Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import bz2 | |
from typing import Literal | |
import pandas as pd | |
from app.constants import ( | |
AMAZONREVIEWS_PATH, | |
AMAZONREVIEWS_URL, | |
IMDB50K_PATH, | |
IMDB50K_URL, | |
SENTIMENT140_PATH, | |
SENTIMENT140_URL, | |
) | |
__all__ = ["load_data"] | |
def load_sentiment140(include_neutral: bool = False) -> tuple[list[str], list[int]]: | |
"""Load the sentiment140 dataset and make it suitable for use. | |
Args: | |
include_neutral: Whether to include neutral sentiment | |
Returns: | |
Text and label data | |
Raises: | |
FileNotFoundError: If the dataset is not found | |
""" | |
# Check if the dataset exists | |
if not SENTIMENT140_PATH.exists(): | |
msg = ( | |
f"Sentiment140 dataset not found at: '{SENTIMENT140_PATH}'\n" | |
"Please download the dataset from:\n" | |
f"{SENTIMENT140_URL}" | |
) | |
raise FileNotFoundError(msg) | |
# Load the dataset | |
data = pd.read_csv( | |
SENTIMENT140_PATH, | |
encoding="ISO-8859-1", | |
names=[ | |
"target", # 0 = negative, 2 = neutral, 4 = positive | |
"id", # The id of the tweet | |
"date", # The date of the tweet | |
"flag", # The query, NO_QUERY if not present | |
"user", # The user that tweeted | |
"text", # The text of the tweet | |
], | |
) | |
# Ignore rows with neutral sentiment | |
if not include_neutral: | |
data = data[data["target"] != 2] | |
# Map sentiment values | |
data["sentiment"] = data["target"].map( | |
{ | |
0: 0, # Negative | |
4: 1, # Positive | |
2: 2, # Neutral | |
}, | |
) | |
# Return as lists | |
return data["text"].tolist(), data["sentiment"].tolist() | |
def load_amazonreviews(merge: bool = True) -> tuple[list[str], list[int]]: | |
"""Load the amazonreviews dataset and make it suitable for use. | |
Args: | |
merge: Whether to merge the test and train datasets (otherwise ignore test) | |
Returns: | |
Text and label data | |
Raises: | |
FileNotFoundError: If the dataset is not found | |
""" | |
# Check if the dataset exists | |
test_exists = AMAZONREVIEWS_PATH[0].exists() or not merge | |
train_exists = AMAZONREVIEWS_PATH[1].exists() | |
if not (test_exists and train_exists): | |
msg = ( | |
f"Amazonreviews dataset not found at: '{AMAZONREVIEWS_PATH[0]}' and '{AMAZONREVIEWS_PATH[1]}'\n" | |
"Please download the dataset from:\n" | |
f"{AMAZONREVIEWS_URL}" | |
) | |
raise FileNotFoundError(msg) | |
# Load the datasets | |
with bz2.BZ2File(AMAZONREVIEWS_PATH[1]) as train_file: | |
train_data = [line.decode("utf-8") for line in train_file] | |
test_data = [] | |
if merge: | |
with bz2.BZ2File(AMAZONREVIEWS_PATH[0]) as test_file: | |
test_data = [line.decode("utf-8") for line in test_file] | |
# Merge the datasets | |
data = train_data + test_data | |
# Split the data into labels and text | |
labels, texts = zip(*(line.split(" ", 1) for line in data)) | |
# Map sentiment values | |
sentiments = [int(label.split("__label__")[1]) - 1 for label in labels] | |
# Return as lists | |
return texts, sentiments | |
def load_imdb50k() -> tuple[list[str], list[int]]: | |
"""Load the imdb50k dataset and make it suitable for use. | |
Returns: | |
Text and label data | |
Raises: | |
FileNotFoundError: If the dataset is not found | |
""" | |
# Check if the dataset exists | |
if not IMDB50K_PATH.exists(): | |
msg = ( | |
f"IMDB50K dataset not found at: '{IMDB50K_PATH}'\n" | |
"Please download the dataset from:\n" | |
f"{IMDB50K_URL}" | |
) # fmt: off | |
raise FileNotFoundError(msg) | |
# Load the dataset | |
data = pd.read_csv(IMDB50K_PATH) | |
# Map sentiment values | |
data["sentiment"] = data["sentiment"].map( | |
{ | |
"positive": 1, | |
"negative": 0, | |
}, | |
) | |
# Return as lists | |
return data["review"].tolist(), data["sentiment"].tolist() | |
def load_data(dataset: Literal["sentiment140", "amazonreviews", "imdb50k"]) -> tuple[list[str], list[int]]: | |
"""Load and preprocess the specified dataset. | |
Args: | |
dataset: Dataset to load | |
Returns: | |
Text and label data | |
Raises: | |
ValueError: If the dataset is not recognized | |
""" | |
match dataset: | |
case "sentiment140": | |
return load_sentiment140(include_neutral=False) | |
case "amazonreviews": | |
return load_amazonreviews(merge=True) | |
case "imdb50k": | |
return load_imdb50k() | |
case _: | |
msg = f"Unknown dataset: {dataset}" | |
raise ValueError(msg) | |