Spaces:
Running
Running
Aaron Blare
commited on
Commit
Β·
f7d1875
1
Parent(s):
58887fd
Model renaming
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- .gitattributes +1 -0
- app.py +24 -24
- configs/{immuno-regression β cytokines-regression}/DataConfig.yaml +13 -13
- configs/{immuno-regression β cytokines-regression}/OptimizerConfig.yaml +22 -22
- configs/{immuno-regression β cytokines-regression}/TrainerConfig.yaml +26 -26
- configs/{immuno-regression β cytokines-regression}/models/CategoryEmbeddingModelConfig.yaml +26 -26
- configs/{immuno-regression β cytokines-regression}/models/DANetConfig.yaml +26 -26
- configs/{immuno-regression β cytokines-regression}/models/FTTransformerConfig.yaml +28 -28
- configs/{immuno-regression β cytokines-regression}/models/GANDALFConfig.yaml +24 -24
- configs/{immuno-regression β cytokines-regression}/models/TabNetModelConfig.yaml +28 -28
- models/EpImAge/custom_params.sav +0 -0
- models/{EpImAge β EpInflammAge}/config.yml +118 -118
- models/EpInflammAge/custom_params.sav +3 -0
- models/{EpImAge β EpInflammAge}/datamodule.sav +0 -0
- models/{EpImAge β EpInflammAge}/model.ckpt +0 -0
- models/Immunomarkers/CCL11/custom_params.sav +0 -0
- models/Immunomarkers/CCL11/datamodule.sav +0 -0
- models/Immunomarkers/CCL2/custom_params.sav +0 -0
- models/Immunomarkers/CCL2/datamodule.sav +0 -0
- models/Immunomarkers/CCL22/custom_params.sav +0 -0
- models/Immunomarkers/CCL22/datamodule.sav +0 -0
- models/Immunomarkers/CCL3/custom_params.sav +0 -0
- models/Immunomarkers/CCL3/datamodule.sav +0 -0
- models/Immunomarkers/CCL4/custom_params.sav +0 -0
- models/Immunomarkers/CCL4/datamodule.sav +0 -0
- models/Immunomarkers/CCL7/custom_params.sav +0 -0
- models/Immunomarkers/CCL7/datamodule.sav +0 -0
- models/Immunomarkers/CD40LG/custom_params.sav +0 -0
- models/Immunomarkers/CD40LG/datamodule.sav +0 -0
- models/Immunomarkers/CSF1/custom_params.sav +0 -0
- models/Immunomarkers/CSF1/datamodule.sav +0 -0
- models/Immunomarkers/CX3CL1/custom_params.sav +0 -0
- models/Immunomarkers/CX3CL1/datamodule.sav +0 -0
- models/Immunomarkers/CXCL1/custom_params.sav +0 -0
- models/Immunomarkers/CXCL1/datamodule.sav +0 -0
- models/Immunomarkers/CXCL10/custom_params.sav +0 -0
- models/Immunomarkers/CXCL10/datamodule.sav +0 -0
- models/Immunomarkers/CXCL9/custom_params.sav +0 -0
- models/Immunomarkers/CXCL9/datamodule.sav +0 -0
- models/Immunomarkers/FLT3L/custom_params.sav +0 -0
- models/Immunomarkers/FLT3L/datamodule.sav +0 -0
- models/Immunomarkers/GCSF/custom_params.sav +0 -0
- models/Immunomarkers/GCSF/datamodule.sav +0 -0
- models/Immunomarkers/IFNA2/custom_params.sav +0 -0
- models/Immunomarkers/IFNA2/datamodule.sav +0 -0
- models/Immunomarkers/IL12Bp40/custom_params.sav +0 -0
- models/Immunomarkers/IL12Bp40/datamodule.sav +0 -0
- models/Immunomarkers/IL13/custom_params.sav +0 -0
- models/Immunomarkers/IL13/datamodule.sav +0 -0
- models/Immunomarkers/IL15/custom_params.sav +0 -0
.gitattributes
CHANGED
|
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
data/examples/Our[[:space:]]data.xlsx filter=lfs diff=lfs merge=lfs -text
|
| 37 |
models/EpImAge/datamodule.sav filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
data/examples/Our[[:space:]]data.xlsx filter=lfs diff=lfs merge=lfs -text
|
| 37 |
models/EpImAge/datamodule.sav filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.sav filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -23,17 +23,17 @@ if Path(dir_out).exists():
|
|
| 23 |
shutil.rmtree(Path(dir_out))
|
| 24 |
Path(dir_out).mkdir(parents=True, exist_ok=True)
|
| 25 |
|
| 26 |
-
df_imms = pd.read_excel(f"{dir_root}/models/
|
| 27 |
imms = df_imms.index.values
|
| 28 |
imms_log = [f"{f}_log" for f in imms]
|
| 29 |
-
cpgs = pd.read_excel(f"{dir_root}/models/
|
| 30 |
|
| 31 |
models_imms = {}
|
| 32 |
for imm in (pbar := tqdm(imms)):
|
| 33 |
pbar.set_description(f"Loading model for {imm}")
|
| 34 |
-
models_imms[imm] = TabularModel.load_model(f"{dir_root}/models/
|
| 35 |
|
| 36 |
-
model_age = TabularModel.load_model(f"{dir_root}/models/
|
| 37 |
|
| 38 |
bkgrd_xai = pd.read_pickle(f"{dir_root}/models/background-xai.pkl")
|
| 39 |
bkgrd_imp = pd.read_pickle(f"{dir_root}/models/background-imputation.pkl")
|
|
@@ -60,7 +60,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title='EpImAge', js=js_func, delete_cache
|
|
| 60 |
|
| 61 |
gr.Markdown(
|
| 62 |
"""
|
| 63 |
-
#
|
| 64 |
## Submit epigenetics data
|
| 65 |
"""
|
| 66 |
)
|
|
@@ -70,12 +70,12 @@ with gr.Blocks(theme=gr.themes.Soft(), title='EpImAge', js=js_func, delete_cache
|
|
| 70 |
gr.Markdown(
|
| 71 |
"""
|
| 72 |
### Instruction
|
| 73 |
-
- Upload your methylation data for 2228 CpGs from [File](https://github.com/GillianGrayson/
|
| 74 |
- The first column must be a sample ID.
|
| 75 |
- Your data must contain `Age` column for metrics (MAE and Pearson Rho) and Age Acceleration calculation.
|
| 76 |
- Missing values should be `NA` in the corresponding cells.
|
| 77 |
- [Imputation](https://scikit-learn.org/stable/modules/impute.html) of missing values can be performed using KNN, Mean, and Median methods with all methylation data from the [Paper]().
|
| 78 |
-
- Data example for GSE87571: [File](https://github.com/GillianGrayson/
|
| 79 |
- Calculations take a few minutes, the plot can be displayed slightly later than the results. If imputation is performed, the calculations will take longer.
