Spaces:
Sleeping
Sleeping
Create get_embedding_function.py
Browse files- get_embedding_function.py +20 -0
get_embedding_function.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sentence_transformers import SentenceTransformer
|
| 2 |
+
|
| 3 |
+
def get_embedding_function():
|
| 4 |
+
# Load the local embedding model
|
| 5 |
+
model = SentenceTransformer('all-MiniLM-L6-v2') # You can choose another model from Hugging Face
|
| 6 |
+
|
| 7 |
+
# Create an embedding function with `embed_documents` and `embed_query`
|
| 8 |
+
class EmbeddingsWrapper:
|
| 9 |
+
def embed_documents(self, texts):
|
| 10 |
+
"""Embed a list of documents (texts)."""
|
| 11 |
+
embeddings = model.encode(texts, convert_to_tensor=False)
|
| 12 |
+
# Convert to list to avoid ambiguity with array truth values
|
| 13 |
+
return [embedding.tolist() if hasattr(embedding, "tolist") else embedding for embedding in embeddings]
|
| 14 |
+
|
| 15 |
+
def embed_query(self, text):
|
| 16 |
+
"""Embed a single query."""
|
| 17 |
+
embedding = model.encode([text], convert_to_tensor=False)[0]
|
| 18 |
+
return embedding.tolist() if hasattr(embedding, "tolist") else embedding
|
| 19 |
+
|
| 20 |
+
return EmbeddingsWrapper()
|