Update app.py
Browse files
app.py
CHANGED
@@ -6,59 +6,40 @@ import torch
|
|
6 |
class ModelProcessor:
|
7 |
def __init__(self, repo_id="HuggingFaceTB/cosmo-1b"):
|
8 |
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
-
# Initialize the tokenizer
|
10 |
self.tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True)
|
11 |
-
|
12 |
-
# Initialize and configure the model
|
13 |
self.model = AutoModelForCausalLM.from_pretrained(
|
14 |
repo_id, torch_dtype=torch.float16, device_map={"": self.device}, trust_remote_code=True
|
15 |
)
|
16 |
-
self.model.eval()
|
17 |
-
|
18 |
-
# Set padding token as end-of-sequence token
|
19 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
20 |
|
21 |
@torch.inference_mode()
|
22 |
def process_data_and_compute_statistics(self, prompt):
|
23 |
-
# Tokenize the prompt and move to the device
|
24 |
tokens = self.tokenizer(
|
25 |
prompt, return_tensors="pt", truncation=True, max_length=512
|
26 |
).to(self.model.device)
|
27 |
-
|
28 |
-
# Get the model outputs and logits
|
29 |
outputs = self.model(tokens["input_ids"])
|
30 |
logits = outputs.logits
|
31 |
-
|
32 |
-
# Shift right to align with logits' prediction position
|
33 |
shifted_labels = tokens["input_ids"][..., 1:].contiguous()
|
34 |
shifted_logits = logits[..., :-1, :].contiguous()
|
35 |
-
|
36 |
-
# Calculate entropy
|
37 |
shifted_probs = torch.softmax(shifted_logits, dim=-1)
|
38 |
shifted_log_probs = torch.log_softmax(shifted_logits, dim=-1)
|
39 |
entropy = -torch.sum(shifted_probs * shifted_log_probs, dim=-1).squeeze()
|
40 |
-
|
41 |
-
# Flatten the logits and labels
|
42 |
logits_flat = shifted_logits.view(-1, shifted_logits.size(-1))
|
43 |
labels_flat = shifted_labels.view(-1)
|
44 |
-
|
45 |
-
# Calculate the negative log-likelihood loss
|
46 |
probabilities_flat = torch.softmax(logits_flat, dim=-1)
|
47 |
true_class_probabilities = probabilities_flat.gather(
|
48 |
1, labels_flat.unsqueeze(1)
|
49 |
).squeeze(1)
|
50 |
nll = -torch.log(
|
51 |
true_class_probabilities.clamp(min=1e-9)
|
52 |
-
)
|
53 |
-
|
54 |
ranks = (
|
55 |
shifted_logits.argsort(dim=-1, descending=True)
|
56 |
== shifted_labels.unsqueeze(-1)
|
57 |
).nonzero()[:, -1]
|
58 |
-
|
59 |
if entropy.clamp(max=4).median() < 2.0:
|
60 |
return 1
|
61 |
-
|
62 |
return 1 if (ranks.clamp(max=4) * nll.clamp(max=4)).mean() < 5.2 else 0
|
63 |
|
64 |
processor = ModelProcessor()
|
@@ -67,9 +48,9 @@ processor = ModelProcessor()
|
|
67 |
def detect(prompt):
|
68 |
prediction = processor.process_data_and_compute_statistics(prompt)
|
69 |
if prediction == 1:
|
70 |
-
return "The text is likely
|
71 |
else:
|
72 |
-
return "The text is likely
|
73 |
|
74 |
with gr.Blocks(
|
75 |
css="""
|
@@ -118,7 +99,7 @@ with gr.Blocks(
|
|
118 |
label="Prompt",
|
119 |
)
|
120 |
submit_btn = gr.Button("Submit", variant="primary")
|
121 |
-
output = gr.
|
122 |
|
123 |
submit_btn.click(fn=detect, inputs=prompt, outputs=output)
|
124 |
|
|
|
6 |
class ModelProcessor:
|
7 |
def __init__(self, repo_id="HuggingFaceTB/cosmo-1b"):
|
8 |
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
9 |
self.tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True)
|
|
|
|
|
10 |
self.model = AutoModelForCausalLM.from_pretrained(
|
11 |
repo_id, torch_dtype=torch.float16, device_map={"": self.device}, trust_remote_code=True
|
12 |
)
|
13 |
+
self.model.eval()
|
|
|
|
|
14 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
15 |
|
16 |
@torch.inference_mode()
|
17 |
def process_data_and_compute_statistics(self, prompt):
|
|
|
18 |
tokens = self.tokenizer(
|
19 |
prompt, return_tensors="pt", truncation=True, max_length=512
|
20 |
).to(self.model.device)
|
|
|
|
|
21 |
outputs = self.model(tokens["input_ids"])
|
22 |
logits = outputs.logits
|
|
|
|
|
23 |
shifted_labels = tokens["input_ids"][..., 1:].contiguous()
|
24 |
shifted_logits = logits[..., :-1, :].contiguous()
|
|
|
|
|
25 |
shifted_probs = torch.softmax(shifted_logits, dim=-1)
|
26 |
shifted_log_probs = torch.log_softmax(shifted_logits, dim=-1)
|
27 |
entropy = -torch.sum(shifted_probs * shifted_log_probs, dim=-1).squeeze()
|
|
|
|
|
28 |
logits_flat = shifted_logits.view(-1, shifted_logits.size(-1))
|
29 |
labels_flat = shifted_labels.view(-1)
|
|
|
|
|
30 |
probabilities_flat = torch.softmax(logits_flat, dim=-1)
|
31 |
true_class_probabilities = probabilities_flat.gather(
|
32 |
1, labels_flat.unsqueeze(1)
|
33 |
).squeeze(1)
|
34 |
nll = -torch.log(
|
35 |
true_class_probabilities.clamp(min=1e-9)
|
36 |
+
)
|
|
|
37 |
ranks = (
|
38 |
shifted_logits.argsort(dim=-1, descending=True)
|
39 |
== shifted_labels.unsqueeze(-1)
|
40 |
).nonzero()[:, -1]
|
|
|
41 |
if entropy.clamp(max=4).median() < 2.0:
|
42 |
return 1
|
|
|
43 |
return 1 if (ranks.clamp(max=4) * nll.clamp(max=4)).mean() < 5.2 else 0
|
44 |
|
45 |
processor = ModelProcessor()
|
|
|
48 |
def detect(prompt):
|
49 |
prediction = processor.process_data_and_compute_statistics(prompt)
|
50 |
if prediction == 1:
|
51 |
+
return "<div class='output-text'>The text is likely <b>generated</b> by a language model.</div>"
|
52 |
else:
|
53 |
+
return "<div class='output-text'>The text is likely <b>not generated</b> by a language model.</div>"
|
54 |
|
55 |
with gr.Blocks(
|
56 |
css="""
|
|
|
99 |
label="Prompt",
|
100 |
)
|
101 |
submit_btn = gr.Button("Submit", variant="primary")
|
102 |
+
output = gr.HTML() # Changed to gr.HTML() to support custom HTML
|
103 |
|
104 |
submit_btn.click(fn=detect, inputs=prompt, outputs=output)
|
105 |
|