|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torchvision.transforms.functional as F |
|
from PIL import Image |
|
import warnings |
|
import math |
|
import random |
|
import numpy as np |
|
|
|
|
|
class ToNumpy: |
|
|
|
def __call__(self, pil_img): |
|
np_img = np.array(pil_img, dtype=np.uint8) |
|
if np_img.ndim < 3: |
|
np_img = np.expand_dims(np_img, axis=-1) |
|
np_img = np.rollaxis(np_img, 2) |
|
return np_img |
|
|
|
|
|
class ToTensor: |
|
|
|
def __init__(self, dtype=torch.float32): |
|
self.dtype = dtype |
|
|
|
def __call__(self, pil_img): |
|
np_img = np.array(pil_img, dtype=np.uint8) |
|
if np_img.ndim < 3: |
|
np_img = np.expand_dims(np_img, axis=-1) |
|
np_img = np.rollaxis(np_img, 2) |
|
return torch.from_numpy(np_img).to(dtype=self.dtype) |
|
|
|
|
|
_pil_interpolation_to_str = { |
|
Image.NEAREST: 'PIL.Image.NEAREST', |
|
Image.BILINEAR: 'PIL.Image.BILINEAR', |
|
Image.BICUBIC: 'PIL.Image.BICUBIC', |
|
Image.LANCZOS: 'PIL.Image.LANCZOS', |
|
Image.HAMMING: 'PIL.Image.HAMMING', |
|
Image.BOX: 'PIL.Image.BOX', |
|
} |
|
|
|
|
|
def _pil_interp(method): |
|
if method == 'bicubic': |
|
return Image.BICUBIC |
|
elif method == 'lanczos': |
|
return Image.LANCZOS |
|
elif method == 'hamming': |
|
return Image.HAMMING |
|
else: |
|
|
|
return Image.BILINEAR |
|
|
|
|
|
_RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC) |
|
|
|
|
|
class RandomResizedCropAndInterpolationWithTwoPic: |
|
"""Crop the given PIL Image to random size and aspect ratio with random interpolation. |
|
|
|
A crop of random size (default: of 0.08 to 1.0) of the original size and a random |
|
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop |
|
is finally resized to given size. |
|
This is popularly used to train the Inception networks. |
|
|
|
Args: |
|
size: expected output size of each edge |
|
scale: range of size of the origin size cropped |
|
ratio: range of aspect ratio of the origin aspect ratio cropped |
|
interpolation: Default: PIL.Image.BILINEAR |
|
""" |
|
|
|
def __init__(self, size, second_size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), |
|
interpolation='bilinear', second_interpolation='lanczos'): |
|
if isinstance(size, tuple): |
|
self.size = size |
|
else: |
|
self.size = (size, size) |
|
if second_size is not None: |
|
if isinstance(second_size, tuple): |
|
self.second_size = second_size |
|
else: |
|
self.second_size = (second_size, second_size) |
|
else: |
|
self.second_size = None |
|
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): |
|
warnings.warn("range should be of kind (min, max)") |
|
|
|
if interpolation == 'random': |
|
self.interpolation = _RANDOM_INTERPOLATION |
|
else: |
|
self.interpolation = _pil_interp(interpolation) |
|
self.second_interpolation = _pil_interp(second_interpolation) |
|
self.scale = scale |
|
self.ratio = ratio |
|
|
|
@staticmethod |
|
def get_params(img, scale, ratio): |
|
"""Get parameters for ``crop`` for a random sized crop. |
|
|
|
Args: |
|
img (PIL Image): Image to be cropped. |
|
scale (tuple): range of size of the origin size cropped |
|
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped |
|
|
|
Returns: |
|
tuple: params (i, j, h, w) to be passed to ``crop`` for a random |
|
sized crop. |
|
""" |
|
area = img.size[0] * img.size[1] |
|
|
|
for attempt in range(10): |
|
target_area = random.uniform(*scale) * area |
|
log_ratio = (math.log(ratio[0]), math.log(ratio[1])) |
|
aspect_ratio = math.exp(random.uniform(*log_ratio)) |
|
|
|
w = int(round(math.sqrt(target_area * aspect_ratio))) |
|
h = int(round(math.sqrt(target_area / aspect_ratio))) |
|
|
|
if w <= img.size[0] and h <= img.size[1]: |
|
i = random.randint(0, img.size[1] - h) |
|
j = random.randint(0, img.size[0] - w) |
|
return i, j, h, w |
|
|
|
|
|
in_ratio = img.size[0] / img.size[1] |
|
if in_ratio < min(ratio): |
|
w = img.size[0] |
|
h = int(round(w / min(ratio))) |
|
elif in_ratio > max(ratio): |
|
h = img.size[1] |
|
w = int(round(h * max(ratio))) |
|
else: |
|
w = img.size[0] |
|
h = img.size[1] |
|
i = (img.size[1] - h) // 2 |
|
j = (img.size[0] - w) // 2 |
|
return i, j, h, w |
|
|
|
def __call__(self, img): |
|
""" |
|
Args: |
|
img (PIL Image): Image to be cropped and resized. |
|
|
|
Returns: |
|
PIL Image: Randomly cropped and resized image. |
|
""" |
|
i, j, h, w = self.get_params(img, self.scale, self.ratio) |
|
if isinstance(self.interpolation, (tuple, list)): |
|
interpolation = random.choice(self.interpolation) |
|
else: |
|
interpolation = self.interpolation |
|
if self.second_size is None: |
|
return F.resized_crop(img, i, j, h, w, self.size, interpolation) |
|
else: |
|
return F.resized_crop(img, i, j, h, w, self.size, interpolation), \ |
|
F.resized_crop(img, i, j, h, w, self.second_size, self.second_interpolation) |
|
|
|
def __repr__(self): |
|
if isinstance(self.interpolation, (tuple, list)): |
|
interpolate_str = ' '.join([_pil_interpolation_to_str[x] for x in self.interpolation]) |
|
else: |
|
interpolate_str = _pil_interpolation_to_str[self.interpolation] |
|
format_string = self.__class__.__name__ + '(size={0}'.format(self.size) |
|
format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) |
|
format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) |
|
format_string += ', interpolation={0}'.format(interpolate_str) |
|
if self.second_size is not None: |
|
format_string += ', second_size={0}'.format(self.second_size) |
|
format_string += ', second_interpolation={0}'.format(_pil_interpolation_to_str[self.second_interpolation]) |
|
format_string += ')' |
|
return format_string |
|
|