|
| 80 |
""",
|
| 81 |
)
|
|
@@ -98,12 +98,12 @@ with gr.Blocks(theme=gr.themes.Soft(), title='EpImAge', js=js_func, delete_cache
|
|
| 98 |
|
| 99 |
with gr.Row():
|
| 100 |
with gr.Column():
|
| 101 |
-
shap_dropdown = gr.Dropdown(label='Choose a sample to get an explanation of the
|
| 102 |
shap_button = gr.Button("Get explanation", variant="primary", visible=False)
|
| 103 |
with gr.Row():
|
| 104 |
shap_text_id = gr.Text(label='Sample', visible=False)
|
| 105 |
shap_text_age = gr.Text(label='Age', visible=False)
|
| 106 |
-
shap_text_epimage = gr.Text(label='
|
| 107 |
shap_markdown_cytokines = gr.Markdown(
|
| 108 |
"""
|
| 109 |
### Most important cytokines:
|
|
@@ -189,7 +189,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title='EpImAge', js=js_func, delete_cache
|
|
| 189 |
data = pd.read_pickle(f"{dir_out}/{str(request.session_hash)}/data.pkl")
|
| 190 |
trgt_id = input
|
| 191 |
trgt_age = data.at[trgt_id, 'Age']
|
| 192 |
-
trgt_pred = data.at[trgt_id, '
|
| 193 |
trgt_aa = trgt_pred - trgt_age
|
| 194 |
|
| 195 |
n_closest = 200
|
|
@@ -210,7 +210,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title='EpImAge', js=js_func, delete_cache
|
|
| 210 |
fig = make_subplots(rows=1, cols=2, shared_yaxes=True, shared_xaxes=False, column_widths=[2.5, 1], horizontal_spacing=0.05, row_titles=[''])
|
| 211 |
fig.add_trace(
|
| 212 |
go.Waterfall(
|
| 213 |
-
hovertext=["Chrono Age", "
|
| 214 |
orientation="h",
|
| 215 |
measure=['absolute', 'relative'],
|
| 216 |
y=[-1.5, df_shap.shape[0] + 0.5],
|
|
@@ -255,7 +255,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title='EpImAge', js=js_func, delete_cache
|
|
| 255 |
automargin=True,
|
| 256 |
tickmode="array",
|
| 257 |
tickvals=[-1.5] + list(range(df_shap.shape[0])) + [df_shap.shape[0] + 0.5],
|
| 258 |
-
ticktext=["Chrono Age"] + df_shap.index.to_list() + ["
|
| 259 |
tickfont=dict(size=16),
|
| 260 |
)
|
| 261 |
fig.update_xaxes(
|
|
@@ -321,7 +321,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title='EpImAge', js=js_func, delete_cache
|
|
| 321 |
fig.update_layout(barmode="relative")
|
| 322 |
fig.update_layout(
|
| 323 |
legend=dict(
|
| 324 |
-
title=dict(text="
|
| 325 |
orientation="h",
|
| 326 |
yanchor="bottom",
|
| 327 |
y=0.95,
|
|
@@ -388,26 +388,26 @@ with gr.Blocks(theme=gr.themes.Soft(), title='EpImAge', js=js_func, delete_cache
|
|
| 388 |
data.loc[data.index, cpgs] = data_all.loc[data.index, cpgs]
|
| 389 |
|
| 390 |
# Models' inference
|
| 391 |
-
progress(0.9, desc="
|
| 392 |
for imm in imms:
|
| 393 |
data[f"{imm}_log"] = models_imms[imm].predict(data)
|
| 394 |
-
progress(0.95, desc='
|
| 395 |
-
data['
|
| 396 |
-
data['Age Acceleration'] = data['
|
| 397 |
data.to_pickle(f'{dir_out}/{str(request.session_hash)}/data.pkl')
|
| 398 |
|
| 399 |
-
data_res = data[['Age', '
|
| 400 |
data_res.rename(columns={f"{imm}_log": imm for imm in imms}).to_excel(f'{dir_out}/{str(request.session_hash)}/Result.xlsx', index_label='ID')
|
| 401 |
|
| 402 |
if len(data_res) > 1:
|
| 403 |
-
mae = mean_absolute_error(data['Age'].values, data['
|
| 404 |
-
rho = scipy.stats.pearsonr(data['Age'].values, data['
|
| 405 |
|
| 406 |
# Plot scatter
|
| 407 |
progress(0.98, desc='Plotting scatter')
|
| 408 |
fig = make_subplots(rows=1, cols=2, shared_yaxes=False, shared_xaxes=False, column_widths=[5, 3], horizontal_spacing=0.15)
|
| 409 |
-
min_plot_age = data[["Age", "
|
| 410 |
-
max_plot_age = data[["Age", "
|
| 411 |
shift_plot_age = max_plot_age - min_plot_age
|
| 412 |
min_plot_age -= 0.1 * shift_plot_age
|
| 413 |
max_plot_age += 0.1 * shift_plot_age
|
|
@@ -426,7 +426,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title='EpImAge', js=js_func, delete_cache
|
|
| 426 |
go.Scatter(
|
| 427 |
name='Scatter',
|
| 428 |
x=data.loc[:, 'Age'].values,
|
| 429 |
-
y=data.loc[:, '
|
| 430 |
text=data.index.values,
|
| 431 |
hovertext=data.index.values,
|
| 432 |
showlegend=False,
|
|
@@ -476,7 +476,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title='EpImAge', js=js_func, delete_cache
|
|
| 476 |
row=1,
|
| 477 |
col=1,
|
| 478 |
automargin=True,
|
| 479 |
-
title_text=f"
|
| 480 |
# scaleanchor="x",
|
| 481 |
# scaleratio=1,
|
| 482 |
autorange=False,
|
|
|
|
| 23 |
shutil.rmtree(Path(dir_out))
|
| 24 |
Path(dir_out).mkdir(parents=True, exist_ok=True)
|
| 25 |
|
| 26 |
+
df_imms = pd.read_excel(f"{dir_root}/models/InflammatoryMarkers/InflammatoryMarkers.xlsx", index_col='feature')
|
| 27 |
imms = df_imms.index.values
|
| 28 |
imms_log = [f"{f}_log" for f in imms]
|
| 29 |
+
cpgs = pd.read_excel(f"{dir_root}/models/InflammatoryMarkers/CpGs.xlsx", index_col=0).index.values
|
| 30 |
|
| 31 |
models_imms = {}
|
| 32 |
for imm in (pbar := tqdm(imms)):
|
| 33 |
pbar.set_description(f"Loading model for {imm}")
|
| 34 |
+
models_imms[imm] = TabularModel.load_model(f"{dir_root}/models/InflammatoryMarkers/{imm}")
|
| 35 |
|
| 36 |
+
model_age = TabularModel.load_model(f"{dir_root}/models/EpInflammAge")
|
| 37 |
|
| 38 |
bkgrd_xai = pd.read_pickle(f"{dir_root}/models/background-xai.pkl")
|
| 39 |
bkgrd_imp = pd.read_pickle(f"{dir_root}/models/background-imputation.pkl")
|
|
|
|
| 60 |
|
| 61 |
gr.Markdown(
|
| 62 |
"""
|
| 63 |
+
# EpInflammAge Calculator
|
| 64 |
## Submit epigenetics data
|
| 65 |
"""
|
| 66 |
)
|
|
|
|
| 70 |
gr.Markdown(
|
| 71 |
"""
|
| 72 |
### Instruction
|
| 73 |
+
- Upload your methylation data for 2228 CpGs from [File](https://github.com/GillianGrayson/EpInflammAge/tree/main/data/CpGs.xlsx).
