| 978 |
+
padding=1)
|
| 979 |
+
|
| 980 |
+
def forward(self, x):
|
| 981 |
+
# upsampling
|
| 982 |
+
h = x
|
| 983 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
| 984 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 985 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
| 986 |
+
if i_level != self.num_resolutions - 1:
|
| 987 |
+
h = self.upsample_blocks[k](h)
|
| 988 |
+
h = self.norm_out(h)
|
| 989 |
+
h = nonlinearity(h)
|
| 990 |
+
h = self.conv_out(h)
|
| 991 |
+
return h
|
| 992 |
+
|
| 993 |
+
|
| 994 |
+
class LatentRescaler(nn.Module):
|
| 995 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
| 996 |
+
super().__init__()
|
| 997 |
+
# residual block, interpolate, residual block
|
| 998 |
+
self.factor = factor
|
| 999 |
+
self.conv_in = nn.Conv2d(in_channels,
|
| 1000 |
+
mid_channels,
|
| 1001 |
+
kernel_size=3,
|
| 1002 |
+
stride=1,
|
| 1003 |
+
padding=1)
|
| 1004 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
| 1005 |
+
out_channels=mid_channels,
|
| 1006 |
+
temb_channels=0,
|
| 1007 |
+
dropout=0.0) for _ in range(depth)])
|
| 1008 |
+
self.attn = AttnBlock(mid_channels)
|
| 1009 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
| 1010 |
+
out_channels=mid_channels,
|
| 1011 |
+
temb_channels=0,
|
| 1012 |
+
dropout=0.0) for _ in range(depth)])
|
| 1013 |
+
|
| 1014 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
| 1015 |
+
out_channels,
|
| 1016 |
+
kernel_size=1,
|
| 1017 |
+
)
|
| 1018 |
+
|
| 1019 |
+
def forward(self, x):
|
| 1020 |
+
x = self.conv_in(x)
|
| 1021 |
+
for block in self.res_block1:
|
| 1022 |
+
x = block(x, None)
|
| 1023 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
| 1024 |
+
x = self.attn(x)
|
| 1025 |
+
for block in self.res_block2:
|
| 1026 |
+
x = block(x, None)
|
| 1027 |
+
x = self.conv_out(x)
|
| 1028 |
+
return x
|
| 1029 |
+
|
| 1030 |
+
|
| 1031 |
+
class MergedRescaleEncoder(nn.Module):
|
| 1032 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
| 1033 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
| 1034 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
| 1035 |
+
super().__init__()
|
| 1036 |
+
intermediate_chn = ch * ch_mult[-1]
|
| 1037 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
| 1038 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
| 1039 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
| 1040 |
+
out_ch=None)
|
| 1041 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
| 1042 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
| 1043 |
+
|
| 1044 |
+
def forward(self, x):
|
| 1045 |
+
x = self.encoder(x)
|
| 1046 |
+
x = self.rescaler(x)
|
| 1047 |
+
return x
|
| 1048 |
+
|
| 1049 |
+
|
| 1050 |
+
class MergedRescaleDecoder(nn.Module):
|
| 1051 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
| 1052 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
| 1053 |
+
super().__init__()
|
| 1054 |
+
tmp_chn = z_channels*ch_mult[-1]
|
| 1055 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
| 1056 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
| 1057 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
| 1058 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
| 1059 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
| 1060 |
+
|
| 1061 |
+
def forward(self, x):
|
| 1062 |
+
x = self.rescaler(x)
|
| 1063 |
+
x = self.decoder(x)
|
| 1064 |
+
return x
|
| 1065 |
+
|
| 1066 |
+
|
| 1067 |
+
class Upsampler(nn.Module):
|
| 1068 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
| 1069 |
+
super().__init__()
|
| 1070 |
+
assert out_size >= in_size
|
| 1071 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
| 1072 |
+
factor_up = 1.+ (out_size % in_size)
|
| 1073 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
| 1074 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
| 1075 |
+
out_channels=in_channels)
|
| 1076 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
| 1077 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
| 1078 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
| 1079 |
+
|
| 1080 |
+
def forward(self, x):
|
| 1081 |
+
x = self.rescaler(x)
|
| 1082 |
+
x = self.decoder(x)
|
| 1083 |
+
return x
|
| 1084 |
+
|
| 1085 |
+
|
| 1086 |
+
class Resize(nn.Module):
|
| 1087 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
| 1088 |
+
super().__init__()
|
| 1089 |
+
self.with_conv = learned
|
| 1090 |
+
self.mode = mode
|
| 1091 |
+
if self.with_conv:
|
| 1092 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
| 1093 |
+
raise NotImplementedError()
|
| 1094 |
+
assert in_channels is not None
|
| 1095 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 1096 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 1097 |
+
in_channels,
|
| 1098 |
+
kernel_size=4,
|
| 1099 |
+
stride=2,
|
| 1100 |
+
padding=1)
|
| 1101 |
+
|
| 1102 |
+
def forward(self, x, scale_factor=1.0):
|
| 1103 |
+
if scale_factor==1.0:
|
| 1104 |
+
return x
|
| 1105 |
+
else:
|
| 1106 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
| 1107 |
+
return x
|
Control-Color/ldm/modules/diffusionmodules/model_brefore_dcn.py
ADDED
|
@@ -0,0 +1,852 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pytorch_diffusion + derived encoder decoder
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import numpy as np
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from typing import Optional, Any
|
| 8 |
+
|
| 9 |
+
from ldm.modules.attention import MemoryEfficientCrossAttention
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
import xformers
|
| 13 |
+
import xformers.ops
|
| 14 |
+
XFORMERS_IS_AVAILBLE = True
|
| 15 |
+
except:
|
| 16 |
+
XFORMERS_IS_AVAILBLE = False
|
| 17 |
+
print("No module 'xformers'. Proceeding without it.")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
| 21 |
+
"""
|
| 22 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
| 23 |
+
From Fairseq.
|
| 24 |
+
Build sinusoidal embeddings.
|
| 25 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
| 26 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
| 27 |
+
"""
|
| 28 |
+
assert len(timesteps.shape) == 1
|
| 29 |
+
|
| 30 |
+
half_dim = embedding_dim // 2
|
| 31 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 32 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
| 33 |
+
emb = emb.to(device=timesteps.device)
|
| 34 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
| 35 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 36 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 37 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
| 38 |
+
return emb
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def nonlinearity(x):
|
| 42 |
+
# swish
|
| 43 |
+
return x*torch.sigmoid(x)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def Normalize(in_channels, num_groups=32):
|
| 47 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class Upsample(nn.Module):
|
| 51 |
+
def __init__(self, in_channels, with_conv):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.with_conv = with_conv
|
| 54 |
+
if self.with_conv:
|
| 55 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 56 |
+
in_channels,
|
| 57 |
+
kernel_size=3,
|
| 58 |
+
stride=1,
|
| 59 |
+
padding=1)
|
| 60 |
+
|
| 61 |
+
def forward(self, x):
|
| 62 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 63 |
+
if self.with_conv:
|
| 64 |
+
x = self.conv(x)
|
| 65 |
+
return x
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class Downsample(nn.Module):
|
| 69 |
+
def __init__(self, in_channels, with_conv):
|
| 70 |
+
super().__init__()
|
| 71 |
+
self.with_conv = with_conv
|
| 72 |
+
if self.with_conv:
|
| 73 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 74 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 75 |
+
in_channels,
|
| 76 |
+
kernel_size=3,
|
| 77 |
+
stride=2,
|
| 78 |
+
padding=0)
|
| 79 |
+
|
| 80 |
+
def forward(self, x):
|
| 81 |
+
if self.with_conv:
|
| 82 |
+
pad = (0,1,0,1)
|
| 83 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 84 |
+
x = self.conv(x)
|
| 85 |
+
else:
|
| 86 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 87 |
+
return x
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class ResnetBlock(nn.Module):
|
| 91 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
| 92 |
+
dropout, temb_channels=512):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.in_channels = in_channels
|
| 95 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 96 |
+
self.out_channels = out_channels
|
| 97 |
+
self.use_conv_shortcut = conv_shortcut
|
| 98 |
+
|
| 99 |
+
self.norm1 = Normalize(in_channels)
|
| 100 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
| 101 |
+
out_channels,
|
| 102 |
+
kernel_size=3,
|
| 103 |
+
stride=1,
|
| 104 |
+
padding=1)
|
| 105 |
+
if temb_channels > 0:
|
| 106 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
| 107 |
+
out_channels)
|
| 108 |
+
self.norm2 = Normalize(out_channels)
|
| 109 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 110 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
| 111 |
+
out_channels,
|
| 112 |
+
kernel_size=3,
|
| 113 |
+
stride=1,
|
| 114 |
+
padding=1)
|
| 115 |
+
if self.in_channels != self.out_channels:
|
| 116 |
+
if self.use_conv_shortcut:
|
| 117 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
| 118 |
+
out_channels,
|
| 119 |
+
kernel_size=3,
|
| 120 |
+
stride=1,
|
| 121 |
+
padding=1)
|
| 122 |
+
else:
|
| 123 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
| 124 |
+
out_channels,
|
| 125 |
+
kernel_size=1,
|
| 126 |
+
stride=1,
|
| 127 |
+
padding=0)
|
| 128 |
+
|
| 129 |
+
def forward(self, x, temb):
|
| 130 |
+
h = x
|
