Spaces:
Running
Running
import random | |
import time | |
from os import path as osp | |
from torch.utils import data as data | |
from torchvision.transforms.functional import normalize | |
from basicsr.data.transforms import augment | |
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor | |
from basicsr.utils.registry import DATASET_REGISTRY | |
class FFHQDataset(data.Dataset): | |
"""FFHQ dataset for StyleGAN. | |
Args: | |
opt (dict): Config for train datasets. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
io_backend (dict): IO backend type and other kwarg. | |
mean (list | tuple): Image mean. | |
std (list | tuple): Image std. | |
use_hflip (bool): Whether to horizontally flip. | |
""" | |
def __init__(self, opt): | |
super(FFHQDataset, self).__init__() | |
self.opt = opt | |
# file client (io backend) | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
self.gt_folder = opt['dataroot_gt'] | |
self.mean = opt['mean'] | |
self.std = opt['std'] | |
if self.io_backend_opt['type'] == 'lmdb': | |
self.io_backend_opt['db_paths'] = self.gt_folder | |
if not self.gt_folder.endswith('.lmdb'): | |
raise ValueError("'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}") | |
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin: | |
self.paths = [line.split('.')[0] for line in fin] | |
else: | |
# FFHQ has 70000 images in total | |
self.paths = [osp.join(self.gt_folder, f'{v:08d}.png') for v in range(70000)] | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
# load gt image | |
gt_path = self.paths[index] | |
# avoid errors caused by high latency in reading files | |
retry = 3 | |
while retry > 0: | |
try: | |
img_bytes = self.file_client.get(gt_path) | |
except Exception as e: | |
logger = get_root_logger() | |
logger.warning(f'File client error: {e}, remaining retry times: {retry - 1}') | |
# change another file to read | |
index = random.randint(0, self.__len__()) | |
gt_path = self.paths[index] | |
time.sleep(1) # sleep 1s for occasional server congestion | |
else: | |
break | |
finally: | |
retry -= 1 | |
img_gt = imfrombytes(img_bytes, float32=True) | |
# random horizontal flip | |
img_gt = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False) | |
# BGR to RGB, HWC to CHW, numpy to tensor | |
img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True) | |
# normalize | |
normalize(img_gt, self.mean, self.std, inplace=True) | |
return {'gt': img_gt, 'gt_path': gt_path} | |
def __len__(self): | |
return len(self.paths) | |