|
import streamlit as st |
|
import pandas as pd |
|
from pymongo import MongoClient |
|
from dependency import load_db |
|
import os |
|
|
|
|
|
client = load_db() |
|
db = client["chat_support"] |
|
faq_collection = db["faq"] |
|
|
|
|
|
faq_data = pd.DataFrame(list(faq_collection.find())) |
|
|
|
st.title("Frequently Asked Questions") |
|
|
|
|
|
search_term = st.text_input("Search FAQs", "") |
|
if search_term: |
|
filtered_data = faq_data[faq_data['questions'].apply(lambda x: any(search_term.lower() in q.lower() for q in x))] |
|
else: |
|
filtered_data = faq_data |
|
|
|
st.write(f'filtered {len(filtered_data)} out of {len(faq_data)}') |
|
|
|
|
|
for _, row in filtered_data.iterrows(): |
|
with st.expander(row['title']): |
|
|
|
|
|
|
|
st.write(f"\n**Answer:**") |
|
st.write(row['answer']) |