Spaces:
Running
Running
from os import path as osp | |
from torch.utils import data as data | |
from torchvision.transforms.functional import normalize | |
from basicsr.data.data_util import paths_from_lmdb | |
from basicsr.utils import FileClient, imfrombytes, img2tensor, rgb2ycbcr, scandir | |
from basicsr.utils.registry import DATASET_REGISTRY | |
class SingleImageDataset(data.Dataset): | |
"""Read only lq images in the test phase. | |
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc). | |
There are two modes: | |
1. 'meta_info_file': Use meta information file to generate paths. | |
2. 'folder': Scan folders to generate paths. | |
Args: | |
opt (dict): Config for train datasets. It contains the following keys: | |
dataroot_lq (str): Data root path for lq. | |
meta_info_file (str): Path for meta information file. | |
io_backend (dict): IO backend type and other kwarg. | |
""" | |
def __init__(self, opt): | |
super(SingleImageDataset, self).__init__() | |
self.opt = opt | |
# file client (io backend) | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
self.mean = opt['mean'] if 'mean' in opt else None | |
self.std = opt['std'] if 'std' in opt else None | |
self.lq_folder = opt['dataroot_lq'] | |
if self.io_backend_opt['type'] == 'lmdb': | |
self.io_backend_opt['db_paths'] = [self.lq_folder] | |
self.io_backend_opt['client_keys'] = ['lq'] | |
self.paths = paths_from_lmdb(self.lq_folder) | |
elif 'meta_info_file' in self.opt: | |
with open(self.opt['meta_info_file'], 'r') as fin: | |
self.paths = [osp.join(self.lq_folder, line.rstrip().split(' ')[0]) for line in fin] | |
else: | |
self.paths = sorted(list(scandir(self.lq_folder, full_path=True))) | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
# load lq image | |
lq_path = self.paths[index] | |
img_bytes = self.file_client.get(lq_path, 'lq') | |
img_lq = imfrombytes(img_bytes, float32=True) | |
# color space transform | |
if 'color' in self.opt and self.opt['color'] == 'y': | |
img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None] | |
# BGR to RGB, HWC to CHW, numpy to tensor | |
img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True) | |
# normalize | |
if self.mean is not None or self.std is not None: | |
normalize(img_lq, self.mean, self.std, inplace=True) | |
return {'lq': img_lq, 'lq_path': lq_path} | |
def __len__(self): | |
return len(self.paths) | |