| 131 |
+
h = self.norm1(h)
|
| 132 |
+
h = nonlinearity(h)
|
| 133 |
+
h = self.conv1(h)
|
| 134 |
+
|
| 135 |
+
if temb is not None:
|
| 136 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
| 137 |
+
|
| 138 |
+
h = self.norm2(h)
|
| 139 |
+
h = nonlinearity(h)
|
| 140 |
+
h = self.dropout(h)
|
| 141 |
+
h = self.conv2(h)
|
| 142 |
+
|
| 143 |
+
if self.in_channels != self.out_channels:
|
| 144 |
+
if self.use_conv_shortcut:
|
| 145 |
+
x = self.conv_shortcut(x)
|
| 146 |
+
else:
|
| 147 |
+
x = self.nin_shortcut(x)
|
| 148 |
+
|
| 149 |
+
return x+h
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class AttnBlock(nn.Module):
|
| 153 |
+
def __init__(self, in_channels):
|
| 154 |
+
super().__init__()
|
| 155 |
+
self.in_channels = in_channels
|
| 156 |
+
|
| 157 |
+
self.norm = Normalize(in_channels)
|
| 158 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 159 |
+
in_channels,
|
| 160 |
+
kernel_size=1,
|
| 161 |
+
stride=1,
|
| 162 |
+
padding=0)
|
| 163 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 164 |
+
in_channels,
|
| 165 |
+
kernel_size=1,
|
| 166 |
+
stride=1,
|
| 167 |
+
padding=0)
|
| 168 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 169 |
+
in_channels,
|
| 170 |
+
kernel_size=1,
|
| 171 |
+
stride=1,
|
| 172 |
+
padding=0)
|
| 173 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 174 |
+
in_channels,
|
| 175 |
+
kernel_size=1,
|
| 176 |
+
stride=1,
|
| 177 |
+
padding=0)
|
| 178 |
+
|
| 179 |
+
def forward(self, x):
|
| 180 |
+
h_ = x
|
| 181 |
+
h_ = self.norm(h_)
|
| 182 |
+
q = self.q(h_)
|
| 183 |
+
k = self.k(h_)
|
| 184 |
+
v = self.v(h_)
|
| 185 |
+
|
| 186 |
+
# compute attention
|
| 187 |
+
b,c,h,w = q.shape
|
| 188 |
+
q = q.reshape(b,c,h*w)
|
| 189 |
+
q = q.permute(0,2,1) # b,hw,c
|
| 190 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
| 191 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 192 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 193 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 194 |
+
|
| 195 |
+
# attend to values
|
| 196 |
+
v = v.reshape(b,c,h*w)
|
| 197 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
| 198 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 199 |
+
h_ = h_.reshape(b,c,h,w)
|
| 200 |
+
|
| 201 |
+
h_ = self.proj_out(h_)
|
| 202 |
+
|
| 203 |
+
return x+h_
|
| 204 |
+
|
| 205 |
+
class MemoryEfficientAttnBlock(nn.Module):
|
| 206 |
+
"""
|
| 207 |
+
Uses xformers efficient implementation,
|
| 208 |
+
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
| 209 |
+
Note: this is a single-head self-attention operation
|
| 210 |
+
"""
|
| 211 |
+
#
|
| 212 |
+
def __init__(self, in_channels):
|
| 213 |
+
super().__init__()
|
| 214 |
+
self.in_channels = in_channels
|
| 215 |
+
|
| 216 |
+
self.norm = Normalize(in_channels)
|
| 217 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 218 |
+
in_channels,
|
| 219 |
+
kernel_size=1,
|
| 220 |
+
stride=1,
|
| 221 |
+
padding=0)
|
| 222 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 223 |
+
in_channels,
|
| 224 |
+
kernel_size=1,
|
| 225 |
+
stride=1,
|
| 226 |
+
padding=0)
|
| 227 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 228 |
+
in_channels,
|
| 229 |
+
kernel_size=1,
|
| 230 |
+
stride=1,
|
| 231 |
+
padding=0)
|
| 232 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 233 |
+
in_channels,
|
| 234 |
+
kernel_size=1,
|
| 235 |
+
stride=1,
|
| 236 |
+
padding=0)
|
| 237 |
+
self.attention_op: Optional[Any] = None
|
| 238 |
+
|
| 239 |
+
def forward(self, x):
|
| 240 |
+
h_ = x
|
| 241 |
+
h_ = self.norm(h_)
|
| 242 |
+
q = self.q(h_)
|
| 243 |
+
k = self.k(h_)
|
| 244 |
+
v = self.v(h_)
|
| 245 |
+
|
| 246 |
+
# compute attention
|
| 247 |
+
B, C, H, W = q.shape
|
| 248 |
+
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
|
| 249 |
+
|
| 250 |
+
q, k, v = map(
|
| 251 |
+
lambda t: t.unsqueeze(3)
|
| 252 |
+
.reshape(B, t.shape[1], 1, C)
|
| 253 |
+
.permute(0, 2, 1, 3)
|
| 254 |
+
.reshape(B * 1, t.shape[1], C)
|
| 255 |
+
.contiguous(),
|
| 256 |
+
(q, k, v),
|
| 257 |
+
)
|
| 258 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
| 259 |
+
|
| 260 |
+
out = (
|
| 261 |
+
out.unsqueeze(0)
|
| 262 |
+
.reshape(B, 1, out.shape[1], C)
|
| 263 |
+
.permute(0, 2, 1, 3)
|
| 264 |
+
.reshape(B, out.shape[1], C)
|
| 265 |
+
)
|
| 266 |
+
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
|
| 267 |
+
out = self.proj_out(out)
|
| 268 |
+
return x+out
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
| 272 |
+
def forward(self, x, context=None, mask=None):
|
| 273 |
+
b, c, h, w = x.shape
|
| 274 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
| 275 |
+
out = super().forward(x, context=context, mask=mask)
|
| 276 |
+
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
|
| 277 |
+
return x + out
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
| 281 |
+
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
|
| 282 |
+
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
|
| 283 |
+
attn_type = "vanilla-xformers"
|
| 284 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
| 285 |
+
if attn_type == "vanilla":
|
| 286 |
+
assert attn_kwargs is None
|
| 287 |
+
return AttnBlock(in_channels)
|
| 288 |
+
elif attn_type == "vanilla-xformers":
|
| 289 |
+
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
|
| 290 |
+
return MemoryEfficientAttnBlock(in_channels)
|
| 291 |
+
elif type == "memory-efficient-cross-attn":
|
| 292 |
+
attn_kwargs["query_dim"] = in_channels
|
| 293 |
+
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
| 294 |
+
elif attn_type == "none":
|
| 295 |
+
return nn.Identity(in_channels)
|
| 296 |
+
else:
|
| 297 |
+
raise NotImplementedError()
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class Model(nn.Module):
|
| 301 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 302 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 303 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
| 304 |
+
super().__init__()
|
| 305 |
+
if use_linear_attn: attn_type = "linear"
|
| 306 |
+
self.ch = ch
|
| 307 |
+
self.temb_ch = self.ch*4
|
| 308 |
+
self.num_resolutions = len(ch_mult)
|
| 309 |
+
self.num_res_blocks = num_res_blocks
|
| 310 |
+
self.resolution = resolution
|
| 311 |
+
self.in_channels = in_channels
|
| 312 |
+
|
| 313 |
+
self.use_timestep = use_timestep
|
| 314 |
+
if self.use_timestep:
|
| 315 |
+
# timestep embedding
|
| 316 |
+
self.temb = nn.Module()
|
| 317 |
+
self.temb.dense = nn.ModuleList([
|
| 318 |
+
torch.nn.Linear(self.ch,
|
| 319 |
+
self.temb_ch),
|
| 320 |
+
torch.nn.Linear(self.temb_ch,
|
| 321 |
+
self.temb_ch),
|
| 322 |
+
])
|
| 323 |
+
|
| 324 |
+
# downsampling
|
| 325 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 326 |
+
self.ch,
|
| 327 |
+
kernel_size=3,
|
| 328 |
+
stride=1,
|
| 329 |
+
padding=1)
|
| 330 |
+
|
| 331 |
+
curr_res = resolution
|
| 332 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 333 |
+
self.down = nn.ModuleList()
|
| 334 |
+
for i_level in range(self.num_resolutions):
|
| 335 |
+
block = nn.ModuleList()
|
| 336 |
+
attn = nn.ModuleList()
|
| 337 |
+
block_in = ch*in_ch_mult[i_level]
|
| 338 |
+
block_out = ch*ch_mult[i_level]
|
| 339 |
+
for i_block in range(self.num_res_blocks):
|
| 340 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 341 |
+
out_channels=block_out,
|
| 342 |
+
temb_channels=self.temb_ch,
|
| 343 |
+
dropout=dropout))
|
| 344 |
+
block_in = block_out
|
| 345 |
+
if curr_res in attn_resolutions:
|
| 346 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 347 |
+
down = nn.Module()
|
| 348 |
+
down.block = block
|
| 349 |
+
down.attn = attn
|
| 350 |
+
if i_level != self.num_resolutions-1:
|
| 351 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 352 |
+
curr_res = curr_res // 2
|
| 353 |
+
self.down.append(down)
|
| 354 |
+
|
| 355 |
+
# middle
|
| 356 |
+
self.mid = nn.Module()
|
| 357 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 358 |
+
out_channels=block_in,
|
| 359 |
+
temb_channels=self.temb_ch,
|
| 360 |
+
dropout=dropout)
|
| 361 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 362 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 363 |
+
out_channels=block_in,
|
| 364 |
+
temb_channels=self.temb_ch,
|
| 365 |
+
dropout=dropout)
|
| 366 |
+
|
| 367 |
+
# upsampling
|
| 368 |
+
self.up = nn.ModuleList()
|
| 369 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 370 |
+
block = nn.ModuleList()
|
| 371 |
+
attn = nn.ModuleList()
|
| 372 |
+
block_out = ch*ch_mult[i_level]
|
| 373 |
+
skip_in = ch*ch_mult[i_level]
|
| 374 |
+
for i_block in range(self.num_res_blocks+1):
|
| 375 |
+
if i_block == self.num_res_blocks:
|
| 376 |
+
skip_in = ch*in_ch_mult[i_level]
|
| 377 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
| 378 |
+
out_channels=block_out,
|
| 379 |
+
temb_channels=self.temb_ch,
|
| 380 |
+
dropout=dropout))
|
| 381 |
+
block_in = block_out
|
| 382 |
+
if curr_res in attn_resolutions:
|
| 383 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 384 |
+
up = nn.Module()
|
| 385 |
+
up.block = block
|
| 386 |
+
up.attn = attn
|
| 387 |
+
if i_level != 0:
|
| 388 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 389 |
+
curr_res = curr_res * 2
|
| 390 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 391 |
+
|
| 392 |
+
# end
|
| 393 |
+
self.norm_out = Normalize(block_in)
|
| 394 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 395 |
+
out_ch,
|
| 396 |
+
kernel_size=3,
|
| 397 |
+
stride=1,
|
| 398 |
+
padding=1)
|
| 399 |
+
|
| 400 |
+
def forward(self, x, t=None, context=None):
|
| 401 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