|
| 74 |
- The first column must be a sample ID.
|
| 75 |
- Your data must contain `Age` column for metrics (MAE and Pearson Rho) and Age Acceleration calculation.
|
| 76 |
- Missing values should be `NA` in the corresponding cells.
|
| 77 |
- [Imputation](https://scikit-learn.org/stable/modules/impute.html) of missing values can be performed using KNN, Mean, and Median methods with all methylation data from the [Paper]().
|
| 78 |
+
- Data example for GSE87571: [File](https://github.com/GillianGrayson/EpInflammAge/tree/main/data/examples/GSE87571.xlsx).
|
| 79 |
- Calculations take a few minutes, the plot can be displayed slightly later than the results. If imputation is performed, the calculations will take longer.
|
| 80 |
""",
|
| 81 |
)
|
|
|
|
| 98 |
|
| 99 |
with gr.Row():
|
| 100 |
with gr.Column():
|
| 101 |
+
shap_dropdown = gr.Dropdown(label='Choose a sample to get an explanation of the EpInflammAge prediction', filterable=True, visible=False)
|
| 102 |
shap_button = gr.Button("Get explanation", variant="primary", visible=False)
|
| 103 |
with gr.Row():
|
| 104 |
shap_text_id = gr.Text(label='Sample', visible=False)
|
| 105 |
shap_text_age = gr.Text(label='Age', visible=False)
|
| 106 |
+
shap_text_epimage = gr.Text(label='EpInflammAge', visible=False)
|
| 107 |
shap_markdown_cytokines = gr.Markdown(
|
| 108 |
"""
|
| 109 |
### Most important cytokines:
|
|
|
|
| 189 |
data = pd.read_pickle(f"{dir_out}/{str(request.session_hash)}/data.pkl")
|
| 190 |
trgt_id = input
|
| 191 |
trgt_age = data.at[trgt_id, 'Age']
|
| 192 |
+
trgt_pred = data.at[trgt_id, 'EpInflammAge']
|
| 193 |
trgt_aa = trgt_pred - trgt_age
|
| 194 |
|
| 195 |
n_closest = 200
|
|
|
|
| 210 |
fig = make_subplots(rows=1, cols=2, shared_yaxes=True, shared_xaxes=False, column_widths=[2.5, 1], horizontal_spacing=0.05, row_titles=[''])
|
| 211 |
fig.add_trace(
|
| 212 |
go.Waterfall(
|
| 213 |
+
hovertext=["Chrono Age", "EpInflammAge"],
|
| 214 |
orientation="h",
|
| 215 |
measure=['absolute', 'relative'],
|
| 216 |
y=[-1.5, df_shap.shape[0] + 0.5],
|
|
|
|
| 255 |
automargin=True,
|
| 256 |
tickmode="array",
|
| 257 |
tickvals=[-1.5] + list(range(df_shap.shape[0])) + [df_shap.shape[0] + 0.5],
|
| 258 |
+
ticktext=["Chrono Age"] + df_shap.index.to_list() + ["EpInflammAge"],
|
| 259 |
tickfont=dict(size=16),
|
| 260 |
)
|
| 261 |
fig.update_xaxes(
|
|
|
|
| 321 |
fig.update_layout(barmode="relative")
|
| 322 |
fig.update_layout(
|
| 323 |
legend=dict(
|
| 324 |
+
title=dict(text="Inflammatory Markers disribution<br>in samples with same age", side="top"),
|
| 325 |
orientation="h",
|
| 326 |
yanchor="bottom",
|
| 327 |
y=0.95,
|
|
|
|
| 388 |
data.loc[data.index, cpgs] = data_all.loc[data.index, cpgs]
|
| 389 |
|
| 390 |
# Models' inference
|
| 391 |
+
progress(0.9, desc="Inflammatory models' inference")
|
| 392 |
for imm in imms:
|
| 393 |
data[f"{imm}_log"] = models_imms[imm].predict(data)
|
| 394 |
+
progress(0.95, desc='EpInflammAge model inference')
|
| 395 |
+
data['EpInflammAge'] = model_age.predict(data.loc[:, [f"{imm}_log" for imm in imms]])
|
| 396 |
+
data['Age Acceleration'] = data['EpInflammAge'] - data['Age']
|
| 397 |
data.to_pickle(f'{dir_out}/{str(request.session_hash)}/data.pkl')
|
| 398 |
|
| 399 |
+
data_res = data[['Age', 'EpInflammAge', 'Age Acceleration'] + list(imms_log)]
|
| 400 |
data_res.rename(columns={f"{imm}_log": imm for imm in imms}).to_excel(f'{dir_out}/{str(request.session_hash)}/Result.xlsx', index_label='ID')
|
| 401 |
|
| 402 |
if len(data_res) > 1:
|
| 403 |
+
mae = mean_absolute_error(data['Age'].values, data['EpInflammAge'].values)
|
| 404 |
+
rho = scipy.stats.pearsonr(data['Age'].values, data['EpInflammAge'].values).statistic
|
| 405 |
|
| 406 |
# Plot scatter
|
| 407 |
progress(0.98, desc='Plotting scatter')
|
| 408 |
fig = make_subplots(rows=1, cols=2, shared_yaxes=False, shared_xaxes=False, column_widths=[5, 3], horizontal_spacing=0.15)
|
| 409 |
+
min_plot_age = data[["Age", "EpInflammAge"]].min().min()
|
| 410 |
+
max_plot_age = data[["Age", "EpInflammAge"]].max().max()
|
| 411 |
shift_plot_age = max_plot_age - min_plot_age
|
| 412 |
min_plot_age -= 0.1 * shift_plot_age
|
| 413 |
max_plot_age += 0.1 * shift_plot_age
|
|
|
|
| 426 |
go.Scatter(
|
| 427 |
name='Scatter',
|
| 428 |
x=data.loc[:, 'Age'].values,
|
| 429 |
+
y=data.loc[:, 'EpInflammAge'].values,
|
| 430 |
text=data.index.values,
|
| 431 |
hovertext=data.index.values,
|
| 432 |
showlegend=False,
|
|
|
|
| 476 |
row=1,
|
| 477 |
col=1,
|
| 478 |
automargin=True,
|
| 479 |
+
title_text=f"EpInflammAge",
