Spaces:
Runtime error
Runtime error
import insightface | |
import os | |
import onnxruntime | |
import cv2 | |
import gfpgan | |
import tempfile | |
import time | |
import gradio as gr | |
class Predictor: | |
def __init__(self): | |
self.setup() | |
def setup(self): | |
os.makedirs('models', exist_ok=True) | |
os.chdir('models') | |
if not os.path.exists('GFPGANv1.4.pth'): | |
os.system( | |
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth' | |
) | |
if not os.path.exists('inswapper_128.onnx'): | |
os.system( | |
'wget https://huggingface.co/ashleykleynhans/inswapper/resolve/main/inswapper_128.onnx' | |
) | |
os.chdir('..') | |
"""Load the model into memory to make running multiple predictions efficient""" | |
self.face_swapper = insightface.model_zoo.get_model('models/inswapper_128.onnx', | |
providers=onnxruntime.get_available_providers()) | |
self.face_enhancer = gfpgan.GFPGANer(model_path='models/GFPGANv1.4.pth', upscale=1) | |
self.face_analyser = insightface.app.FaceAnalysis(name='buffalo_l') | |
self.face_analyser.prepare(ctx_id=0, det_size=(640, 640)) | |
def get_face(self, img_data): | |
analysed = self.face_analyser.get(img_data) | |
try: | |
largest = max(analysed, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1])) | |
return largest | |
except: | |
print("No face found") | |
return None | |
def predict(self, input_image, swap_image): | |
"""Run a single prediction on the model""" | |
try: | |
frame = cv2.imread(input_image.name) | |
face = self.get_face(frame) | |
source_face = self.get_face(cv2.imread(swap_image.name)) | |
try: | |
print(frame.shape, face.shape, source_face.shape) | |
except: | |
print("printing shapes failed.") | |
result = self.face_swapper.get(frame, face, source_face, paste_back=True) | |
_, _, result = self.face_enhancer.enhance( | |
result, | |
paste_back=True | |
) | |
out_path = tempfile.mkdtemp() + f"/{str(int(time.time()))}.jpg" | |
cv2.imwrite(out_path, result) | |
return out_path | |
except Exception as e: | |
print(f"{e}") | |
return None | |
# Instantiate the Predictor class | |
predictor = Predictor() | |
title = "Swap Faces Using Our Model!!!" | |
# Create Gradio Interface | |
iface = gr.Interface( | |
fn=predictor.predict, | |
inputs=[ | |
gr.Image(type="filepath", label="Target Image"), | |
gr.Image(type="filepath", label="Swap Image") | |
], | |
outputs=gr.Image(type="filepath", label="Result"), | |
title=title, | |
examples=[["input.jpg", "swap img.jpg"]]) | |
# Launch the Gradio Interface | |
iface.launch() | |