| 402 |
+
if context is not None:
|
| 403 |
+
# assume aligned context, cat along channel axis
|
| 404 |
+
x = torch.cat((x, context), dim=1)
|
| 405 |
+
if self.use_timestep:
|
| 406 |
+
# timestep embedding
|
| 407 |
+
assert t is not None
|
| 408 |
+
temb = get_timestep_embedding(t, self.ch)
|
| 409 |
+
temb = self.temb.dense[0](temb)
|
| 410 |
+
temb = nonlinearity(temb)
|
| 411 |
+
temb = self.temb.dense[1](temb)
|
| 412 |
+
else:
|
| 413 |
+
temb = None
|
| 414 |
+
|
| 415 |
+
# downsampling
|
| 416 |
+
hs = [self.conv_in(x)]
|
| 417 |
+
for i_level in range(self.num_resolutions):
|
| 418 |
+
for i_block in range(self.num_res_blocks):
|
| 419 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 420 |
+
if len(self.down[i_level].attn) > 0:
|
| 421 |
+
h = self.down[i_level].attn[i_block](h)
|
| 422 |
+
hs.append(h)
|
| 423 |
+
if i_level != self.num_resolutions-1:
|
| 424 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 425 |
+
|
| 426 |
+
# middle
|
| 427 |
+
h = hs[-1]
|
| 428 |
+
h = self.mid.block_1(h, temb)
|
| 429 |
+
h = self.mid.attn_1(h)
|
| 430 |
+
h = self.mid.block_2(h, temb)
|
| 431 |
+
|
| 432 |
+
# upsampling
|
| 433 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 434 |
+
for i_block in range(self.num_res_blocks+1):
|
| 435 |
+
h = self.up[i_level].block[i_block](
|
| 436 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
| 437 |
+
if len(self.up[i_level].attn) > 0:
|
| 438 |
+
h = self.up[i_level].attn[i_block](h)
|
| 439 |
+
if i_level != 0:
|
| 440 |
+
h = self.up[i_level].upsample(h)
|
| 441 |
+
|
| 442 |
+
# end
|
| 443 |
+
h = self.norm_out(h)
|
| 444 |
+
h = nonlinearity(h)
|
| 445 |
+
h = self.conv_out(h)
|
| 446 |
+
return h
|
| 447 |
+
|
| 448 |
+
def get_last_layer(self):
|
| 449 |
+
return self.conv_out.weight
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
class Encoder(nn.Module):
|
| 453 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 454 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 455 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
| 456 |
+
**ignore_kwargs):
|
| 457 |
+
super().__init__()
|
| 458 |
+
if use_linear_attn: attn_type = "linear"
|
| 459 |
+
self.ch = ch
|
| 460 |
+
self.temb_ch = 0
|
| 461 |
+
self.num_resolutions = len(ch_mult)
|
| 462 |
+
self.num_res_blocks = num_res_blocks
|
| 463 |
+
self.resolution = resolution
|
| 464 |
+
self.in_channels = in_channels
|
| 465 |
+
|
| 466 |
+
# downsampling
|
| 467 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 468 |
+
self.ch,
|
| 469 |
+
kernel_size=3,
|
| 470 |
+
stride=1,
|
| 471 |
+
padding=1)
|
| 472 |
+
|
| 473 |
+
curr_res = resolution
|
| 474 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 475 |
+
self.in_ch_mult = in_ch_mult
|
| 476 |
+
self.down = nn.ModuleList()
|
| 477 |
+
for i_level in range(self.num_resolutions):
|
| 478 |
+
block = nn.ModuleList()
|
| 479 |
+
attn = nn.ModuleList()
|
| 480 |
+
block_in = ch*in_ch_mult[i_level]
|
| 481 |
+
block_out = ch*ch_mult[i_level]
|
| 482 |
+
for i_block in range(self.num_res_blocks):
|
| 483 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 484 |
+
out_channels=block_out,
|
| 485 |
+
temb_channels=self.temb_ch,
|
| 486 |
+
dropout=dropout))
|
| 487 |
+
block_in = block_out
|
| 488 |
+
if curr_res in attn_resolutions:
|
| 489 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 490 |
+
down = nn.Module()
|
| 491 |
+
down.block = block
|
| 492 |
+
down.attn = attn
|
| 493 |
+
if i_level != self.num_resolutions-1:
|
| 494 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 495 |
+
curr_res = curr_res // 2
|
| 496 |
+
self.down.append(down)
|
| 497 |
+
|
| 498 |
+
# middle
|
| 499 |
+
self.mid = nn.Module()
|
| 500 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 501 |
+
out_channels=block_in,
|
| 502 |
+
temb_channels=self.temb_ch,
|
| 503 |
+
dropout=dropout)
|
| 504 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 505 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 506 |
+
out_channels=block_in,
|
| 507 |
+
temb_channels=self.temb_ch,
|
| 508 |
+
dropout=dropout)
|
| 509 |
+
|
| 510 |
+
# end
|
| 511 |
+
self.norm_out = Normalize(block_in)
|
| 512 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 513 |
+
2*z_channels if double_z else z_channels,
|
| 514 |
+
kernel_size=3,
|
| 515 |
+
stride=1,
|
| 516 |
+
padding=1)
|
| 517 |
+
|
| 518 |
+
def forward(self, x):
|
| 519 |
+
# timestep embedding
|
| 520 |
+
temb = None
|
| 521 |
+
|
| 522 |
+
# downsampling
|
| 523 |
+
hs = [self.conv_in(x)]
|
| 524 |
+
for i_level in range(self.num_resolutions):
|
| 525 |
+
for i_block in range(self.num_res_blocks):
|
| 526 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 527 |
+
if len(self.down[i_level].attn) > 0:
|
| 528 |
+
h = self.down[i_level].attn[i_block](h)
|
| 529 |
+
hs.append(h)
|
| 530 |
+
if i_level != self.num_resolutions-1:
|
| 531 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 532 |
+
|
| 533 |
+
# middle
|
| 534 |
+
h = hs[-1]
|
| 535 |
+
h = self.mid.block_1(h, temb)
|
| 536 |
+
h = self.mid.attn_1(h)
|
| 537 |
+
h = self.mid.block_2(h, temb)
|
| 538 |
+
|
| 539 |
+
# end
|
| 540 |
+
h = self.norm_out(h)
|
| 541 |
+
h = nonlinearity(h)
|
| 542 |
+
h = self.conv_out(h)
|
| 543 |
+
return h
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
class Decoder(nn.Module):
|
| 547 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 548 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 549 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
| 550 |
+
attn_type="vanilla", **ignorekwargs):
|
| 551 |
+
super().__init__()
|
| 552 |
+
if use_linear_attn: attn_type = "linear"
|
| 553 |
+
self.ch = ch
|
| 554 |
+
self.temb_ch = 0
|
| 555 |
+
self.num_resolutions = len(ch_mult)
|
| 556 |
+
self.num_res_blocks = num_res_blocks
|
| 557 |
+
self.resolution = resolution
|
| 558 |
+
self.in_channels = in_channels
|
| 559 |
+
self.give_pre_end = give_pre_end
|
| 560 |
+
self.tanh_out = tanh_out
|
| 561 |
+
|
| 562 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 563 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 564 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 565 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
| 566 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
| 567 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
| 568 |
+
self.z_shape, np.prod(self.z_shape)))
|
| 569 |
+
|
| 570 |
+
# z to block_in
|
| 571 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
| 572 |
+
block_in,
|
| 573 |
+
kernel_size=3,
|
| 574 |
+
stride=1,
|
| 575 |
+
padding=1)
|
| 576 |
+
|
| 577 |
+
# middle
|
| 578 |
+
self.mid = nn.Module()
|
| 579 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 580 |
+
out_channels=block_in,
|
| 581 |
+
temb_channels=self.temb_ch,
|
| 582 |
+
dropout=dropout)
|
| 583 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 584 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 585 |
+
out_channels=block_in,
|
| 586 |
+
temb_channels=self.temb_ch,
|
| 587 |
+
dropout=dropout)
|
| 588 |
+
|
| 589 |
+
# upsampling
|
| 590 |
+
self.up = nn.ModuleList()
|
| 591 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 592 |
+
block = nn.ModuleList()
|
| 593 |
+
attn = nn.ModuleList()
|
| 594 |
+
block_out = ch*ch_mult[i_level]
|
| 595 |
+
for i_block in range(self.num_res_blocks+1):
|
| 596 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 597 |
+
out_channels=block_out,
|
| 598 |
+
temb_channels=self.temb_ch,
|
| 599 |
+
dropout=dropout))
|
| 600 |
+
block_in = block_out
|
| 601 |
+
if curr_res in attn_resolutions:
|
| 602 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 603 |
+
up = nn.Module()
|
| 604 |
+
up.block = block
|
| 605 |
+
up.attn = attn
|
| 606 |
+
if i_level != 0:
|
| 607 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 608 |
+
curr_res = curr_res * 2
|
| 609 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 610 |
+
|
| 611 |
+
# end
|
| 612 |
+
self.norm_out = Normalize(block_in)
|
| 613 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 614 |
+
out_ch,
|
| 615 |
+
kernel_size=3,
|
| 616 |
+
stride=1,
|
| 617 |
+
padding=1)
|
| 618 |
+
|
| 619 |
+
def forward(self, z):
|
| 620 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
| 621 |
+
self.last_z_shape = z.shape
|
| 622 |
+
|
| 623 |
+
# timestep embedding
|
| 624 |
+
temb = None
|
| 625 |
+
|
| 626 |
+
# z to block_in
|
| 627 |
+
h = self.conv_in(z)
|
| 628 |
+
|
| 629 |
+
# middle
|
| 630 |
+
h = self.mid.block_1(h, temb)
|
| 631 |
+
h = self.mid.attn_1(h)
|
| 632 |
+
h = self.mid.block_2(h, temb)
|
| 633 |
+
|
| 634 |
+
# upsampling
|
| 635 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 636 |
+
for i_block in range(self.num_res_blocks+1):
|
| 637 |
+
h = self.up[i_level].block[i_block](h, temb)
|
| 638 |
+
if len(self.up[i_level].attn) > 0:
|
| 639 |
+
h = self.up[i_level].attn[i_block](h)
|
| 640 |
+
if i_level != 0:
|
| 641 |
+
h = self.up[i_level].upsample(h)
|
| 642 |
+
|
| 643 |
+
# end
|
| 644 |
+
if self.give_pre_end:
|
| 645 |
+
return h
|
| 646 |
+
|
| 647 |
+
h = self.norm_out(h)
|
| 648 |
+
h = nonlinearity(h)
|
| 649 |
+
h = self.conv_out(h)
|
| 650 |
+
if self.tanh_out:
|
| 651 |
+
h = torch.tanh(h)
|
| 652 |
+
return h
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
class SimpleDecoder(nn.Module):
|
| 656 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
| 657 |
+
super().__init__()
|
| 658 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
| 659 |
+
ResnetBlock(in_channels=in_channels,
|
| 660 |
+
out_channels=2 * in_channels,
|
| 661 |
+
temb_channels=0, dropout=0.0),