|
| 480 |
# scaleanchor="x",
|
| 481 |
# scaleratio=1,
|
| 482 |
autorange=False,
|
configs/{immuno-regression β cytokines-regression}/DataConfig.yaml
RENAMED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
-
target: []
|
| 2 |
-
continuous_cols:
|
| 3 |
-
- 'to_replace'
|
| 4 |
-
categorical_cols: []
|
| 5 |
-
date_columns: []
|
| 6 |
-
encode_date_columns: true
|
| 7 |
-
validation_split: 0.25
|
| 8 |
-
continuous_feature_transform: yeo-johnson
|
| 9 |
-
normalize_continuous_features: true
|
| 10 |
-
quantile_noise: 0
|
| 11 |
-
num_workers: 0
|
| 12 |
-
pin_memory: true
|
| 13 |
-
handle_unknown_categories: true
|
| 14 |
handle_missing_values: true
|
|
|
|
| 1 |
+
target: []
|
| 2 |
+
continuous_cols:
|
| 3 |
+
- 'to_replace'
|
| 4 |
+
categorical_cols: []
|
| 5 |
+
date_columns: []
|
| 6 |
+
encode_date_columns: true
|
| 7 |
+
validation_split: 0.25
|
| 8 |
+
continuous_feature_transform: yeo-johnson
|
| 9 |
+
normalize_continuous_features: true
|
| 10 |
+
quantile_noise: 0
|
| 11 |
+
num_workers: 0
|
| 12 |
+
pin_memory: true
|
| 13 |
+
handle_unknown_categories: true
|
| 14 |
handle_missing_values: true
|
configs/{immuno-regression β cytokines-regression}/OptimizerConfig.yaml
RENAMED
|
@@ -1,23 +1,23 @@
|
|
| 1 |
-
optimizer: Adam
|
| 2 |
-
optimizer_params:
|
| 3 |
-
weight_decay: 1e-6
|
| 4 |
-
|
| 5 |
-
lr_scheduler: ReduceLROnPlateau
|
| 6 |
-
lr_scheduler_params:
|
| 7 |
-
mode: min
|
| 8 |
-
factor: 0.1
|
| 9 |
-
patience: 25
|
| 10 |
-
threshold: 1e-4
|
| 11 |
-
|
| 12 |
-
#lr_scheduler: CosineAnnealingWarmRestarts
|
| 13 |
-
#lr_scheduler_params:
|
| 14 |
-
# T_0: 10
|
| 15 |
-
# T_mult: 1
|
| 16 |
-
# eta_min: 1e-5
|
| 17 |
-
|
| 18 |
-
#lr_scheduler: StepLR
|
| 19 |
-
#lr_scheduler_params:
|
| 20 |
-
# step_size: 100
|
| 21 |
-
# gamma: 0.75
|
| 22 |
-
|
| 23 |
lr_scheduler_monitor_metric: valid_loss
|
|
|
|
| 1 |
+
optimizer: Adam
|
| 2 |
+
optimizer_params:
|
| 3 |
+
weight_decay: 1e-6
|
| 4 |
+
|
| 5 |
+
lr_scheduler: ReduceLROnPlateau
|
| 6 |
+
lr_scheduler_params:
|
| 7 |
+
mode: min
|
| 8 |
+
factor: 0.1
|
| 9 |
+
patience: 25
|
| 10 |
+
threshold: 1e-4
|
| 11 |
+
|
| 12 |
+
#lr_scheduler: CosineAnnealingWarmRestarts
|
| 13 |
+
#lr_scheduler_params:
|
| 14 |
+
# T_0: 10
|
| 15 |
+
# T_mult: 1
|
| 16 |
+
# eta_min: 1e-5
|
| 17 |
+
|
| 18 |
+
#lr_scheduler: StepLR
|
| 19 |
+
#lr_scheduler_params:
|
| 20 |
+
# step_size: 100
|
| 21 |
+
# gamma: 0.75
|
| 22 |
+
|
| 23 |
lr_scheduler_monitor_metric: valid_loss
|
configs/{immuno-regression β cytokines-regression}/TrainerConfig.yaml
RENAMED
|
@@ -1,26 +1,26 @@
|
|
| 1 |
-
batch_size: 1024
|
| 2 |
-
fast_dev_run: false
|
| 3 |
-
max_epochs: 1000
|
| 4 |
-
min_epochs: 1
|
| 5 |
-
max_time: null
|
| 6 |
-
accelerator: auto
|
| 7 |
-
devices: -1
|
| 8 |
-
accumulate_grad_batches: 1
|
| 9 |
-
auto_lr_find: true
|
| 10 |
-
check_val_every_n_epoch: 1
|
| 11 |
-
gradient_clip_val: 0.0
|
| 12 |
-
overfit_batches: 0.0
|
| 13 |
-
profiler: null
|
| 14 |
-
early_stopping: valid_loss
|
| 15 |
-
early_stopping_min_delta: 0.000001
|
| 16 |
-
early_stopping_mode: min
|
| 17 |
-
early_stopping_patience: 50
|
| 18 |
-
checkpoints: valid_loss
|
| 19 |
-
checkpoints_path: ""
|
| 20 |
-
checkpoints_every_n_epochs: 5
|
| 21 |
-
checkpoints_mode: min
|
| 22 |
-
checkpoints_save_top_k: 1
|
| 23 |
-
load_best: true
|
| 24 |
-
track_grad_norm: -1
|
| 25 |
-
progress_bar: none
|
| 26 |
-
seed: 1337
|
|
|
|
| 1 |
+
batch_size: 1024
|
| 2 |
+
fast_dev_run: false
|
| 3 |
+
max_epochs: 1000
|
| 4 |
+
min_epochs: 1
|
| 5 |
+
max_time: null
|
| 6 |
+
accelerator: auto
|
| 7 |
+
devices: -1
|
| 8 |
+
accumulate_grad_batches: 1
|
| 9 |
+
auto_lr_find: true
|
| 10 |
+
check_val_every_n_epoch: 1
|
| 11 |
+
gradient_clip_val: 0.0
|
| 12 |
+
overfit_batches: 0.0
|
| 13 |
+
profiler: null
|
| 14 |
+
early_stopping: valid_loss
|
| 15 |
+
early_stopping_min_delta: 0.000001
|
| 16 |
+
early_stopping_mode: min
|
| 17 |
+
early_stopping_patience: 50
|
| 18 |
+
checkpoints: valid_loss
|
| 19 |
+
checkpoints_path: ""
|
| 20 |
+
checkpoints_every_n_epochs: 5
|
| 21 |
+
checkpoints_mode: min
|
| 22 |
+
checkpoints_save_top_k: 1
|
| 23 |
+
load_best: true
|
| 24 |
+
track_grad_norm: -1
|
| 25 |
+
progress_bar: none
|
| 26 |
+
seed: 1337
|
configs/{immuno-regression β cytokines-regression}/models/CategoryEmbeddingModelConfig.yaml
RENAMED
|
@@ -1,26 +1,26 @@
|
|
| 1 |
-
_module_src: models.category_embedding
|
| 2 |
-
_model_name: CategoryEmbeddingModel
|
| 3 |
-
_backbone_name: CategoryEmbeddingBackbone
|
| 4 |
-
