|
|
|
|
|
"""keyword_extraction""" |
|
|
|
|
|
import requests |
|
|
import jieba |
|
|
from keybert import KeyBERT |
|
|
from sklearn.feature_extraction.text import CountVectorizer |
|
|
import streamlit as st |
|
|
import matplotlib.pyplot as plt |
|
|
from matplotlib.font_manager import FontProperties |
|
|
|
|
|
|
|
|
def download_font(url, save_path): |
|
|
response = requests.get(url) |
|
|
with open(save_path, 'wb') as f: |
|
|
f.write(response.content) |
|
|
|
|
|
|
|
|
font_url = 'https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_&export=download' |
|
|
font_path = 'TaipeiSansTCBeta-Regular.ttf' |
|
|
|
|
|
|
|
|
download_font(font_url, font_path) |
|
|
|
|
|
|
|
|
font_prop = FontProperties(fname=font_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def jieba_tokenizer(text): |
|
|
return jieba.lcut(text) |
|
|
|
|
|
|
|
|
vectorizer = CountVectorizer(tokenizer=jieba_tokenizer) |
|
|
kw_model = KeyBERT() |
|
|
|
|
|
|
|
|
def extract_keywords(doc): |
|
|
keywords = kw_model.extract_keywords(doc, vectorizer=vectorizer) |
|
|
return keywords |
|
|
|
|
|
|
|
|
def plot_keywords(keywords, title): |
|
|
words = [kw[0] for kw in keywords] |
|
|
scores = [kw[1] for kw in keywords] |
|
|
|
|
|
plt.figure(figsize=(10, 6)) |
|
|
plt.barh(words, scores, color='skyblue') |
|
|
plt.xlabel('分數', fontproperties=font_prop) |
|
|
plt.title(title, fontproperties=font_prop) |
|
|
plt.gca().invert_yaxis() |
|
|
plt.xticks(fontproperties=font_prop) |
|
|
plt.yticks(fontproperties=font_prop) |
|
|
st.pyplot(plt) |
|
|
|
|
|
|
|
|
st.title("中文關鍵詞提取工具") |
|
|
doc = st.text_area("請輸入文章:") |
|
|
|
|
|
if st.button("提取關鍵詞"): |
|
|
if doc: |
|
|
keywords = extract_keywords(doc) |
|
|
st.write("關鍵詞提取結果:") |
|
|
for keyword in keywords: |
|
|
st.write(f"{keyword[0]}: {keyword[1]:.4f}") |
|
|
|
|
|
plot_keywords(keywords, "關鍵詞提取結果") |
|
|
|
|
|
|
|
|
kw_model_multilingual = KeyBERT(model='distiluse-base-multilingual-cased-v1') |
|
|
keywords_multilingual = kw_model_multilingual.extract_keywords(doc, vectorizer=vectorizer) |
|
|
st.write("多語言模型關鍵詞提取結果:") |
|
|
for keyword in keywords_multilingual: |
|
|
st.write(f"{keyword[0]}: {keyword[1]:.4f}") |
|
|
|
|
|
plot_keywords(keywords_multilingual, "多語言模型關鍵詞提取結果") |
|
|
else: |
|
|
st.write("請輸入文章內容以進行關鍵詞提取。") |