|
| 662 |
+
ResnetBlock(in_channels=2 * in_channels,
|
| 663 |
+
out_channels=4 * in_channels,
|
| 664 |
+
temb_channels=0, dropout=0.0),
|
| 665 |
+
ResnetBlock(in_channels=4 * in_channels,
|
| 666 |
+
out_channels=2 * in_channels,
|
| 667 |
+
temb_channels=0, dropout=0.0),
|
| 668 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
| 669 |
+
Upsample(in_channels, with_conv=True)])
|
| 670 |
+
# end
|
| 671 |
+
self.norm_out = Normalize(in_channels)
|
| 672 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
| 673 |
+
out_channels,
|
| 674 |
+
kernel_size=3,
|
| 675 |
+
stride=1,
|
| 676 |
+
padding=1)
|
| 677 |
+
|
| 678 |
+
def forward(self, x):
|
| 679 |
+
for i, layer in enumerate(self.model):
|
| 680 |
+
if i in [1,2,3]:
|
| 681 |
+
x = layer(x, None)
|
| 682 |
+
else:
|
| 683 |
+
x = layer(x)
|
| 684 |
+
|
| 685 |
+
h = self.norm_out(x)
|
| 686 |
+
h = nonlinearity(h)
|
| 687 |
+
x = self.conv_out(h)
|
| 688 |
+
return x
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
class UpsampleDecoder(nn.Module):
|
| 692 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
| 693 |
+
ch_mult=(2,2), dropout=0.0):
|
| 694 |
+
super().__init__()
|
| 695 |
+
# upsampling
|
| 696 |
+
self.temb_ch = 0
|
| 697 |
+
self.num_resolutions = len(ch_mult)
|
| 698 |
+
self.num_res_blocks = num_res_blocks
|
| 699 |
+
block_in = in_channels
|
| 700 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
| 701 |
+
self.res_blocks = nn.ModuleList()
|
| 702 |
+
self.upsample_blocks = nn.ModuleList()
|
| 703 |
+
for i_level in range(self.num_resolutions):
|
| 704 |
+
res_block = []
|
| 705 |
+
block_out = ch * ch_mult[i_level]
|
| 706 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 707 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
| 708 |
+
out_channels=block_out,
|
| 709 |
+
temb_channels=self.temb_ch,
|
| 710 |
+
dropout=dropout))
|
| 711 |
+
block_in = block_out
|
| 712 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
| 713 |
+
if i_level != self.num_resolutions - 1:
|
| 714 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
| 715 |
+
curr_res = curr_res * 2
|
| 716 |
+
|
| 717 |
+
# end
|
| 718 |
+
self.norm_out = Normalize(block_in)
|
| 719 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 720 |
+
out_channels,
|
| 721 |
+
kernel_size=3,
|
| 722 |
+
stride=1,
|
| 723 |
+
padding=1)
|
| 724 |
+
|
| 725 |
+
def forward(self, x):
|
| 726 |
+
# upsampling
|
| 727 |
+
h = x
|
| 728 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
| 729 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 730 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
| 731 |
+
if i_level != self.num_resolutions - 1:
|
| 732 |
+
h = self.upsample_blocks[k](h)
|
| 733 |
+
h = self.norm_out(h)
|
| 734 |
+
h = nonlinearity(h)
|
| 735 |
+
h = self.conv_out(h)
|
| 736 |
+
return h
|
| 737 |
+
|
| 738 |
+
|
| 739 |
+
class LatentRescaler(nn.Module):
|
| 740 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
| 741 |
+
super().__init__()
|
| 742 |
+
# residual block, interpolate, residual block
|
| 743 |
+
self.factor = factor
|
| 744 |
+
self.conv_in = nn.Conv2d(in_channels,
|
| 745 |
+
mid_channels,
|
| 746 |
+
kernel_size=3,
|
| 747 |
+
stride=1,
|
| 748 |
+
padding=1)
|
| 749 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
| 750 |
+
out_channels=mid_channels,
|
| 751 |
+
temb_channels=0,
|
| 752 |
+
dropout=0.0) for _ in range(depth)])
|
| 753 |
+
self.attn = AttnBlock(mid_channels)
|
| 754 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
| 755 |
+
out_channels=mid_channels,
|
| 756 |
+
temb_channels=0,
|
| 757 |
+
dropout=0.0) for _ in range(depth)])
|
| 758 |
+
|
| 759 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
| 760 |
+
out_channels,
|
| 761 |
+
kernel_size=1,
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
def forward(self, x):
|
| 765 |
+
x = self.conv_in(x)
|
| 766 |
+
for block in self.res_block1:
|
| 767 |
+
x = block(x, None)
|
| 768 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
| 769 |
+
x = self.attn(x)
|
| 770 |
+
for block in self.res_block2:
|
| 771 |
+
x = block(x, None)
|
| 772 |
+
x = self.conv_out(x)
|
| 773 |
+
return x
|
| 774 |
+
|
| 775 |
+
|
| 776 |
+
class MergedRescaleEncoder(nn.Module):
|
| 777 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
| 778 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
| 779 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
| 780 |
+
super().__init__()
|
| 781 |
+
intermediate_chn = ch * ch_mult[-1]
|
| 782 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
| 783 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
| 784 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
| 785 |
+
out_ch=None)
|
| 786 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
| 787 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
| 788 |
+
|
| 789 |
+
def forward(self, x):
|
| 790 |
+
x = self.encoder(x)
|
| 791 |
+
x = self.rescaler(x)
|
| 792 |
+
return x
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
class MergedRescaleDecoder(nn.Module):
|
| 796 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
| 797 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
| 798 |
+
super().__init__()
|
| 799 |
+
tmp_chn = z_channels*ch_mult[-1]
|
| 800 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
| 801 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
| 802 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
| 803 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
| 804 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
| 805 |
+
|
| 806 |
+
def forward(self, x):
|
| 807 |
+
x = self.rescaler(x)
|
| 808 |
+
x = self.decoder(x)
|
| 809 |
+
return x
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
class Upsampler(nn.Module):
|
| 813 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
| 814 |
+
super().__init__()
|
| 815 |
+
assert out_size >= in_size
|
| 816 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
| 817 |
+
factor_up = 1.+ (out_size % in_size)
|
| 818 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
| 819 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
| 820 |
+
out_channels=in_channels)
|
| 821 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
| 822 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
| 823 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
| 824 |
+
|
| 825 |
+
def forward(self, x):
|
| 826 |
+
x = self.rescaler(x)
|
| 827 |
+
x = self.decoder(x)
|
| 828 |
+
return x
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
class Resize(nn.Module):
|
| 832 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
| 833 |
+
super().__init__()
|
| 834 |
+
self.with_conv = learned
|
| 835 |
+
self.mode = mode
|
| 836 |
+
if self.with_conv:
|
| 837 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
| 838 |
+
raise NotImplementedError()
|
| 839 |
+
assert in_channels is not None
|
| 840 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 841 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 842 |
+
in_channels,
|
| 843 |
+
kernel_size=4,
|
| 844 |
+
stride=2,
|
| 845 |
+
padding=1)
|
| 846 |
+
|
| 847 |
+
def forward(self, x, scale_factor=1.0):
|
| 848 |
+
if scale_factor==1.0:
|
| 849 |
+
return x
|
| 850 |
+
else:
|
| 851 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
| 852 |
+
return x
|
Control-Color/ldm/modules/diffusionmodules/openaimodel.py
ADDED
|
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import abstractmethod
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch as th
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
|
| 9 |
+
from ldm.modules.diffusionmodules.util import (
|
| 10 |
+
checkpoint,
|
| 11 |
+
conv_nd,
|
| 12 |
+
linear,
|
| 13 |
+
avg_pool_nd,
|
| 14 |
+
zero_module,
|
| 15 |
+
normalization,
|
| 16 |
+
timestep_embedding,
|
| 17 |
+
)
|
| 18 |
+
from ldm.modules.attention import SpatialTransformer#
|
| 19 |
+
from ldm.modules.attention_dcn_control import SpatialTransformer_dcn
|
| 20 |
+
from ldm.util import exists
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# dummy replace
|
| 24 |
+
def convert_module_to_f16(x):
|
| 25 |
+
pass
|
| 26 |
+
|
| 27 |
+
def convert_module_to_f32(x):
|
| 28 |
+
pass
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
## go
|
| 32 |
+
class AttentionPool2d(nn.Module):
|
| 33 |
+
"""
|
| 34 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
spacial_dim: int,
|
| 40 |
+
embed_dim: int,
|
| 41 |
+
num_heads_channels: int,
|
| 42 |
+
output_dim: int = None,
|
| 43 |
+
):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
| 46 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
| 47 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
| 48 |
+
self.num_heads = embed_dim // num_heads_channels
|
| 49 |
+
self.attention = QKVAttention(self.num_heads)
|
| 50 |
+
|
| 51 |
+
def forward(self, x):
|
| 52 |
+
b, c, *_spatial = x.shape
|
| 53 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
| 54 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
| 55 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
| 56 |
+
x = self.qkv_proj(x)
|
| 57 |
+
x = self.attention(x)
|
| 58 |
+
x = self.c_proj(x)
|
| 59 |
+
return x[:, :, 0]
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class TimestepBlock(nn.Module):
|
| 63 |
+
"""
|
| 64 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
@abstractmethod
|
| 68 |
+
def forward(self, x, emb):
|
| 69 |
+
"""
|
| 70 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
| 75 |
+
"""
|
| 76 |
+
A sequential module that passes timestep embeddings to the children that
|
| 77 |
+
support it as an extra input.
