elmadany commited on
Commit
c448099
·
verified ·
1 Parent(s): 1a63bbf

Create get_embedding_function.py

Browse files
Files changed (1) hide show
  1. get_embedding_function.py +20 -0
get_embedding_function.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sentence_transformers import SentenceTransformer
2
+
3
+ def get_embedding_function():
4
+ # Load the local embedding model
5
+ model = SentenceTransformer('all-MiniLM-L6-v2') # You can choose another model from Hugging Face
6
+
7
+ # Create an embedding function with `embed_documents` and `embed_query`
8
+ class EmbeddingsWrapper:
9
+ def embed_documents(self, texts):
10
+ """Embed a list of documents (texts)."""
11
+ embeddings = model.encode(texts, convert_to_tensor=False)
12
+ # Convert to list to avoid ambiguity with array truth values
13
+ return [embedding.tolist() if hasattr(embedding, "tolist") else embedding for embedding in embeddings]
14
+
15
+ def embed_query(self, text):
16
+ """Embed a single query."""
17
+ embedding = model.encode([text], convert_to_tensor=False)[0]
18
+ return embedding.tolist() if hasattr(embedding, "tolist") else embedding
19
+
20
+ return EmbeddingsWrapper()