Spaces:
Sleeping
Sleeping
Refactor typing and update tokenization rules
Browse files- app/data.py +22 -22
- app/utils.py +3 -3
app/data.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import bz2
|
4 |
-
from typing import TYPE_CHECKING, Literal
|
5 |
|
6 |
import pandas as pd
|
7 |
import spacy
|
@@ -25,17 +25,17 @@ __all__ = ["load_data", "tokenize"]
|
|
25 |
|
26 |
|
27 |
try:
|
28 |
-
nlp = spacy.load("en_core_web_sm"
|
29 |
except OSError:
|
30 |
print("Downloading spaCy model...")
|
31 |
|
32 |
from spacy.cli import download as spacy_download
|
33 |
|
34 |
spacy_download("en_core_web_sm")
|
35 |
-
nlp = spacy.load("en_core_web_sm"
|
36 |
|
37 |
|
38 |
-
def _lemmatize(doc: Doc, threshold: int = 2) ->
|
39 |
"""Lemmatize the provided text using spaCy.
|
40 |
|
41 |
Args:
|
@@ -43,27 +43,25 @@ def _lemmatize(doc: Doc, threshold: int = 2) -> list[str]:
|
|
43 |
threshold: Minimum character length of tokens
|
44 |
|
45 |
Returns:
|
46 |
-
|
47 |
"""
|
48 |
return [
|
49 |
token.lemma_.lower().strip()
|
50 |
for token in doc
|
51 |
-
if not token.is_stop
|
52 |
-
and not token.is_punct
|
53 |
-
and not token.
|
54 |
-
and not token.
|
55 |
-
and not token.like_num
|
56 |
-
and not (len(token.lemma_) < threshold)
|
57 |
]
|
58 |
|
59 |
|
60 |
def tokenize(
|
61 |
-
text_data:
|
62 |
batch_size: int = 512,
|
63 |
n_jobs: int = 4,
|
64 |
character_threshold: int = 2,
|
65 |
show_progress: bool = True,
|
66 |
-
) ->
|
67 |
"""Tokenize the provided text using spaCy.
|
68 |
|
69 |
Args:
|
@@ -76,15 +74,17 @@ def tokenize(
|
|
76 |
Returns:
|
77 |
Tokenized text data
|
78 |
"""
|
79 |
-
return
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
88 |
|
89 |
|
90 |
def load_sentiment140(include_neutral: bool = False) -> tuple[list[str], list[int]]:
|
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import bz2
|
4 |
+
from typing import TYPE_CHECKING, Literal, Sequence
|
5 |
|
6 |
import pandas as pd
|
7 |
import spacy
|
|
|
25 |
|
26 |
|
27 |
try:
|
28 |
+
nlp = spacy.load("en_core_web_sm")
|
29 |
except OSError:
|
30 |
print("Downloading spaCy model...")
|
31 |
|
32 |
from spacy.cli import download as spacy_download
|
33 |
|
34 |
spacy_download("en_core_web_sm")
|
35 |
+
nlp = spacy.load("en_core_web_sm")
|
36 |
|
37 |
|
38 |
+
def _lemmatize(doc: Doc, threshold: int = 2) -> Sequence[str]:
|
39 |
"""Lemmatize the provided text using spaCy.
|
40 |
|
41 |
Args:
|
|
|
43 |
threshold: Minimum character length of tokens
|
44 |
|
45 |
Returns:
|
46 |
+
Sequence of lemmatized tokens
|
47 |
"""
|
48 |
return [
|
49 |
token.lemma_.lower().strip()
|
50 |
for token in doc
|
51 |
+
if not token.is_stop # Ignore stop words
|
52 |
+
and not token.is_punct # Ignore punctuation
|
53 |
+
and not token.is_alpha # Ignore non-alphabetic tokens
|
54 |
+
and not (len(token.lemma_) < threshold) # Ignore short tokens
|
|
|
|
|
55 |
]
|
56 |
|
57 |
|
58 |
def tokenize(
|
59 |
+
text_data: Sequence[str],
|
60 |
batch_size: int = 512,
|
61 |
n_jobs: int = 4,
|
62 |
character_threshold: int = 2,
|
63 |
show_progress: bool = True,
|
64 |
+
) -> Sequence[Sequence[str]]:
|
65 |
"""Tokenize the provided text using spaCy.
|
66 |
|
67 |
Args:
|
|
|
74 |
Returns:
|
75 |
Tokenized text data
|
76 |
"""
|
77 |
+
return pd.Series(
|
78 |
+
[
|
79 |
+
_lemmatize(doc, character_threshold)
|
80 |
+
for doc in tqdm(
|
81 |
+
nlp.pipe(text_data, batch_size=batch_size, n_process=n_jobs, disable=["parser", "ner", "tok2vec"]),
|
82 |
+
total=len(text_data),
|
83 |
+
disable=not show_progress,
|
84 |
+
unit="doc",
|
85 |
+
)
|
86 |
+
],
|
87 |
+
)
|
88 |
|
89 |
|
90 |
def load_sentiment140(include_neutral: bool = False) -> tuple[list[str], list[int]]:
|
app/utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
-
from typing import TYPE_CHECKING
|
4 |
|
5 |
import joblib
|
6 |
from tqdm import tqdm
|
@@ -11,7 +11,7 @@ if TYPE_CHECKING:
|
|
11 |
__all__ = ["serialize", "deserialize"]
|
12 |
|
13 |
|
14 |
-
def serialize(data:
|
15 |
"""Serialize data to a file
|
16 |
|
17 |
Args:
|
@@ -26,7 +26,7 @@ def serialize(data: list[list[str]], path: Path, max_size: int = 400) -> None:
|
|
26 |
joblib.dump(chunk, f, compress=3)
|
27 |
|
28 |
|
29 |
-
def deserialize(path: Path) ->
|
30 |
"""Deserialize data from a file
|
31 |
|
32 |
Args:
|
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
+
from typing import TYPE_CHECKING, Sequence
|
4 |
|
5 |
import joblib
|
6 |
from tqdm import tqdm
|
|
|
11 |
__all__ = ["serialize", "deserialize"]
|
12 |
|
13 |
|
14 |
+
def serialize(data: Sequence[str], path: Path, max_size: int = 100000) -> None:
|
15 |
"""Serialize data to a file
|
16 |
|
17 |
Args:
|
|
|
26 |
joblib.dump(chunk, f, compress=3)
|
27 |
|
28 |
|
29 |
+
def deserialize(path: Path) -> Sequence[str]:
|
30 |
"""Deserialize data from a file
|
31 |
|
32 |
Args:
|