Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
4 |
+
from flores import code_mapping
|
5 |
+
import platform
|
6 |
+
|
7 |
+
device = "cpu" if platform.system() == "Darwin" else "cuda"
|
8 |
+
MODEL_NAME = "facebook/nllb-200-distilled-600M"
|
9 |
+
|
10 |
+
code_mapping = dict(sorted(code_mapping.items(), key=lambda item: item[1]))
|
11 |
+
flores_codes = list(code_mapping.keys())
|
12 |
+
|
13 |
+
|
14 |
+
def load_model():
|
15 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME).to(device)
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
17 |
+
return model, tokenizer
|
18 |
+
|
19 |
+
|
20 |
+
model, tokenizer = load_model()
|
21 |
+
|
22 |
+
|
23 |
+
@spaces.GPU
|
24 |
+
def translate(text: str, src_lang: str, tgt_lang: str):
|
25 |
+
source = code_mapping[src_lang]
|
26 |
+
target = code_mapping[tgt_lang]
|
27 |
+
translator = pipeline(
|
28 |
+
"translation",
|
29 |
+
model=model,
|
30 |
+
tokenizer=tokenizer,
|
31 |
+
src_lang=source,
|
32 |
+
tgt_lang=target,
|
33 |
+
device=device,
|
34 |
+
)
|
35 |
+
output = translator(text, max_length=400)
|
36 |
+
return output[0]["translation_text"]
|
37 |
+
|
38 |
+
|
39 |
+
description = """
|
40 |
+
No Language Left Behind (NLLB) is a series of open-source models aiming to provide high-quality translations between 200 language."""
|
41 |
+
|
42 |
+
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
gr.Markdown("# No Language Left Behind (NLLB) Translation Demo")
|
45 |
+
gr.Markdown(description)
|
46 |
+
with gr.Row():
|
47 |
+
src_lang = gr.Dropdown(label="Source Language", choices=flores_codes)
|
48 |
+
target_lang = gr.Dropdown(label="Target Language", choices=flores_codes)
|
49 |
+
with gr.Row():
|
50 |
+
input_text = gr.Textbox(label="Input Text", lines=6)
|
51 |
+
with gr.Row():
|
52 |
+
btn = gr.Button("Translate text")
|
53 |
+
with gr.Row():
|
54 |
+
output = gr.Textbox(label="Output Text", lines=6)
|
55 |
+
btn.click(
|
56 |
+
translate,
|
57 |
+
inputs=[input_text, src_lang, target_lang],
|
58 |
+
outputs=output,
|
59 |
+
)
|
60 |
+
demo.launch()
|