_config_name: CategoryEmbeddingModelConfig
|
| 5 |
-
|
| 6 |
-
task: regression
|
| 7 |
-
head: LinearHead
|
| 8 |
-
head_config:
|
| 9 |
-
layers: ""
|
| 10 |
-
activation: ReLU
|
| 11 |
-
dropout: 0.1
|
| 12 |
-
use_batch_norm: false
|
| 13 |
-
initialization: xavier
|
| 14 |
-
learning_rate: 1e-3
|
| 15 |
-
loss: L1Loss
|
| 16 |
-
metrics:
|
| 17 |
-
- mean_absolute_error
|
| 18 |
-
- pearson_corrcoef
|
| 19 |
-
target_range: null
|
| 20 |
-
seed: 1337
|
| 21 |
-
|
| 22 |
-
layers: "256-128-64"
|
| 23 |
-
activation: ReLU
|
| 24 |
-
use_batch_norm: false
|
| 25 |
-
initialization: xavier
|
| 26 |
-
dropout: 0.1
|
|
|
|
| 1 |
+
_module_src: models.category_embedding
|
| 2 |
+
_model_name: CategoryEmbeddingModel
|
| 3 |
+
_backbone_name: CategoryEmbeddingBackbone
|
| 4 |
+
_config_name: CategoryEmbeddingModelConfig
|
| 5 |
+
|
| 6 |
+
task: regression
|
| 7 |
+
head: LinearHead
|
| 8 |
+
head_config:
|
| 9 |
+
layers: ""
|
| 10 |
+
activation: ReLU
|
| 11 |
+
dropout: 0.1
|
| 12 |
+
use_batch_norm: false
|
| 13 |
+
initialization: xavier
|
| 14 |
+
learning_rate: 1e-3
|
| 15 |
+
loss: L1Loss
|
| 16 |
+
metrics:
|
| 17 |
+
- mean_absolute_error
|
| 18 |
+
- pearson_corrcoef
|
| 19 |
+
target_range: null
|
| 20 |
+
seed: 1337
|
| 21 |
+
|
| 22 |
+
layers: "256-128-64"
|
| 23 |
+
activation: ReLU
|
| 24 |
+
use_batch_norm: false
|
| 25 |
+
initialization: xavier
|
| 26 |
+
dropout: 0.1
|
configs/{immuno-regression β cytokines-regression}/models/DANetConfig.yaml
RENAMED
|
@@ -1,26 +1,26 @@
|
|
| 1 |
-
_module_src: models.danet
|
| 2 |
-
_model_name: DANetModel
|
| 3 |
-
_backbone_name: DANetBackbone
|
| 4 |
-
_config_name: DANetConfig
|
| 5 |
-
|
| 6 |
-
task: regression
|
| 7 |
-
head: LinearHead
|
| 8 |
-
head_config:
|
| 9 |
-
layers: ""
|
| 10 |
-
activation: ReLU
|
| 11 |
-
dropout: 0.1
|
| 12 |
-
use_batch_norm: false
|
| 13 |
-
initialization: xavier
|
| 14 |
-
learning_rate: 1e-3
|
| 15 |
-
loss: L1Loss
|
| 16 |
-
metrics:
|
| 17 |
-
- mean_absolute_error
|
| 18 |
-
- pearson_corrcoef
|
| 19 |
-
target_range: null
|
| 20 |
-
seed: 1337
|
| 21 |
-
|
| 22 |
-
n_layers: 8
|
| 23 |
-
abstlay_dim_1: 32
|
| 24 |
-
abstlay_dim_2: null
|
| 25 |
-
k: 5
|
| 26 |
-
dropout_rate: 0.1
|
|
|
|
| 1 |
+
_module_src: models.danet
|
| 2 |
+
_model_name: DANetModel
|
| 3 |
+
_backbone_name: DANetBackbone
|
| 4 |
+
_config_name: DANetConfig
|
| 5 |
+
|
| 6 |
+
task: regression
|
| 7 |
+
head: LinearHead
|
| 8 |
+
head_config:
|
| 9 |
+
layers: ""
|
| 10 |
+
activation: ReLU
|
| 11 |
+
dropout: 0.1
|
| 12 |
+
use_batch_norm: false
|
| 13 |
+
initialization: xavier
|
| 14 |
+
learning_rate: 1e-3
|
| 15 |
+
loss: L1Loss
|
| 16 |
+
metrics:
|
| 17 |
+
- mean_absolute_error
|
| 18 |
+
- pearson_corrcoef
|
| 19 |
+
target_range: null
|
| 20 |
+
seed: 1337
|
| 21 |
+
|
| 22 |
+
n_layers: 8
|
| 23 |
+
abstlay_dim_1: 32
|
| 24 |
+
abstlay_dim_2: null
|
| 25 |
+
k: 5
|
| 26 |
+
dropout_rate: 0.1
|
configs/{immuno-regression β cytokines-regression}/models/FTTransformerConfig.yaml
RENAMED
|
@@ -1,29 +1,29 @@
|
|
| 1 |
-
_module_src: models.ft_transformer
|
| 2 |
-
_model_name: FTTransformerModel
|
| 3 |
-
_backbone_name: FTTransformerBackbone
|
| 4 |
-
_config_name: FTTransformerConfig
|
| 5 |
-
|
| 6 |
-
task: regression
|
| 7 |
-
head: LinearHead
|
| 8 |
-
head_config:
|
| 9 |
-
layers: ""
|
| 10 |
-
activation: ReLU
|
| 11 |
-
dropout: 0.1
|
| 12 |
-
use_batch_norm: false
|
| 13 |
-
initialization: xavier
|
| 14 |
-
learning_rate: 1e-3
|
| 15 |
-
loss: L1Loss
|
| 16 |
-
metrics:
|
| 17 |
-
- mean_absolute_error
|
| 18 |
-
- pearson_corrcoef
|
| 19 |
-
target_range: null
|
| 20 |
-
seed: 1337
|
| 21 |
-
|
| 22 |
-
attn_feature_importance: false
|
| 23 |
-
num_heads: 8
|
| 24 |
-
num_attn_blocks: 6
|
| 25 |
-
attn_dropout: 0.1
|
| 26 |
-
add_norm_dropout: 0.1
|
| 27 |
-
ff_dropout: 0.1
|
| 28 |
-
ff_hidden_multiplier: 4
|
| 29 |
transformer_activation: GEGLU
|
|
|
|
| 1 |
+
_module_src: models.ft_transformer
|
| 2 |
+
_model_name: FTTransformerModel
|
| 3 |
+
_backbone_name: FTTransformerBackbone
|
| 4 |
+
_config_name: FTTransformerConfig
|
| 5 |
+
|
| 6 |
+
task: regression
|
| 7 |
+
head: LinearHead
|
| 8 |
+
head_config:
|
| 9 |
+
layers: ""
|
| 10 |
+
activation: ReLU
|
| 11 |
+
dropout: 0.1
|
| 12 |
+
use_batch_norm: false
|
| 13 |
+
initialization: xavier
|
| 14 |
+
learning_rate: 1e-3
|
| 15 |
+
loss: L1Loss
|
| 16 |
+
metrics:
|
| 17 |
+
- mean_absolute_error
|
| 18 |
+
- pearson_corrcoef
|
| 19 |
+
target_range: null
|
| 20 |
+
seed: 1337
|
| 21 |
+
|
| 22 |
+
attn_feature_importance: false
|