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
def forward(self, x, emb, context=None):#,timestep=None,dcn_guide=None):
|
| 81 |
+
for layer in self:
|
| 82 |
+
if isinstance(layer, TimestepBlock):
|
| 83 |
+
x = layer(x, emb)
|
| 84 |
+
elif isinstance(layer, SpatialTransformer):
|
| 85 |
+
x = layer(x, context=context)#,timestep=timestep)
|
| 86 |
+
elif isinstance(layer, SpatialTransformer_dcn):
|
| 87 |
+
# x = layer(x, context,dcn_guide)
|
| 88 |
+
x = layer(x, context)
|
| 89 |
+
else:
|
| 90 |
+
x = layer(x)
|
| 91 |
+
return x
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class Upsample(nn.Module):
|
| 95 |
+
"""
|
| 96 |
+
An upsampling layer with an optional convolution.
|
| 97 |
+
:param channels: channels in the inputs and outputs.
|
| 98 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 99 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 100 |
+
upsampling occurs in the inner-two dimensions.
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.channels = channels
|
| 106 |
+
self.out_channels = out_channels or channels
|
| 107 |
+
self.use_conv = use_conv
|
| 108 |
+
self.dims = dims
|
| 109 |
+
if use_conv:
|
| 110 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
| 111 |
+
|
| 112 |
+
def forward(self, x):
|
| 113 |
+
assert x.shape[1] == self.channels
|
| 114 |
+
if self.dims == 3:
|
| 115 |
+
x = F.interpolate(
|
| 116 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
| 117 |
+
)
|
| 118 |
+
else:
|
| 119 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
| 120 |
+
if self.use_conv:
|
| 121 |
+
x = self.conv(x)
|
| 122 |
+
return x
|
| 123 |
+
|
| 124 |
+
class TransposedUpsample(nn.Module):
|
| 125 |
+
'Learned 2x upsampling without padding'
|
| 126 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
| 127 |
+
super().__init__()
|
| 128 |
+
self.channels = channels
|
| 129 |
+
self.out_channels = out_channels or channels
|
| 130 |
+
|
| 131 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
| 132 |
+
|
| 133 |
+
def forward(self,x):
|
| 134 |
+
return self.up(x)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class Downsample(nn.Module):
|
| 138 |
+
"""
|
| 139 |
+
A downsampling layer with an optional convolution.
|
| 140 |
+
:param channels: channels in the inputs and outputs.
|
| 141 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 142 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 143 |
+
downsampling occurs in the inner-two dimensions.
|
| 144 |
+
"""
|
| 145 |
+
|
| 146 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
| 147 |
+
super().__init__()
|
| 148 |
+
self.channels = channels
|
| 149 |
+
self.out_channels = out_channels or channels
|
| 150 |
+
self.use_conv = use_conv
|
| 151 |
+
self.dims = dims
|
| 152 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
| 153 |
+
if use_conv:
|
| 154 |
+
self.op = conv_nd(
|
| 155 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
| 156 |
+
)
|
| 157 |
+
else:
|
| 158 |
+
assert self.channels == self.out_channels
|
| 159 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
| 160 |
+
|
| 161 |
+
def forward(self, x):
|
| 162 |
+
assert x.shape[1] == self.channels
|
| 163 |
+
return self.op(x)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class ResBlock(TimestepBlock):
|
| 167 |
+
"""
|
| 168 |
+
A residual block that can optionally change the number of channels.
|
| 169 |
+
:param channels: the number of input channels.
|
| 170 |
+
:param emb_channels: the number of timestep embedding channels.
|
| 171 |
+
:param dropout: the rate of dropout.
|
| 172 |
+
:param out_channels: if specified, the number of out channels.
|
| 173 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
| 174 |
+
convolution instead of a smaller 1x1 convolution to change the
|
| 175 |
+
channels in the skip connection.
|
| 176 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 177 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
| 178 |
+
:param up: if True, use this block for upsampling.
|
| 179 |
+
:param down: if True, use this block for downsampling.
|
| 180 |
+
"""
|
| 181 |
+
|
| 182 |
+
def __init__(
|
| 183 |
+
self,
|
| 184 |
+
channels,
|
| 185 |
+
emb_channels,
|
| 186 |
+
dropout,
|
| 187 |
+
out_channels=None,
|
| 188 |
+
use_conv=False,
|
| 189 |
+
use_scale_shift_norm=False,
|
| 190 |
+
dims=2,
|
| 191 |
+
use_checkpoint=False,
|
| 192 |
+
up=False,
|
| 193 |
+
down=False,
|
| 194 |
+
):
|
| 195 |
+
super().__init__()
|
| 196 |
+
self.channels = channels
|
| 197 |
+
self.emb_channels = emb_channels
|
| 198 |
+
self.dropout = dropout
|
| 199 |
+
self.out_channels = out_channels or channels
|
| 200 |
+
self.use_conv = use_conv
|
| 201 |
+
self.use_checkpoint = use_checkpoint
|
| 202 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
| 203 |
+
|
| 204 |
+
self.in_layers = nn.Sequential(
|
| 205 |
+
normalization(channels),
|
| 206 |
+
nn.SiLU(),
|
| 207 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
self.updown = up or down
|
| 211 |
+
|
| 212 |
+
if up:
|
| 213 |
+
self.h_upd = Upsample(channels, False, dims)
|
| 214 |
+
self.x_upd = Upsample(channels, False, dims)
|
| 215 |
+
elif down:
|
| 216 |
+
self.h_upd = Downsample(channels, False, dims)
|
| 217 |
+
self.x_upd = Downsample(channels, False, dims)
|
| 218 |
+
else:
|
| 219 |
+
self.h_upd = self.x_upd = nn.Identity()
|
| 220 |
+
|
| 221 |
+
self.emb_layers = nn.Sequential(
|
| 222 |
+
nn.SiLU(),
|
| 223 |
+
linear(
|
| 224 |
+
emb_channels,
|
| 225 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
| 226 |
+
),
|
| 227 |
+
)
|
| 228 |
+
self.out_layers = nn.Sequential(
|
| 229 |
+
normalization(self.out_channels),
|
| 230 |
+
nn.SiLU(),
|
| 231 |
+
nn.Dropout(p=dropout),
|
| 232 |
+
zero_module(
|
| 233 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
| 234 |
+
),
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
if self.out_channels == channels:
|
| 238 |
+
self.skip_connection = nn.Identity()
|
| 239 |
+
elif use_conv:
|
| 240 |
+
self.skip_connection = conv_nd(
|
| 241 |
+
dims, channels, self.out_channels, 3, padding=1
|
| 242 |
+
)
|
| 243 |
+
else:
|
| 244 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
| 245 |
+
|
| 246 |
+
def forward(self, x, emb):
|
| 247 |
+
"""
|
| 248 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
| 249 |
+
:param x: an [N x C x ...] Tensor of features.
|
| 250 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
| 251 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 252 |
+
"""
|
| 253 |
+
return checkpoint(
|
| 254 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _forward(self, x, emb):
|
| 259 |
+
if self.updown:
|
| 260 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
| 261 |
+
h = in_rest(x)
|
| 262 |
+
h = self.h_upd(h)
|
| 263 |
+
x = self.x_upd(x)
|
| 264 |
+
h = in_conv(h)
|
| 265 |
+
else:
|
| 266 |
+
h = self.in_layers(x)
|
| 267 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
| 268 |
+
while len(emb_out.shape) < len(h.shape):
|
| 269 |
+
emb_out = emb_out[..., None]
|
| 270 |
+
if self.use_scale_shift_norm:
|
| 271 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
| 272 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
| 273 |
+
h = out_norm(h) * (1 + scale) + shift
|
| 274 |
+
h = out_rest(h)
|
| 275 |
+
else:
|
| 276 |
+
h = h + emb_out
|
| 277 |
+
h = self.out_layers(h)
|
| 278 |
+
return self.skip_connection(x) + h
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
class AttentionBlock(nn.Module):
|
| 282 |
+
"""
|
| 283 |
+
An attention block that allows spatial positions to attend to each other.
|
| 284 |
+
Originally ported from here, but adapted to the N-d case.
|
| 285 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
| 286 |
+
"""
|
| 287 |
+
|
| 288 |
+
def __init__(
|
| 289 |
+
self,
|
| 290 |
+
channels,
|
| 291 |
+
num_heads=1,
|
| 292 |
+
num_head_channels=-1,
|
| 293 |
+
use_checkpoint=False,
|
| 294 |
+
use_new_attention_order=False,
|
| 295 |
+
):
|
| 296 |
+
super().__init__()
|
| 297 |
+
self.channels = channels
|
| 298 |
+
if num_head_channels == -1:
|
| 299 |
+
self.num_heads = num_heads
|
| 300 |
+
else:
|
| 301 |
+
assert (
|
| 302 |
+
channels % num_head_channels == 0
|
| 303 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
| 304 |
+
self.num_heads = channels // num_head_channels
|
| 305 |
+
self.use_checkpoint = use_checkpoint
|
| 306 |
+
self.norm = normalization(channels)
|
| 307 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
| 308 |
+
if use_new_attention_order:
|
| 309 |
+
# split qkv before split heads
|
| 310 |
+
self.attention = QKVAttention(self.num_heads)
|
| 311 |
+
else:
|
| 312 |
+
# split heads before split qkv
|
| 313 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
| 314 |
+
|
| 315 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
| 316 |
+
# self.cnnhead = CnnHead(512,num_classes=32,window_size=channels)
|
| 317 |
+
def forward(self, x):
|
| 318 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
| 319 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
| 320 |
+
|
| 321 |
+
def _forward(self, x):
|
| 322 |
+
b, c, *spatial = x.shape
|
| 323 |
+
x = x.reshape(b, c, -1)
|
| 324 |
+
qkv = self.qkv(self.norm(x))
|
| 325 |
+
h = self.attention(qkv)
|
| 326 |
+
h = self.proj_out(h)
|
| 327 |
+
# h = self.cnnhead(h)
|
| 328 |
+
return (x + h).reshape(b, c, *spatial)
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def count_flops_attn(model, _x, y):
|
| 332 |
+
"""
|
| 333 |
+
A counter for the `thop` package to count the operations in an
|
| 334 |
+
attention operation.
