Tzktz's picture
Upload 7664 files
6fc683c verified
import torch
from torch.nn import DataParallel
from torch.cuda._utils import _get_device_index
from torch.nn.parallel._functions import Scatter
from itertools import chain
def scatter_imbalance(inputs, target_gpus, dim=0):
r"""
Slices tensors into approximately equal chunks and
distributes them across given GPUs. Duplicates
references to objects that are not tensors.
"""
def scatter_map(obj):
if isinstance(obj, torch.Tensor):
if (len(target_gpus) == 4) and (obj.size(dim) == 22):
return Scatter.apply(target_gpus, (4, 6, 6, 6), dim, obj)
if (len(target_gpus) == 4) and (obj.size(dim) == 60):
return Scatter.apply(target_gpus, (12, 16, 16, 16), dim, obj)
elif (len(target_gpus) == 4) and (obj.size(dim) == 144):
return Scatter.apply(target_gpus, (24, 40, 40, 40), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 46):
return Scatter.apply(target_gpus, (4, 6, 6, 6, 6, 6, 6, 6), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 62):
return Scatter.apply(target_gpus, (6, 8, 8, 8, 8, 8, 8, 8), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 94):
return Scatter.apply(target_gpus, (10, 12, 12, 12, 12, 12, 12, 12), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 110):
return Scatter.apply(target_gpus, (12, 14, 14, 14, 14, 14, 14, 14), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 118):
return Scatter.apply(target_gpus, (13, 15, 15, 15, 15, 15, 15, 15), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 126):
return Scatter.apply(target_gpus, (14, 16, 16, 16, 16, 16, 16, 16), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 134):
return Scatter.apply(target_gpus, (15, 17, 17, 17, 17, 17, 17, 17), dim, obj)
elif (len(target_gpus) == 8) and (obj.size(dim) == 142):
return Scatter.apply(target_gpus, (16, 18, 18, 18, 18, 18, 18, 18), dim, obj)
elif (len(target_gpus) == 16) and (obj.size(dim) == 222):
return Scatter.apply(target_gpus, (12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14), dim, obj)
return Scatter.apply(target_gpus, None, dim, obj)
if isinstance(obj, tuple) and len(obj) > 0:
return list(zip(*map(scatter_map, obj)))
if isinstance(obj, list) and len(obj) > 0:
return list(map(list, zip(*map(scatter_map, obj))))
if isinstance(obj, dict) and len(obj) > 0:
return list(map(type(obj), zip(*map(scatter_map, obj.items()))))
return [obj for targets in target_gpus]
# After scatter_map is called, a scatter_map cell will exist. This cell
# has a reference to the actual function scatter_map, which has references
# to a closure that has a reference to the scatter_map cell (because the
# fn is recursive). To avoid this reference cycle, we set the function to
# None, clearing the cell
try:
return scatter_map(inputs)
finally:
scatter_map = None
def scatter_kwargs_imbalance(inputs, kwargs, target_gpus, dim=0):
r"""Scatter with support for kwargs dictionary"""
inputs = scatter_imbalance(inputs, target_gpus, dim) if inputs else []
kwargs = scatter_imbalance(kwargs, target_gpus, dim) if kwargs else []
if len(inputs) < len(kwargs):
inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
elif len(kwargs) < len(inputs):
kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
inputs = tuple(inputs)
kwargs = tuple(kwargs)
return inputs, kwargs
class DataParallelImbalance(DataParallel):
def __init__(self, module, device_ids=None, output_device=None, dim=0):
super(DataParallelImbalance, self).__init__(
module, device_ids, output_device, dim)
if not torch.cuda.is_available():
self.module = module
self.device_ids = []
return
if device_ids is None:
device_ids = list(range(torch.cuda.device_count()))
if output_device is None:
output_device = device_ids[0]
if not all(t.is_cuda and t.device.index == device_ids[0]
for t in chain(module.parameters(), module.buffers())):
raise RuntimeError("module must have its parameters and buffers "
"on device %d (device_ids[0])" % device_ids[0])
self.dim = dim
self.module = module
self.device_ids = list(
map(lambda x: _get_device_index(x, True), device_ids))
self.output_device = _get_device_index(output_device, True)
if len(self.device_ids) == 1:
self.module.cuda(device_ids[0])
def forward(self, *inputs, **kwargs):
if not self.device_ids:
return self.module(*inputs, **kwargs)
inputs, kwargs = self.scatter_imbalance(
inputs, kwargs, self.device_ids)
if len(self.device_ids) == 1:
return self.module(*inputs[0], **kwargs[0])
replicas = self.replicate(self.module, self.device_ids[:len(inputs)])
outputs = self.parallel_apply(replicas, inputs, kwargs)
return self.gather(outputs, self.output_device)
def scatter_imbalance(self, inputs, kwargs, device_ids):
return scatter_kwargs_imbalance(inputs, kwargs, device_ids, dim=self.dim)