| 23 |
+
num_heads: 8
|
| 24 |
+
num_attn_blocks: 6
|
| 25 |
+
attn_dropout: 0.1
|
| 26 |
+
add_norm_dropout: 0.1
|
| 27 |
+
ff_dropout: 0.1
|
| 28 |
+
ff_hidden_multiplier: 4
|
| 29 |
transformer_activation: GEGLU
|
configs/{immuno-regression β cytokines-regression}/models/GANDALFConfig.yaml
RENAMED
|
@@ -1,24 +1,24 @@
|
|
| 1 |
-
_module_src: models.gandalf
|
| 2 |
-
_model_name: GANDALFModel
|
| 3 |
-
_backbone_name: GANDALFBackbone
|
| 4 |
-
_config_name: GANDALFConfig
|
| 5 |
-
|
| 6 |
-
task: regression
|
| 7 |
-
head: LinearHead
|
| 8 |
-
head_config:
|
| 9 |
-
layers: ""
|
| 10 |
-
activation: ReLU
|
| 11 |
-
dropout: 0.1
|
| 12 |
-
use_batch_norm: false
|
| 13 |
-
initialization: xavier
|
| 14 |
-
learning_rate: 1e-3
|
| 15 |
-
loss: L1Loss
|
| 16 |
-
metrics:
|
| 17 |
-
- mean_absolute_error
|
| 18 |
-
- pearson_corrcoef
|
| 19 |
-
target_range: null
|
| 20 |
-
seed: 1337
|
| 21 |
-
|
| 22 |
-
gflu_stages: 6
|
| 23 |
-
gflu_dropout: 0.0
|
| 24 |
-
gflu_feature_init_sparsity: 0.3
|
|
|
|
| 1 |
+
_module_src: models.gandalf
|
| 2 |
+
_model_name: GANDALFModel
|
| 3 |
+
_backbone_name: GANDALFBackbone
|
| 4 |
+
_config_name: GANDALFConfig
|
| 5 |
+
|
| 6 |
+
task: regression
|
| 7 |
+
head: LinearHead
|
| 8 |
+
head_config:
|
| 9 |
+
layers: ""
|
| 10 |
+
activation: ReLU
|
| 11 |
+
dropout: 0.1
|
| 12 |
+
use_batch_norm: false
|
| 13 |
+
initialization: xavier
|
| 14 |
+
learning_rate: 1e-3
|
| 15 |
+
loss: L1Loss
|
| 16 |
+
metrics:
|
| 17 |
+
- mean_absolute_error
|
| 18 |
+
- pearson_corrcoef
|
| 19 |
+
target_range: null
|
| 20 |
+
seed: 1337
|
| 21 |
+
|
| 22 |
+
gflu_stages: 6
|
| 23 |
+
gflu_dropout: 0.0
|
| 24 |
+
gflu_feature_init_sparsity: 0.3
|
configs/{immuno-regression β cytokines-regression}/models/TabNetModelConfig.yaml
RENAMED
|
@@ -1,29 +1,29 @@
|
|
| 1 |
-
_module_src: models.tabnet
|
| 2 |
-
_model_name: TabNetModel
|
| 3 |
-
_backbone_name: TabNetBackbone
|
| 4 |
-
_config_name: TabNetModelConfig
|
| 5 |
-
|
| 6 |
-
task: regression
|
| 7 |
-
head: LinearHead
|
| 8 |
-
head_config:
|
| 9 |
-
layers: ""
|
| 10 |
-
activation: ReLU
|
| 11 |
-
dropout: 0.1
|
| 12 |
-
use_batch_norm: false
|
| 13 |
-
initialization: xavier
|
| 14 |
-
learning_rate: 1e-3
|
| 15 |
-
loss: L1Loss
|
| 16 |
-
metrics:
|
| 17 |
-
- mean_absolute_error
|
| 18 |
-
- pearson_corrcoef
|
| 19 |
-
target_range: null
|
| 20 |
-
seed: 1337
|
| 21 |
-
|
| 22 |
-
n_d: 8
|
| 23 |
-
n_a: 8
|
| 24 |
-
n_steps: 3
|
| 25 |
-
gamma: 1.3
|
| 26 |
-
n_independent: 2
|
| 27 |
-
n_shared: 2
|
| 28 |
-
virtual_batch_size: 512
|
| 29 |
mask_type: sparsemax
|
|
|
|
| 1 |
+
_module_src: models.tabnet
|
| 2 |
+
_model_name: TabNetModel
|
| 3 |
+
_backbone_name: TabNetBackbone
|
| 4 |
+
_config_name: TabNetModelConfig
|
| 5 |
+
|
| 6 |
+
task: regression
|
| 7 |
+
head: LinearHead
|
| 8 |
+
head_config:
|
| 9 |
+
layers: ""
|
| 10 |
+
activation: ReLU
|
| 11 |
+
dropout: 0.1
|
| 12 |
+
use_batch_norm: false
|
| 13 |
+
initialization: xavier
|
| 14 |
+
learning_rate: 1e-3
|
| 15 |
+
loss: L1Loss
|
| 16 |
+
metrics:
|
| 17 |
+
- mean_absolute_error
|
| 18 |
+
- pearson_corrcoef
|
| 19 |
+
target_range: null
|
| 20 |
+
seed: 1337
|
| 21 |
+
|
| 22 |
+
n_d: 8
|
| 23 |
+
n_a: 8
|
| 24 |
+
n_steps: 3
|
| 25 |
+
gamma: 1.3
|
| 26 |
+
n_independent: 2
|
| 27 |
+
n_shared: 2
|
| 28 |
+
virtual_batch_size: 512
|
| 29 |
mask_type: sparsemax
|
models/EpImAge/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/{EpImAge β EpInflammAge}/config.yml
RENAMED
|
@@ -1,118 +1,118 @@
|
|
| 1 |
-
target:
|
| 2 |
-
- Age
|
| 3 |
-
continuous_cols:
|
| 4 |
-
- CXCL9_log
|
| 5 |
-
- CCL11_log
|
| 6 |
-
- IL27_log
|
| 7 |
-
- IL5_log
|
| 8 |
-
- CSF1_log
|
| 9 |
-
- CCL2_log
|
| 10 |
-
- IL1B_log
|
| 11 |
-
- IL6_log
|
| 12 |
-
- GCSF_log
|
| 13 |
-
- CXCL10_log
|
| 14 |
-
- VEGFA_log
|
| 15 |
-
- TNF_log
|
| 16 |
-
- PDGFB_log
|
| 17 |
-
- IL8_log
|
| 18 |
-
- PDGFA_log
|
| 19 |
-
- IL12Bp40_log
|
| 20 |
-
- IL15_log
|
| 21 |
-
- CXCL1_log
|
| 22 |
-
- CCL4_log
|
| 23 |
-
- IFNA2_log
|
| 24 |
-
- IL13_log
|
| 25 |
-
- FLT3L_log
|
| 26 |
-
- CD40LG_log
|
| 27 |
-
- CCL22_log
|
| 28 |
-
categorical_cols: []
|
| 29 |
-
date_columns: []
|
| 30 |
-
encode_date_columns: true
|
| 31 |
-
validation_split: 0.25
|
| 32 |
-
continuous_feature_transform: yeo-johnson
|
| 33 |
-
normalize_continuous_features: true
|
| 34 |
-
quantile_noise: 0
|
| 35 |
-
num_workers: 0
|
| 36 |
-
pin_memory: true
|
| 37 |
-
handle_unknown_categories: true
|
| 38 |
-
handle_missing_values: true
|
| 39 |
-
task: regression
|
| 40 |
-
head: LinearHead