|
| 335 |
+
Meant to be used like:
|
| 336 |
+
macs, params = thop.profile(
|
| 337 |
+
model,
|
| 338 |
+
inputs=(inputs, timestamps),
|
| 339 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
| 340 |
+
)
|
| 341 |
+
"""
|
| 342 |
+
b, c, *spatial = y[0].shape
|
| 343 |
+
num_spatial = int(np.prod(spatial))
|
| 344 |
+
# We perform two matmuls with the same number of ops.
|
| 345 |
+
# The first computes the weight matrix, the second computes
|
| 346 |
+
# the combination of the value vectors.
|
| 347 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
| 348 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
class QKVAttentionLegacy(nn.Module):
|
| 352 |
+
"""
|
| 353 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
| 354 |
+
"""
|
| 355 |
+
|
| 356 |
+
def __init__(self, n_heads):
|
| 357 |
+
super().__init__()
|
| 358 |
+
self.n_heads = n_heads
|
| 359 |
+
|
| 360 |
+
def forward(self, qkv):
|
| 361 |
+
"""
|
| 362 |
+
Apply QKV attention.
|
| 363 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
| 364 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 365 |
+
"""
|
| 366 |
+
bs, width, length = qkv.shape
|
| 367 |
+
assert width % (3 * self.n_heads) == 0
|
| 368 |
+
ch = width // (3 * self.n_heads)
|
| 369 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
| 370 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 371 |
+
weight = th.einsum(
|
| 372 |
+
"bct,bcs->bts", q * scale, k * scale
|
| 373 |
+
) # More stable with f16 than dividing afterwards
|
| 374 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 375 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
| 376 |
+
return a.reshape(bs, -1, length)
|
| 377 |
+
|
| 378 |
+
@staticmethod
|
| 379 |
+
def count_flops(model, _x, y):
|
| 380 |
+
return count_flops_attn(model, _x, y)
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
class QKVAttention(nn.Module):
|
| 384 |
+
"""
|
| 385 |
+
A module which performs QKV attention and splits in a different order.
|
| 386 |
+
"""
|
| 387 |
+
|
| 388 |
+
def __init__(self, n_heads):
|
| 389 |
+
super().__init__()
|
| 390 |
+
self.n_heads = n_heads
|
| 391 |
+
|
| 392 |
+
def forward(self, qkv):
|
| 393 |
+
"""
|
| 394 |
+
Apply QKV attention.
|
| 395 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
| 396 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 397 |
+
"""
|
| 398 |
+
bs, width, length = qkv.shape
|
| 399 |
+
assert width % (3 * self.n_heads) == 0
|
| 400 |
+
ch = width // (3 * self.n_heads)
|
| 401 |
+
q, k, v = qkv.chunk(3, dim=1)
|
| 402 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 403 |
+
weight = th.einsum(
|
| 404 |
+
"bct,bcs->bts",
|
| 405 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
| 406 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
| 407 |
+
) # More stable with f16 than dividing afterwards
|
| 408 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 409 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
| 410 |
+
return a.reshape(bs, -1, length)
|
| 411 |
+
|
| 412 |
+
@staticmethod
|
| 413 |
+
def count_flops(model, _x, y):
|
| 414 |
+
return count_flops_attn(model, _x, y)
|
| 415 |
+
|
| 416 |
+
# class ModulatedDeformConv(nn.Module):
|
| 417 |
+
# """A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers.
|
| 418 |
+
|
| 419 |
+
# Args:
|
| 420 |
+
# in_channels (int): Same as nn.Conv2d.
|
| 421 |
+
# out_channels (int): Same as nn.Conv2d.
|
| 422 |
+
# kernel_size (int or tuple[int]): Same as nn.Conv2d.
|
| 423 |
+
# stride (int or tuple[int]): Same as nn.Conv2d.
|
| 424 |
+
# padding (int or tuple[int]): Same as nn.Conv2d.
|
| 425 |
+
# dilation (int or tuple[int]): Same as nn.Conv2d.
|
| 426 |
+
# groups (int): Same as nn.Conv2d.
|
| 427 |
+
# bias (bool or str): If specified as `auto`, it will be decided by the
|
| 428 |
+
# norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
|
| 429 |
+
# False.
|
| 430 |
+
# """
|
| 431 |
+
|
| 432 |
+
# _version = 2
|
| 433 |
+
|
| 434 |
+
# def __init__(self, *args, **kwargs):
|
| 435 |
+
# super(ModulatedDeformConv, self).__init__(*args, **kwargs)
|
| 436 |
+
|
| 437 |
+
# self.conv_offset = nn.Conv2d(
|
| 438 |
+
# self.in_channels,
|
| 439 |
+
# self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
|
| 440 |
+
# kernel_size=self.kernel_size,
|
| 441 |
+
# stride=_pair(self.stride),
|
| 442 |
+
# padding=_pair(self.padding),
|
| 443 |
+
# dilation=_pair(self.dilation),
|
| 444 |
+
# bias=True)
|
| 445 |
+
# self.init_weights()
|
| 446 |
+
|
| 447 |
+
# def init_weights(self):
|
| 448 |
+
# super(ModulatedDeformConv, self).init_weights()
|
| 449 |
+
# if hasattr(self, 'conv_offset'):
|
| 450 |
+
# self.conv_offset.weight.data.zero_()
|
| 451 |
+
# self.conv_offset.bias.data.zero_()
|
| 452 |
+
|
| 453 |
+
# def forward(self, x):
|
| 454 |
+
# out = self.conv_offset(x)
|
| 455 |
+
# o1, o2, mask = th.chunk(out, 3, dim=1)
|
| 456 |
+
# offset = th.cat((o1, o2), dim=1)
|
| 457 |
+
# mask = th.sigmoid(mask)
|
| 458 |
+
# return nn.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding, self.dilation,mask,
|
| 459 |
+
# self.groups, self.deformable_groups)
|
| 460 |
+
|
| 461 |
+
from einops import rearrange
|
| 462 |
+
class CnnHead(nn.Module):
|
| 463 |
+
def __init__(self, embed_dim, num_classes, window_size):
|
| 464 |
+
super().__init__()
|
| 465 |
+
self.embed_dim = embed_dim
|
| 466 |
+
self.num_classes = num_classes
|
| 467 |
+
self.window_size = window_size
|
| 468 |
+
|
| 469 |
+
self.cnnhead = nn.Conv2d(embed_dim, num_classes, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
|
| 470 |
+
|
| 471 |
+
def forward(self, x):
|
| 472 |
+
x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
|
| 473 |
+
x = self.cnnhead(x)
|
| 474 |
+
x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
|
| 475 |
+
return x
|
| 476 |
+
|
| 477 |
+
class UNetModel(nn.Module):
|
| 478 |
+
"""
|
| 479 |
+
The full UNet model with attention and timestep embedding.
|
| 480 |
+
:param in_channels: channels in the input Tensor.
|
| 481 |
+
:param model_channels: base channel count for the model.
|
| 482 |
+
:param out_channels: channels in the output Tensor.
|
| 483 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
| 484 |
+
:param attention_resolutions: a collection of downsample rates at which
|
| 485 |
+
attention will take place. May be a set, list, or tuple.
|
| 486 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
| 487 |
+
will be used.
|
| 488 |
+
:param dropout: the dropout probability.
|
| 489 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
| 490 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 491 |
+
downsampling.
|
| 492 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 493 |
+
:param num_classes: if specified (as an int), then this model will be
|
| 494 |
+
class-conditional with `num_classes` classes.
|
| 495 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
| 496 |
+
:param num_heads: the number of attention heads in each attention layer.
|
| 497 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 498 |
+
a fixed channel width per attention head.
|
| 499 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
| 500 |
+
of heads for upsampling. Deprecated.
|
| 501 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 502 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
| 503 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
| 504 |
+
increased efficiency.
|
| 505 |
+
"""
|
| 506 |
+
|
| 507 |
+
def __init__(
|
| 508 |
+
self,
|
| 509 |
+
image_size,
|
| 510 |
+
in_channels,
|
| 511 |
+
model_channels,
|
| 512 |
+
out_channels,
|
| 513 |
+
num_res_blocks,
|
| 514 |
+
attention_resolutions,
|
| 515 |
+
dropout=0,
|
| 516 |
+
channel_mult=(1, 2, 4, 8),
|
| 517 |
+
conv_resample=True,
|
| 518 |
+
dims=2,
|
| 519 |
+
num_classes=None,
|
| 520 |
+
use_checkpoint=False,
|
| 521 |
+
use_fp16=False,
|
| 522 |
+
num_heads=-1,
|
| 523 |
+
num_head_channels=-1,
|
| 524 |
+
num_heads_upsample=-1,
|
| 525 |
+
use_scale_shift_norm=False,
|
| 526 |
+
resblock_updown=False,
|
| 527 |
+
use_new_attention_order=False,
|
| 528 |
+
use_spatial_transformer=False, # custom transformer support
|
| 529 |
+
transformer_depth=1, # custom transformer support
|
| 530 |
+
context_dim=None, # custom transformer support
|
| 531 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 532 |
+
legacy=True,
|
| 533 |
+
disable_self_attentions=None,
|
| 534 |
+
num_attention_blocks=None,
|
| 535 |
+
disable_middle_self_attn=False,
|
| 536 |
+
use_linear_in_transformer=False,
|
| 537 |
+
):
|
| 538 |
+
super().__init__()
|
| 539 |
+
if use_spatial_transformer:
|
| 540 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
| 541 |
+
|
| 542 |
+
if context_dim is not None:
|
| 543 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
| 544 |
+
from omegaconf.listconfig import ListConfig
|
| 545 |
+
if type(context_dim) == ListConfig:
|
| 546 |
+
context_dim = list(context_dim)
|
| 547 |
+
|
| 548 |
+
if num_heads_upsample == -1:
|
| 549 |
+
num_heads_upsample = num_heads
|
| 550 |
+
|
| 551 |
+
if num_heads == -1:
|
| 552 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
| 553 |
+
|
| 554 |
+
if num_head_channels == -1:
|
| 555 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
| 556 |
+
|
| 557 |
+
self.image_size = image_size
|
| 558 |
+
self.in_channels = in_channels
|
| 559 |
+
self.model_channels = model_channels
|
| 560 |
+
self.out_channels = out_channels
|
| 561 |
+
if isinstance(num_res_blocks, int):
|
| 562 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 563 |
+
else:
|
| 564 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 565 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
| 566 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
| 567 |
+
self.num_res_blocks = num_res_blocks
|
| 568 |
+
if disable_self_attentions is not None:
|
| 569 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 570 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 571 |
+
if num_attention_blocks is not None:
|
| 572 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 573 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
| 574 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
| 575 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
| 576 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
| 577 |
+
f"attention will still not be set.")
