|
|
import os
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torch.optim as optim
|
|
|
from torchvision import datasets, transforms, models
|
|
|
from torch.utils.data import DataLoader
|
|
|
from tqdm import tqdm
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
root_dir = Path("/oxford_pet_dataset")
|
|
|
train_dir = root_dir / "train"
|
|
|
val_dir = root_dir / "val"
|
|
|
|
|
|
|
|
|
BATCH_SIZE = 32
|
|
|
EPOCHS = 10
|
|
|
NUM_CLASSES = len(os.listdir(train_dir))
|
|
|
|
|
|
|
|
|
train_transforms = transforms.Compose([
|
|
|
transforms.Resize((224, 224)),
|
|
|
transforms.RandomHorizontalFlip(),
|
|
|
transforms.ToTensor(),
|
|
|
transforms.Normalize([0.5]*3, [0.5]*3)
|
|
|
])
|
|
|
|
|
|
val_transforms = transforms.Compose([
|
|
|
transforms.Resize((224, 224)),
|
|
|
transforms.ToTensor(),
|
|
|
transforms.Normalize([0.5]*3, [0.5]*3)
|
|
|
])
|
|
|
|
|
|
|
|
|
train_dataset = datasets.ImageFolder(train_dir, transform=train_transforms)
|
|
|
val_dataset = datasets.ImageFolder(val_dir, transform=val_transforms)
|
|
|
|
|
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
|
|
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
|
|
|
|
|
|
|
|
model = models.resnet18(pretrained=True)
|
|
|
model.fc = nn.Linear(model.fc.in_features, NUM_CLASSES)
|
|
|
model = model.to(device)
|
|
|
|
|
|
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
|
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
|
|
|
|
|
|
|
|
for epoch in range(EPOCHS):
|
|
|
model.train()
|
|
|
train_loss, train_correct = 0.0, 0
|
|
|
|
|
|
for inputs, labels in tqdm(train_loader, desc=f"Epoch {epoch+1}/{EPOCHS} [Train]"):
|
|
|
inputs, labels = inputs.to(device), labels.to(device)
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
outputs = model(inputs)
|
|
|
loss = criterion(outputs, labels)
|
|
|
loss.backward()
|
|
|
optimizer.step()
|
|
|
|
|
|
train_loss += loss.item() * inputs.size(0)
|
|
|
train_correct += (outputs.argmax(1) == labels).sum().item()
|
|
|
|
|
|
train_acc = train_correct / len(train_dataset)
|
|
|
|
|
|
|
|
|
model.eval()
|
|
|
val_loss, val_correct = 0.0, 0
|
|
|
|
|
|
with torch.no_grad():
|
|
|
for inputs, labels in tqdm(val_loader, desc=f"Epoch {epoch+1}/{EPOCHS} [Val]"):
|
|
|
inputs, labels = inputs.to(device), labels.to(device)
|
|
|
outputs = model(inputs)
|
|
|
loss = criterion(outputs, labels)
|
|
|
|
|
|
val_loss += loss.item() * inputs.size(0)
|
|
|
val_correct += (outputs.argmax(1) == labels).sum().item()
|
|
|
|
|
|
val_acc = val_correct / len(val_dataset)
|
|
|
|
|
|
print(f"Epoch {epoch+1}: Train Acc: {train_acc:.4f}, Val Acc: {val_acc:.4f}")
|
|
|
|
|
|
|
|
|
torch.save(model.state_dict(), "pet_classifier.pth")
|
|
|
print("Model saved as pet_classifier.pth")
|
|
|
|