|
| 41 |
-
head_config:
|
| 42 |
-
layers: ''
|
| 43 |
-
activation: ReLU
|
| 44 |
-
dropout: 0.23377289048411876
|
| 45 |
-
use_batch_norm: false
|
| 46 |
-
initialization: xavier
|
| 47 |
-
embedding_dims: null
|
| 48 |
-
embedding_dropout: 0.0
|
| 49 |
-
batch_norm_continuous_input: true
|
| 50 |
-
learning_rate: 0.029204372085555506
|
| 51 |
-
loss: L1Loss
|
| 52 |
-
metrics:
|
| 53 |
-
- mean_absolute_error
|
| 54 |
-
- pearson_corrcoef
|
| 55 |
-
metrics_prob_input:
|
| 56 |
-
- false
|
| 57 |
-
- false
|
| 58 |
-
metrics_params:
|
| 59 |
-
- {}
|
| 60 |
-
- {}
|
| 61 |
-
target_range: null
|
| 62 |
-
virtual_batch_size: 256
|
| 63 |
-
seed: 1984
|
| 64 |
-
_module_src: models.danet
|
| 65 |
-
_model_name: DANetModel
|
| 66 |
-
_backbone_name: DANetBackbone
|
| 67 |
-
_config_name: DANetConfig
|
| 68 |
-
n_layers: 28
|
| 69 |
-
abstlay_dim_1: 8
|
| 70 |
-
abstlay_dim_2: 64
|
| 71 |
-
k: 2
|
| 72 |
-
dropout_rate: 0.2320482225690916
|
| 73 |
-
block_activation: LeakyReLU
|
| 74 |
-
batch_size: 1024
|
| 75 |
-
data_aware_init_batch_size: 2000
|
| 76 |
-
fast_dev_run: false
|
| 77 |
-
max_epochs: 256
|
| 78 |
-
min_epochs: 1
|
| 79 |
-
max_time: null
|
| 80 |
-
accelerator: auto
|
| 81 |
-
devices: -1
|
| 82 |
-
devices_list: null
|
| 83 |
-
accumulate_grad_batches: 1
|
| 84 |
-
auto_lr_find: false
|
| 85 |
-
auto_select_gpus: true
|
| 86 |
-
check_val_every_n_epoch: 1
|
| 87 |
-
gradient_clip_val: 0.0
|
| 88 |
-
overfit_batches: 0.0
|
| 89 |
-
deterministic: false
|
| 90 |
-
profiler: null
|
| 91 |
-
early_stopping: valid_loss
|
| 92 |
-
early_stopping_min_delta: 0.001
|
| 93 |
-
early_stopping_mode: min
|
| 94 |
-
early_stopping_patience: 20
|
| 95 |
-
early_stopping_kwargs: {}
|
| 96 |
-
checkpoints: valid_loss
|
| 97 |
-
checkpoints_path: D:/YandexDisk/Work/bbd/immunology/003_EpImAge/imp_source(imm)_method(knn)_params(5)/no_harm/mrmr_100/EpImAge/pytorch_tabular
|
| 98 |
-
checkpoints_every_n_epochs: 1
|
| 99 |
-
checkpoints_name: null
|
| 100 |
-
checkpoints_mode: min
|
| 101 |
-
checkpoints_save_top_k: 1
|
| 102 |
-
checkpoints_kwargs: {}
|
| 103 |
-
load_best: true
|
| 104 |
-
track_grad_norm: -1
|
| 105 |
-
progress_bar: none
|
| 106 |
-
precision: 32
|
| 107 |
-
trainer_kwargs: {}
|
| 108 |
-
optimizer: Adam
|
| 109 |
-
optimizer_params:
|
| 110 |
-
weight_decay: 2.149173764897728e-08
|
| 111 |
-
lr_scheduler: ReduceLROnPlateau
|
| 112 |
-
lr_scheduler_params:
|
| 113 |
-
mode: min
|
| 114 |
-
factor: 0.7071915700100401
|
| 115 |
-
patience: 10
|
| 116 |
-
threshold: 0.0001
|
| 117 |
-
lr_scheduler_monitor_metric: valid_loss
|
| 118 |
-
enable_checkpointing: true
|
|
|
|
| 1 |
+
target:
|
| 2 |
+
- Age
|
| 3 |
+
continuous_cols:
|
| 4 |
+
- CXCL9_log
|
| 5 |
+
- CCL11_log
|
| 6 |
+
- IL27_log
|
| 7 |
+
- IL5_log
|
| 8 |
+
- CSF1_log
|
| 9 |
+
- CCL2_log
|
| 10 |
+
- IL1B_log
|
| 11 |
+
- IL6_log
|
| 12 |
+
- GCSF_log
|
| 13 |
+
- CXCL10_log
|
| 14 |
+
- VEGFA_log
|
| 15 |
+
- TNF_log
|
| 16 |
+
- PDGFB_log
|
| 17 |
+
- IL8_log
|
| 18 |
+
- PDGFA_log
|
| 19 |
+
- IL12Bp40_log
|
| 20 |
+
- IL15_log
|
| 21 |
+
- CXCL1_log
|
| 22 |
+
- CCL4_log
|
| 23 |
+
- IFNA2_log
|
| 24 |
+
- IL13_log
|
| 25 |
+
- FLT3L_log
|
| 26 |
+
- CD40LG_log
|
| 27 |
+
- CCL22_log
|
| 28 |
+
categorical_cols: []
|
| 29 |
+
date_columns: []
|
| 30 |
+
encode_date_columns: true
|
| 31 |
+
validation_split: 0.25
|
| 32 |
+
continuous_feature_transform: yeo-johnson
|
| 33 |
+
normalize_continuous_features: true
|
| 34 |
+
quantile_noise: 0
|
| 35 |
+
num_workers: 0
|
| 36 |
+
pin_memory: true
|
| 37 |
+
handle_unknown_categories: true
|
| 38 |
+
handle_missing_values: true
|
| 39 |
+
task: regression
|
| 40 |
+
head: LinearHead
|
| 41 |
+
head_config:
|
| 42 |
+
layers: ''
|
| 43 |
+
activation: ReLU
|
| 44 |
+
dropout: 0.23377289048411876
|
| 45 |
+
use_batch_norm: false
|
| 46 |
+
initialization: xavier
|
| 47 |
+
embedding_dims: null
|
| 48 |
+
embedding_dropout: 0.0
|
| 49 |
+
batch_norm_continuous_input: true
|
| 50 |
+
learning_rate: 0.029204372085555506
|
| 51 |
+
loss: L1Loss
|
| 52 |
+
metrics:
|
| 53 |
+
- mean_absolute_error
|
| 54 |
+
- pearson_corrcoef
|
| 55 |
+
metrics_prob_input:
|
| 56 |
+
- false
|
| 57 |
+
- false
|
| 58 |
+
metrics_params:
|
| 59 |
+
- {}
|
| 60 |
+
- {}
|
| 61 |
+
target_range: null
|
| 62 |
+
virtual_batch_size: 256
|
| 63 |
+
seed: 1984
|
| 64 |
+
_module_src: models.danet
|
| 65 |
+
_model_name: DANetModel
|
| 66 |
+
_backbone_name: DANetBackbone
|
| 67 |
+
_config_name: DANetConfig
|
| 68 |
+
n_layers: 28
|
| 69 |
+
abstlay_dim_1: 8
