Spaces:
Runtime error
Runtime error
import datetime | |
import logging | |
import time | |
from .dist_util import get_dist_info, master_only | |
initialized_logger = {} | |
class MessageLogger(): | |
"""Message logger for printing. | |
Args: | |
opt (dict): Config. It contains the following keys: | |
name (str): Exp name. | |
logger (dict): Contains 'print_freq' (str) for logger interval. | |
train (dict): Contains 'total_iter' (int) for total iters. | |
use_tb_logger (bool): Use tensorboard logger. | |
start_iter (int): Start iter. Default: 1. | |
tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None. | |
""" | |
def __init__(self, opt, start_iter=1, tb_logger=None): | |
self.exp_name = opt['name'] | |
self.interval = opt['logger']['print_freq'] | |
self.start_iter = start_iter | |
self.max_iters = opt['train']['total_iter'] | |
self.use_tb_logger = opt['logger']['use_tb_logger'] | |
self.tb_logger = tb_logger | |
self.start_time = time.time() | |
self.logger = get_root_logger() | |
def __call__(self, log_vars): | |
"""Format logging message. | |
Args: | |
log_vars (dict): It contains the following keys: | |
epoch (int): Epoch number. | |
iter (int): Current iter. | |
lrs (list): List for learning rates. | |
time (float): Iter time. | |
data_time (float): Data time for each iter. | |
""" | |
# epoch, iter, learning rates | |
epoch = log_vars.pop('epoch') | |
current_iter = log_vars.pop('iter') | |
lrs = log_vars.pop('lrs') | |
message = (f'[{self.exp_name[:5]}..][epoch:{epoch:3d}, ' f'iter:{current_iter:8,d}, lr:(') | |
for v in lrs: | |
message += f'{v:.3e},' | |
message += ')] ' | |
# time and estimated time | |
if 'time' in log_vars.keys(): | |
iter_time = log_vars.pop('time') | |
data_time = log_vars.pop('data_time') | |
total_time = time.time() - self.start_time | |
time_sec_avg = total_time / (current_iter - self.start_iter + 1) | |
eta_sec = time_sec_avg * (self.max_iters - current_iter - 1) | |
eta_str = str(datetime.timedelta(seconds=int(eta_sec))) | |
message += f'[eta: {eta_str}, ' | |
message += f'time (data): {iter_time:.3f} ({data_time:.3f})] ' | |
# other items, especially losses | |
for k, v in log_vars.items(): | |
message += f'{k}: {v:.4e} ' | |
# tensorboard logger | |
if self.use_tb_logger: | |
# if k.startswith('l_'): | |
# self.tb_logger.add_scalar(f'losses/{k}', v, current_iter) | |
# else: | |
self.tb_logger.add_scalar(k, v, current_iter) | |
self.logger.info(message) | |
def init_tb_logger(log_dir): | |
from torch.utils.tensorboard import SummaryWriter | |
tb_logger = SummaryWriter(log_dir=log_dir) | |
return tb_logger | |
def init_wandb_logger(opt): | |
"""We now only use wandb to sync tensorboard log.""" | |
import wandb | |
logger = logging.getLogger('basicsr') | |
project = opt['logger']['wandb']['project'] | |
resume_id = opt['logger']['wandb'].get('resume_id') | |
if resume_id: | |
wandb_id = resume_id | |
resume = 'allow' | |
logger.warning(f'Resume wandb logger with id={wandb_id}.') | |
else: | |
wandb_id = wandb.util.generate_id() | |
resume = 'never' | |
wandb.init(id=wandb_id, resume=resume, name=opt['name'], config=opt, project=project, sync_tensorboard=True) | |
logger.info(f'Use wandb logger with id={wandb_id}; project={project}.') | |
def get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=None): | |
"""Get the root logger. | |
The logger will be initialized if it has not been initialized. By default a | |
StreamHandler will be added. If `log_file` is specified, a FileHandler will | |
also be added. | |
Args: | |
logger_name (str): root logger name. Default: 'basicsr'. | |
log_file (str | None): The log filename. If specified, a FileHandler | |
will be added to the root logger. | |
log_level (int): The root logger level. Note that only the process of | |
rank 0 is affected, while other processes will set the level to | |
"Error" and be silent most of the time. | |
Returns: | |
logging.Logger: The root logger. | |
""" | |
logger = logging.getLogger(logger_name) | |
# if the logger has been initialized, just return it | |
if logger_name in initialized_logger: | |
return logger | |
format_str = '%(asctime)s %(levelname)s: %(message)s' | |
stream_handler = logging.StreamHandler() | |
stream_handler.setFormatter(logging.Formatter(format_str)) | |
logger.addHandler(stream_handler) | |
logger.propagate = False | |
rank, _ = get_dist_info() | |
if rank != 0: | |
logger.setLevel('ERROR') | |
elif log_file is not None: | |
logger.setLevel(log_level) | |
# add file handler | |
# file_handler = logging.FileHandler(log_file, 'w') | |
file_handler = logging.FileHandler(log_file, 'a') #Shangchen: keep the previous log | |
file_handler.setFormatter(logging.Formatter(format_str)) | |
file_handler.setLevel(log_level) | |
logger.addHandler(file_handler) | |
initialized_logger[logger_name] = True | |
return logger | |
def get_env_info(): | |
"""Get environment information. | |
Currently, only log the software version. | |
""" | |
import torch | |
import torchvision | |
from basicsr.version import __version__ | |
msg = r""" | |
____ _ _____ ____ | |
/ __ ) ____ _ _____ (_)_____/ ___/ / __ \ | |
/ __ |/ __ `// ___// // ___/\__ \ / /_/ / | |
/ /_/ // /_/ /(__ )/ // /__ ___/ // _, _/ | |
/_____/ \__,_//____//_/ \___//____//_/ |_| | |
______ __ __ __ __ | |
/ ____/____ ____ ____/ / / / __ __ _____ / /__ / / | |
/ / __ / __ \ / __ \ / __ / / / / / / // ___// //_/ / / | |
/ /_/ // /_/ // /_/ // /_/ / / /___/ /_/ // /__ / /< /_/ | |
\____/ \____/ \____/ \____/ /_____/\____/ \___//_/|_| (_) | |
""" | |
msg += ('\nVersion Information: ' | |
f'\n\tBasicSR: {__version__}' | |
f'\n\tPyTorch: {torch.__version__}' | |
f'\n\tTorchVision: {torchvision.__version__}') | |
return msg |