Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import os | |
from fairseq import utils | |
from fairseq.data import ( | |
AppendTokenDataset, | |
DenoisingDataset, | |
Dictionary, | |
IdDataset, | |
NestedDictionaryDataset, | |
NumelDataset, | |
PadDataset, | |
PrependTokenDataset, | |
StripTokenDataset, | |
TokenBlockDataset, | |
data_utils, | |
) | |
from fairseq.data.encoders.utils import get_whole_word_mask | |
from fairseq.data.shorten_dataset import maybe_shorten_dataset | |
from fairseq.tasks import LegacyFairseqTask, register_task | |
import numpy as np | |
logger = logging.getLogger(__name__) | |
class DenoisingTask(LegacyFairseqTask): | |
""" | |
Denoising task for applying sequence to sequence denoising. (ie. BART) | |
""" | |
def add_args(parser): | |
"""Add task-specific arguments to the parser.""" | |
parser.add_argument("data", help="path to data directory") | |
parser.add_argument( | |
"--tokens-per-sample", | |
default=512, | |
type=int, | |
help="max number of total tokens over all segments" | |
" per sample for dataset", | |
) | |
parser.add_argument( | |
"--sample-break-mode", | |
default="complete_doc", | |
type=str, | |
help="mode for breaking sentence", | |
) | |
parser.add_argument( | |
"--mask", | |
default=0.0, | |
type=float, | |
help="fraction of words/subwords that will be masked", | |
) | |
parser.add_argument( | |
"--mask-random", | |
default=0.0, | |
type=float, | |
help="instead of using [MASK], use random token this often", | |
) | |
parser.add_argument( | |
"--insert", | |
default=0.0, | |
type=float, | |
help="insert this percentage of additional random tokens", | |
) | |
parser.add_argument( | |
"--permute", | |
default=0.0, | |
type=float, | |
help="take this proportion of subwords and permute them", | |
) | |
parser.add_argument( | |
"--rotate", | |
default=0.5, | |
type=float, | |
help="rotate this proportion of inputs", | |
) | |
parser.add_argument( | |
"--poisson-lambda", | |
default=3.0, | |
type=float, | |
help="randomly shuffle sentences for this proportion of inputs", | |
) | |
parser.add_argument( | |
"--permute-sentences", | |
default=0.0, | |
type=float, | |
help="shuffle this proportion of sentences in all inputs", | |
) | |
parser.add_argument( | |
"--mask-length", | |
default="subword", | |
type=str, | |
choices=["subword", "word", "span-poisson"], | |
help="mask length to choose", | |
) | |
parser.add_argument( | |
"--replace-length", | |
default=-1, | |
type=int, | |
help="when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)", | |
) | |
parser.add_argument( | |
"--max-source-positions", | |
default=1024, | |
type=int, | |
metavar="N", | |
help="max number of tokens in the source sequence", | |
) | |
parser.add_argument( | |
"--max-target-positions", | |
default=1024, | |
type=int, | |
metavar="N", | |
help="max number of tokens in the target sequence", | |
) | |
parser.add_argument( | |
"--shorten-method", | |
default="none", | |
choices=["none", "truncate", "random_crop"], | |
help="if not none, shorten sequences that exceed --tokens-per-sample", | |
) | |
parser.add_argument( | |
"--shorten-data-split-list", | |
default="", | |
help="comma-separated list of dataset splits to apply shortening to, " | |
'e.g., "train,valid" (default: all dataset splits)', | |
) | |
def __init__(self, args, dictionary): | |
super().__init__(args) | |
self.dictionary = dictionary | |
self.seed = args.seed | |
# add mask token | |
self.mask_idx = self.dictionary.add_symbol("<mask>") | |
def setup_task(cls, args, **kwargs): | |
"""Setup the task.""" | |
paths = utils.split_paths(args.data) | |
assert len(paths) > 0 | |