|
| 578 |
+
|
| 579 |
+
self.attention_resolutions = attention_resolutions
|
| 580 |
+
self.dropout = dropout
|
| 581 |
+
self.channel_mult = channel_mult
|
| 582 |
+
self.conv_resample = conv_resample
|
| 583 |
+
self.num_classes = num_classes
|
| 584 |
+
self.use_checkpoint = use_checkpoint
|
| 585 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
| 586 |
+
self.num_heads = num_heads
|
| 587 |
+
self.num_head_channels = num_head_channels
|
| 588 |
+
self.num_heads_upsample = num_heads_upsample
|
| 589 |
+
self.predict_codebook_ids = n_embed is not None
|
| 590 |
+
|
| 591 |
+
time_embed_dim = model_channels * 4
|
| 592 |
+
self.time_embed = nn.Sequential(
|
| 593 |
+
linear(model_channels, time_embed_dim),
|
| 594 |
+
nn.SiLU(),
|
| 595 |
+
linear(time_embed_dim, time_embed_dim),
|
| 596 |
+
)
|
| 597 |
+
|
| 598 |
+
if self.num_classes is not None:
|
| 599 |
+
if isinstance(self.num_classes, int):
|
| 600 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 601 |
+
elif self.num_classes == "continuous":
|
| 602 |
+
print("setting up linear c_adm embedding layer")
|
| 603 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 604 |
+
else:
|
| 605 |
+
raise ValueError()
|
| 606 |
+
|
| 607 |
+
self.input_blocks = nn.ModuleList(
|
| 608 |
+
[
|
| 609 |
+
TimestepEmbedSequential(
|
| 610 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 611 |
+
)
|
| 612 |
+
]
|
| 613 |
+
)
|
| 614 |
+
self._feature_size = model_channels
|
| 615 |
+
input_block_chans = [model_channels]
|
| 616 |
+
ch = model_channels
|
| 617 |
+
ds = 1
|
| 618 |
+
for level, mult in enumerate(channel_mult):
|
| 619 |
+
for nr in range(self.num_res_blocks[level]):
|
| 620 |
+
layers = [
|
| 621 |
+
ResBlock(
|
| 622 |
+
ch,
|
| 623 |
+
time_embed_dim,
|
| 624 |
+
dropout,
|
| 625 |
+
out_channels=mult * model_channels,
|
| 626 |
+
dims=dims,
|
| 627 |
+
use_checkpoint=use_checkpoint,
|
| 628 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 629 |
+
)
|
| 630 |
+
]
|
| 631 |
+
ch = mult * model_channels
|
| 632 |
+
if ds in attention_resolutions:
|
| 633 |
+
if num_head_channels == -1:
|
| 634 |
+
dim_head = ch // num_heads
|
| 635 |
+
else:
|
| 636 |
+
num_heads = ch // num_head_channels
|
| 637 |
+
dim_head = num_head_channels
|
| 638 |
+
if legacy:
|
| 639 |
+
#num_heads = 1
|
| 640 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 641 |
+
if exists(disable_self_attentions):
|
| 642 |
+
disabled_sa = disable_self_attentions[level]
|
| 643 |
+
else:
|
| 644 |
+
disabled_sa = False
|
| 645 |
+
|
| 646 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
| 647 |
+
layers.append(
|
| 648 |
+
AttentionBlock(
|
| 649 |
+
ch,
|
| 650 |
+
use_checkpoint=use_checkpoint,
|
| 651 |
+
num_heads=num_heads,
|
| 652 |
+
num_head_channels=dim_head,
|
| 653 |
+
use_new_attention_order=use_new_attention_order,
|
| 654 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
| 655 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
| 656 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
| 657 |
+
use_checkpoint=use_checkpoint
|
| 658 |
+
)
|
| 659 |
+
)
|
| 660 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 661 |
+
self._feature_size += ch
|
| 662 |
+
input_block_chans.append(ch)
|
| 663 |
+
if level != len(channel_mult) - 1:
|
| 664 |
+
out_ch = ch
|
| 665 |
+
self.input_blocks.append(
|
| 666 |
+
TimestepEmbedSequential(
|
| 667 |
+
ResBlock(
|
| 668 |
+
ch,
|
| 669 |
+
time_embed_dim,
|
| 670 |
+
dropout,
|
| 671 |
+
out_channels=out_ch,
|
| 672 |
+
dims=dims,
|
| 673 |
+
use_checkpoint=use_checkpoint,
|
| 674 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 675 |
+
down=True,
|
| 676 |
+
)
|
| 677 |
+
if resblock_updown
|
| 678 |
+
else Downsample(
|
| 679 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 680 |
+
)
|
| 681 |
+
)
|
| 682 |
+
)
|
| 683 |
+
ch = out_ch
|
| 684 |
+
input_block_chans.append(ch)
|
| 685 |
+
ds *= 2
|
| 686 |
+
self._feature_size += ch
|
| 687 |
+
|
| 688 |
+
if num_head_channels == -1:
|
| 689 |
+
dim_head = ch // num_heads
|
| 690 |
+
else:
|
| 691 |
+
num_heads = ch // num_head_channels
|
| 692 |
+
dim_head = num_head_channels
|
| 693 |
+
if legacy:
|
| 694 |
+
#num_heads = 1
|
| 695 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 696 |
+
self.middle_block = TimestepEmbedSequential(
|
| 697 |
+
ResBlock(
|
| 698 |
+
ch,
|
| 699 |
+
time_embed_dim,
|
| 700 |
+
dropout,
|
| 701 |
+
dims=dims,
|
| 702 |
+
use_checkpoint=use_checkpoint,
|
| 703 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 704 |
+
),
|
| 705 |
+
AttentionBlock(
|
| 706 |
+
ch,
|
| 707 |
+
use_checkpoint=use_checkpoint,
|
| 708 |
+
num_heads=num_heads,
|
| 709 |
+
num_head_channels=dim_head,
|
| 710 |
+
use_new_attention_order=use_new_attention_order,
|
| 711 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
| 712 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
| 713 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
| 714 |
+
use_checkpoint=use_checkpoint
|
| 715 |
+
),
|
| 716 |
+
ResBlock(
|
| 717 |
+
ch,
|
| 718 |
+
time_embed_dim,
|
| 719 |
+
dropout,
|
| 720 |
+
dims=dims,
|
| 721 |
+
use_checkpoint=use_checkpoint,
|
| 722 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 723 |
+
),
|
| 724 |
+
)
|
| 725 |
+
self._feature_size += ch
|
| 726 |
+
|
| 727 |
+
self.output_blocks = nn.ModuleList([])
|
| 728 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
| 729 |
+
for i in range(self.num_res_blocks[level] + 1):
|
| 730 |
+
ich = input_block_chans.pop()
|
| 731 |
+
layers = [
|
| 732 |
+
ResBlock(
|
| 733 |
+
ch + ich,
|
| 734 |
+
time_embed_dim,
|
| 735 |
+
dropout,
|
| 736 |
+
out_channels=model_channels * mult,
|
| 737 |
+
dims=dims,
|
| 738 |
+
use_checkpoint=use_checkpoint,
|
| 739 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 740 |
+
)
|
| 741 |
+
]
|
| 742 |
+
ch = model_channels * mult
|
| 743 |
+
if ds in attention_resolutions:
|
| 744 |
+
if num_head_channels == -1:
|
| 745 |
+
dim_head = ch // num_heads
|
| 746 |
+
else:
|
| 747 |
+
num_heads = ch // num_head_channels
|
| 748 |
+
dim_head = num_head_channels
|
| 749 |
+
if legacy:
|
| 750 |
+
#num_heads = 1
|
| 751 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 752 |
+
if exists(disable_self_attentions):
|
| 753 |
+
disabled_sa = disable_self_attentions[level]
|
| 754 |
+
else:
|
| 755 |
+
disabled_sa = False
|
| 756 |
+
|
| 757 |
+
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
| 758 |
+
layers.append(
|
| 759 |
+
AttentionBlock(
|
| 760 |
+
ch,
|
| 761 |
+
use_checkpoint=use_checkpoint,
|
| 762 |
+
num_heads=num_heads_upsample,
|
| 763 |
+
num_head_channels=dim_head,
|
| 764 |
+
use_new_attention_order=use_new_attention_order,
|
| 765 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
| 766 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
| 767 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
| 768 |
+
use_checkpoint=use_checkpoint
|
| 769 |
+
)
|
| 770 |
+
)
|
| 771 |
+
# layers.append(CnnHead(ch, ch, window_size=ch // 8))
|
| 772 |
+
if level and i == self.num_res_blocks[level]:
|
| 773 |
+
out_ch = ch
|
| 774 |
+
layers.append(
|
| 775 |
+
ResBlock(
|
| 776 |
+
ch,
|
| 777 |
+
time_embed_dim,
|
| 778 |
+
dropout,
|
| 779 |
+
out_channels=out_ch,
|
| 780 |
+
dims=dims,
|
| 781 |
+
use_checkpoint=use_checkpoint,
|
| 782 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 783 |
+
up=True,
|
| 784 |
+
)
|
| 785 |
+
if resblock_updown
|
| 786 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
| 787 |
+
)
|
| 788 |
+
# layers.append(CnnHead(ch, ch, window_size=ch // 8))
|
| 789 |
+
ds //= 2
|
| 790 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
| 791 |
+
self._feature_size += ch
|
| 792 |
+
|
| 793 |
+
self.out = nn.Sequential(
|
| 794 |
+
normalization(ch),
|
| 795 |
+
nn.SiLU(),
|
| 796 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
| 797 |
+
)
|
| 798 |
+
if self.predict_codebook_ids:
|
| 799 |
+
self.id_predictor = nn.Sequential(
|
| 800 |
+
normalization(ch),
|
| 801 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
| 802 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
def convert_to_fp16(self):
|
| 806 |
+
"""
|
| 807 |
+
Convert the torso of the model to float16.
|
| 808 |
+
"""
|
| 809 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 810 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 811 |
+
self.output_blocks.apply(convert_module_to_f16)
|
| 812 |
+
|
| 813 |
+
def convert_to_fp32(self):
|
| 814 |
+
"""
|
| 815 |
+
Convert the torso of the model to float32.
|
| 816 |
+
"""
|
| 817 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 818 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 819 |
+
self.output_blocks.apply(convert_module_to_f32)
|
| 820 |
+
|
| 821 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
| 822 |
+
"""
|
| 823 |
+
Apply the model to an input batch.