|
| 70 |
+
abstlay_dim_2: 64
|
| 71 |
+
k: 2
|
| 72 |
+
dropout_rate: 0.2320482225690916
|
| 73 |
+
block_activation: LeakyReLU
|
| 74 |
+
batch_size: 1024
|
| 75 |
+
data_aware_init_batch_size: 2000
|
| 76 |
+
fast_dev_run: false
|
| 77 |
+
max_epochs: 256
|
| 78 |
+
min_epochs: 1
|
| 79 |
+
max_time: null
|
| 80 |
+
accelerator: auto
|
| 81 |
+
devices: -1
|
| 82 |
+
devices_list: null
|
| 83 |
+
accumulate_grad_batches: 1
|
| 84 |
+
auto_lr_find: false
|
| 85 |
+
auto_select_gpus: true
|
| 86 |
+
check_val_every_n_epoch: 1
|
| 87 |
+
gradient_clip_val: 0.0
|
| 88 |
+
overfit_batches: 0.0
|
| 89 |
+
deterministic: false
|
| 90 |
+
profiler: null
|
| 91 |
+
early_stopping: valid_loss
|
| 92 |
+
early_stopping_min_delta: 0.001
|
| 93 |
+
early_stopping_mode: min
|
| 94 |
+
early_stopping_patience: 20
|
| 95 |
+
early_stopping_kwargs: {}
|
| 96 |
+
checkpoints: valid_loss
|
| 97 |
+
checkpoints_path: D:/YandexDisk/Work/bbd/immunology/003_EpImAge/imp_source(imm)_method(knn)_params(5)/no_harm/mrmr_100/EpImAge/pytorch_tabular
|
| 98 |
+
checkpoints_every_n_epochs: 1
|
| 99 |
+
checkpoints_name: null
|
| 100 |
+
checkpoints_mode: min
|
| 101 |
+
checkpoints_save_top_k: 1
|
| 102 |
+
checkpoints_kwargs: {}
|
| 103 |
+
load_best: true
|
| 104 |
+
track_grad_norm: -1
|
| 105 |
+
progress_bar: none
|
| 106 |
+
precision: 32
|
| 107 |
+
trainer_kwargs: {}
|
| 108 |
+
optimizer: Adam
|
| 109 |
+
optimizer_params:
|
| 110 |
+
weight_decay: 2.149173764897728e-08
|
| 111 |
+
lr_scheduler: ReduceLROnPlateau
|
| 112 |
+
lr_scheduler_params:
|
| 113 |
+
mode: min
|
| 114 |
+
factor: 0.7071915700100401
|
| 115 |
+
patience: 10
|
| 116 |
+
threshold: 0.0001
|
| 117 |
+
lr_scheduler_monitor_metric: valid_loss
|
| 118 |
+
enable_checkpointing: true
|
models/EpInflammAge/custom_params.sav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e66e47b6f4047b2a3a2b3581ff778d82b6d9a193030ba322fd3a47baf67c0655
|
| 3 |
+
size 127
|
models/{EpImAge β EpInflammAge}/datamodule.sav
RENAMED
|
File without changes
|
models/{EpImAge β EpInflammAge}/model.ckpt
RENAMED
|
File without changes
|
models/Immunomarkers/CCL11/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CCL11/datamodule.sav
DELETED
|
Binary file (131 kB)
|
|
|
models/Immunomarkers/CCL2/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CCL2/datamodule.sav
DELETED
|
Binary file (132 kB)
|
|
|
models/Immunomarkers/CCL22/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CCL22/datamodule.sav
DELETED
|
Binary file (132 kB)
|
|
|
models/Immunomarkers/CCL3/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CCL3/datamodule.sav
DELETED
|
Binary file (131 kB)
|
|
|
models/Immunomarkers/CCL4/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CCL4/datamodule.sav
DELETED
|
Binary file (131 kB)
|
|
|
models/Immunomarkers/CCL7/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CCL7/datamodule.sav
DELETED
|
Binary file (131 kB)
|
|
|
models/Immunomarkers/CD40LG/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CD40LG/datamodule.sav
DELETED
|
Binary file (131 kB)
|
|
|
models/Immunomarkers/CSF1/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CSF1/datamodule.sav
DELETED
|
Binary file (131 kB)
|
|
|
models/Immunomarkers/CX3CL1/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CX3CL1/datamodule.sav
DELETED
|
Binary file (131 kB)
|
|
|
models/Immunomarkers/CXCL1/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CXCL1/datamodule.sav
DELETED
|
Binary file (131 kB)
|
|
|
models/Immunomarkers/CXCL10/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CXCL10/datamodule.sav
DELETED
|
Binary file (132 kB)
|
|
|
models/Immunomarkers/CXCL9/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/CXCL9/datamodule.sav
DELETED
|
Binary file (132 kB)
|
|
|
models/Immunomarkers/FLT3L/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/FLT3L/datamodule.sav
DELETED
|
Binary file (132 kB)
|
|
|
models/Immunomarkers/GCSF/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/GCSF/datamodule.sav
DELETED
|
Binary file (131 kB)
|
|
|
models/Immunomarkers/IFNA2/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/IFNA2/datamodule.sav
DELETED
|
Binary file (132 kB)
|
|
|
models/Immunomarkers/IL12Bp40/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/IL12Bp40/datamodule.sav
DELETED
|
Binary file (132 kB)
|
|
|
models/Immunomarkers/IL13/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|
models/Immunomarkers/IL13/datamodule.sav
DELETED
|
Binary file (132 kB)
|
|
|
models/Immunomarkers/IL15/custom_params.sav
DELETED
|
Binary file (127 Bytes)
|
|
|