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) | |
logger.info("dictionary: {} types".format(len(dictionary))) | |
if not hasattr(args, "shuffle_instance"): | |
args.shuffle_instance = False | |
return cls(args, dictionary) | |
def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
"""Load a given dataset split. | |
Args: | |
split (str): name of the split (e.g., train, valid, test) | |
""" | |
paths = utils.split_paths(self.args.data) | |
assert len(paths) > 0 | |
data_path = paths[(epoch - 1) % len(paths)] | |
split_path = os.path.join(data_path, split) | |
dataset = data_utils.load_indexed_dataset( | |
split_path, | |
self.dictionary, | |
self.args.dataset_impl, | |
combine=combine, | |
) | |
if dataset is None: | |
raise FileNotFoundError( | |
"Dataset not found: {} ({})".format(split, split_path) | |
) | |
dataset = StripTokenDataset(dataset, self.dictionary.eos()) | |
dataset = maybe_shorten_dataset( | |
dataset, | |
split, | |
self.args.shorten_data_split_list, | |
self.args.shorten_method, | |
self.args.tokens_per_sample, | |
self.args.seed, | |
) | |
# create continuous blocks of tokens | |
dataset = TokenBlockDataset( | |
dataset, | |
dataset.sizes, | |
self.args.tokens_per_sample - 2, # one less for <s> and one for </s> | |
pad=self.dictionary.pad(), | |
eos=self.dictionary.eos(), | |
break_mode=self.args.sample_break_mode, | |
document_sep_len=0, | |
) | |
logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) | |
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) | |
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) | |
dataset = AppendTokenDataset(dataset, self.source_dictionary.eos()) | |
mask_whole_words = ( | |
get_whole_word_mask(self.args, self.source_dictionary) | |
if self.args.mask_length != "subword" | |
else None | |
) | |
self.datasets[split] = DenoisingDataset( | |
dataset, | |
dataset.sizes, | |
self.dictionary, | |
self.mask_idx, | |
mask_whole_words, | |
shuffle=self.args.shuffle_instance, | |
seed=self.seed, | |
args=self.args, | |
) | |
logger.info( | |
"Split: {0}, Loaded {1} samples of denoising_dataset".format( | |
split, | |
len(self.datasets[split]), | |
) | |
) | |
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): | |
""" | |
Generate batches for inference. We assume that the input begins with a | |
bos symbol (`<s>`) and ends with an eos symbol (`</s>`). | |
""" | |
pad = self.source_dictionary.pad() | |
eos = self.source_dictionary.eos() | |
src_dataset = TokenBlockDataset( | |
src_tokens, | |
src_lengths, | |
block_size=self.args.tokens_per_sample - 2, # for <s> and </s> | |
pad=pad, | |
eos=eos, | |
break_mode=self.args.sample_break_mode, | |
document_sep_len=0, | |
) | |
prev_output_tokens = PrependTokenDataset( | |
StripTokenDataset(src_dataset, eos), eos | |
) | |
src_dataset = PadDataset(src_dataset, pad_idx=pad, left_pad=False) | |
return NestedDictionaryDataset( | |
{ | |
"id": IdDataset(), | |
"net_input": { | |
"src_tokens": src_dataset, | |
"src_lengths": NumelDataset(src_dataset, reduce=False), | |
"prev_output_tokens": PadDataset( | |
prev_output_tokens, pad_idx=pad, left_pad=False | |
), | |
}, | |
"target": src_dataset, | |
}, | |
sizes=[np.array(src_lengths)], | |
) | |
def max_positions(self): | |
"""Return the max sentence length allowed by the task.""" | |
return (self.args.max_source_positions, self.args.max_target_positions) | |
def source_dictionary(self): | |
"""Return the source :class:`~fairseq.data.Dictionary`.""" | |
return self.dictionary | |
def target_dictionary(self): | |
"""Return the target :class:`~fairseq.data.Dictionary`.""" | |
return self.dictionary | |