|
| 824 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
| 825 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 826 |
+
:param context: conditioning plugged in via crossattn
|
| 827 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
| 828 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 829 |
+
"""
|
| 830 |
+
assert (y is not None) == (
|
| 831 |
+
self.num_classes is not None
|
| 832 |
+
), "must specify y if and only if the model is class-conditional"
|
| 833 |
+
hs = []
|
| 834 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
| 835 |
+
emb = self.time_embed(t_emb)
|
| 836 |
+
|
| 837 |
+
if self.num_classes is not None:
|
| 838 |
+
assert y.shape[0] == x.shape[0]
|
| 839 |
+
emb = emb + self.label_emb(y)
|
| 840 |
+
|
| 841 |
+
h = x.type(self.dtype)
|
| 842 |
+
for module in self.input_blocks:
|
| 843 |
+
h = module(h, emb, context)
|
| 844 |
+
hs.append(h)
|
| 845 |
+
h = self.middle_block(h, emb, context)
|
| 846 |
+
for module in self.output_blocks:
|
| 847 |
+
h = th.cat([h, hs.pop()], dim=1)
|
| 848 |
+
h = module(h, emb, context)
|
| 849 |
+
h = h.type(x.dtype)
|
| 850 |
+
if self.predict_codebook_ids:
|
| 851 |
+
return self.id_predictor(h)
|
| 852 |
+
else:
|
| 853 |
+
return self.out(h)
|
Control-Color/ldm/modules/diffusionmodules/util.py
ADDED
|
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# adopted from
|
| 2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
| 3 |
+
# and
|
| 4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
| 5 |
+
# and
|
| 6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
| 7 |
+
#
|
| 8 |
+
# thanks!
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import math
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
import numpy as np
|
| 16 |
+
from einops import repeat
|
| 17 |
+
|
| 18 |
+
from ldm.util import instantiate_from_config
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 22 |
+
if schedule == "linear":
|
| 23 |
+
betas = (
|
| 24 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
elif schedule == "cosine":
|
| 28 |
+
timesteps = (
|
| 29 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
| 30 |
+
)
|
| 31 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
| 32 |
+
alphas = torch.cos(alphas).pow(2)
|
| 33 |
+
alphas = alphas / alphas[0]
|
| 34 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
| 35 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
| 36 |
+
|
| 37 |
+
elif schedule == "sqrt_linear":
|
| 38 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
| 39 |
+
elif schedule == "sqrt":
|
| 40 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
| 41 |
+
else:
|
| 42 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
| 43 |
+
return betas.numpy()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
| 47 |
+
if ddim_discr_method == 'uniform':
|
| 48 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
| 49 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
| 50 |
+
elif ddim_discr_method == 'quad':
|
| 51 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
| 52 |
+
else:
|
| 53 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
| 54 |
+
|
| 55 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
| 56 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
| 57 |
+
steps_out = ddim_timesteps + 1
|
| 58 |
+
if verbose:
|
| 59 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
| 60 |
+
return steps_out
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
| 64 |
+
# select alphas for computing the variance schedule
|
| 65 |
+
alphas = alphacums[ddim_timesteps]
|
| 66 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
| 67 |
+
|
| 68 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
| 69 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
| 70 |
+
if verbose:
|
| 71 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
| 72 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
| 73 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
| 74 |
+
return sigmas, alphas, alphas_prev
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
| 78 |
+
"""
|
| 79 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
| 80 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
| 81 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
| 82 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
| 83 |
+
produces the cumulative product of (1-beta) up to that
|
| 84 |
+
part of the diffusion process.
|
| 85 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
| 86 |
+
prevent singularities.
|
| 87 |
+
"""
|
| 88 |
+
betas = []
|
| 89 |
+
for i in range(num_diffusion_timesteps):
|
| 90 |
+
t1 = i / num_diffusion_timesteps
|
| 91 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
| 92 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
| 93 |
+
return np.array(betas)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def extract_into_tensor(a, t, x_shape):
|
| 97 |
+
b, *_ = t.shape
|
| 98 |
+
out = a.gather(-1, t)
|
| 99 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def checkpoint(func, inputs, params, flag):
|
| 103 |
+
"""
|
| 104 |
+
Evaluate a function without caching intermediate activations, allowing for
|
| 105 |
+
reduced memory at the expense of extra compute in the backward pass.
|
| 106 |
+
:param func: the function to evaluate.
|
| 107 |
+
:param inputs: the argument sequence to pass to `func`.
|
| 108 |
+
:param params: a sequence of parameters `func` depends on but does not
|
| 109 |
+
explicitly take as arguments.
|
| 110 |
+
:param flag: if False, disable gradient checkpointing.
|
| 111 |
+
"""
|
| 112 |
+
if flag:
|
| 113 |
+
args = tuple(inputs) + tuple(params)
|
| 114 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
| 115 |
+
else:
|
| 116 |
+
return func(*inputs)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class CheckpointFunction(torch.autograd.Function):
|
| 120 |
+
@staticmethod
|
| 121 |
+
def forward(ctx, run_function, length, *args):
|
| 122 |
+
ctx.run_function = run_function
|
| 123 |
+
ctx.input_tensors = list(args[:length])
|
| 124 |
+
ctx.input_params = list(args[length:])
|
| 125 |
+
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
|
| 126 |
+
"dtype": torch.get_autocast_gpu_dtype(),
|
| 127 |
+
"cache_enabled": torch.is_autocast_cache_enabled()}
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
| 130 |
+
return output_tensors
|
| 131 |
+
|
| 132 |
+
@staticmethod
|
| 133 |
+
def backward(ctx, *output_grads):
|
| 134 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
| 135 |
+
with torch.enable_grad(), \
|
| 136 |
+
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
| 137 |
+
# Fixes a bug where the first op in run_function modifies the
|
| 138 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
| 139 |
+
# Tensors.
|
| 140 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
| 141 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
| 142 |
+
input_grads = torch.autograd.grad(
|
| 143 |
+
output_tensors,
|
| 144 |
+
ctx.input_tensors + ctx.input_params,
|
| 145 |
+
output_grads,
|
| 146 |
+
allow_unused=True,
|
| 147 |
+
)
|
| 148 |
+
del ctx.input_tensors
|
| 149 |
+
del ctx.input_params
|
| 150 |
+
del output_tensors
|
| 151 |
+
return (None, None) + input_grads
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
| 155 |
+
"""
|
| 156 |
+
Create sinusoidal timestep embeddings.
|
| 157 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 158 |
+
These may be fractional.
|
| 159 |
+
:param dim: the dimension of the output.
|
| 160 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 161 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
| 162 |
+
"""
|
| 163 |
+
if not repeat_only:
|
| 164 |
+
half = dim // 2
|
| 165 |
+
freqs = torch.exp(
|
| 166 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 167 |
+
).to(device=timesteps.device)
|
| 168 |
+
args = timesteps[:, None].float() * freqs[None]
|
| 169 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 170 |
+
if dim % 2:
|
| 171 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 172 |
+
else:
|
| 173 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
| 174 |
+
return embedding
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def zero_module(module):
|
| 178 |
+
"""
|
| 179 |
+
Zero out the parameters of a module and return it.
|
| 180 |
+
"""
|
| 181 |
+
for p in module.parameters():
|
| 182 |
+
p.detach().zero_()
|
| 183 |
+
return module
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def scale_module(module, scale):
|
| 187 |
+
"""
|
| 188 |
+
Scale the parameters of a module and return it.
|
| 189 |
+
"""
|
| 190 |
+
for p in module.parameters():
|
| 191 |
+
p.detach().mul_(scale)
|
| 192 |
+
return module
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def mean_flat(tensor):
|
| 196 |
+
"""
|
| 197 |
+
Take the mean over all non-batch dimensions.
|
| 198 |
+
"""
|
| 199 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def normalization(channels):
|
| 203 |
+
"""
|
| 204 |
+
Make a standard normalization layer.
|
| 205 |
+
:param channels: number of input channels.
|
| 206 |
+
:return: an nn.Module for normalization.
|
| 207 |
+
"""
|
| 208 |
+
return GroupNorm32(32, channels)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
| 212 |
+
class SiLU(nn.Module):
|
| 213 |
+
def forward(self, x):
|
| 214 |
+
return x * torch.sigmoid(x)
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
class GroupNorm32(nn.GroupNorm):
|
| 218 |
+
def forward(self, x):
|
| 219 |
+
return super().forward(x.float()).type(x.dtype)
|
| 220 |
+
|
| 221 |
+
def conv_nd(dims, *args, **kwargs):
|
| 222 |
+
"""
|
| 223 |
+
Create a 1D, 2D, or 3D convolution module.
|
| 224 |
+
"""
|
| 225 |
+
if dims == 1:
|
| 226 |
+
return nn.Conv1d(*args, **kwargs)
|
| 227 |
+
elif dims == 2:
|
| 228 |
+
return nn.Conv2d(*args, **kwargs)
|
| 229 |
+
elif dims == 3:
|
| 230 |
+
return nn.Conv3d(*args, **kwargs)
|
| 231 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def linear(*args, **kwargs):
|
| 235 |
+
"""
|
| 236 |
+
Create a linear module.
|
| 237 |
+
"""
|
| 238 |
+
return nn.Linear(*args, **kwargs)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
| 242 |
+
"""
|
| 243 |
+
Create a 1D, 2D, or 3D average pooling module.
|
| 244 |
+
"""
|
| 245 |
+
if dims == 1:
|
| 246 |
+
return nn.AvgPool1d(*args, **kwargs)
|
| 247 |
+
elif dims == 2:
|
| 248 |
+
return nn.AvgPool2d(*args, **kwargs)
|
| 249 |
+
elif dims == 3:
|
| 250 |
+
return nn.AvgPool3d(*args, **kwargs)
|
| 251 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
class HybridConditioner(nn.Module):
|
| 255 |
+
|
| 256 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
| 257 |
+
super().__init__()
|
| 258 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
| 259 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
| 260 |
+
|
| 261 |
+
def forward(self, c_concat, c_crossattn):
|
| 262 |
+
c_concat = self.concat_conditioner(c_concat)
|
| 263 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
| 264 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def noise_like(shape, device, repeat=False):
|
| 268 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
| 269 |
+
noise = lambda: torch.randn(shape, device=device)
|
| 270 |
+
return repeat_noise() if repeat else noise()
|
Control-Color/ldm/modules/distributions/__init__.py
ADDED
|
File without changes
|